

Frequency Estimators

Outline for Today

● Count-Min Sketches
● A simple and powerful data structure for

estimating frequencies.

● Count Sketches
● Another approach for estimating

frequencies.

Randomized Data Structures

Tradeoffs

● Data structure design is all about
tradeoffs:
● Trade preprocessing time for query time.
● Trade asymptotic complexity for constant

factors.
● Trade space for speed.
● Trade worst-case per-operation guarantees

for worst-case aggregate guarantees.

Randomization

● Randomization opens up new routes for
tradeoffs in data structures:
● Trade worst-case guarantees for average-case

guarantees.
● Trade exact answers for approximate answers.

● This week, we'll explore two families of data
structures that make these tradeoffs:
● Today: Frequency estimators.
● Wednesday: Hash tables.

Preliminaries: Classes of Hash Functions

Hashing in Practice

● In most programming languages, each object as a
single hash code.
● C++: std::hash
● Java: Object.hashCode
● Python: __hash__

● Most algorithms and data structures that involve hash
functions will not work if objects have just a single
hash code.

● Typically, we model hash functions as mathematical
functions from a universe to some set {0, 1, …, �
m – 1}, then consider sets of these functions.

● We can then draw a random function from the set to
serve as our hash function.

Universal Hash Functions

● Notation: Let [m] = {0, 1, 2, …, m – 1}.
● A set is called a ℋ universal family of

hash functions if it is a set of functions
from to [� m] where for any distinct
x, y ∈ , we have�

● Intuitively, universal families of hash
functions are classes of hash functions
with low collision probabilities.

Pr
h∈ℋ

[h(x)=h(y)] ≤
1
m

Pairwise Independence

● A set of hash functions from to [ℋ � m] is
called pairwise independent if for any
distinct x, y ∈ and for any � s, t ∈ [m], the
following holds:

● Equivalently, h(x) and h(y) are pairwise

independent random variables if x ≠ y.

● If is a family of pairwise independent hash ℋ
functions, then

Pr
h∈ℋ

[h(x)=s and h(y)=t] =
1

m2

Pr
h∈ℋ

[h(x)=h(y)] =
1
m

Representing Families

● If any element of fits into O(1) machine �
words, there are pairwise independent
families that need O(1) space per
function and can be evaluated in time
O(1).

● Check CLRS for details.

Preliminaries: Vector Norms

● Let a ∈ ℝn be a vector.
● The L₁ norm of a, denoted ||a||₁, is

defined as

● The L₂ norm of x, denoted ||a||₂, is

defined as

L₁ and L₂ Norms

∥a∥1=∑
i=1

n

∣ai∣

∥a∥2=√∑
i=1

n

ai
2

Properties of Norms

● The following property of norms holds for
any vector a ∈ ℝn. It's a good exercise to
prove this on your own:

||a||₂ ≤ ||a||₁ ≤ Θ(n1/2) · ||a||₂
● The first bound is tight when exactly one

component of a is nonzero.
● The second bound is tight when all

components of a are equal.

Frequency Estimation

Frequency Estimators

● A frequency estimator is a data
structure supporting the following
operations:
● increment(x), which increments the number

of times that x has been seen, and
● estimate(x), which returns an estimate of

the frequency of x.

● Using hash tables, can solve exactly in
space Θ(n) and expected O(1) costs on
the operations.

Frequency Estimators

● Frequency estimation has many applications:
● Search engines: Finding frequent search

queries.
● Network routing: Finding common source and

destination addresses.
● In these applications, Θ(n) memory can be

impractical.

● Unfortunately, this much memory is needed to
be able to exactly answer queries.

● Goal: Get approximate answers to these
queries in sublinear space.

Some Terminology

● Let's suppose that all elements x are
drawn from some set = { � x₁, x₂, … xₙ }.

● We can interpret the frequency
estimation problem as follows:

Maintain an n-dimensional vector a
such that aᵢ is the frequency of xᵢ.

● We'll represent a implicitly in a format
that uses reduced space.

Where We're Going

● Today, we'll see two data frequency
estimation data structures.

● Each is parameterized over two
quantities:
● An accuracy parameter ε ∈ (0, 1]

determining how close to accurate we want
our answers to be.

● A confidence parameter δ ∈ (0, 1]
determining how likely it is that our estimate
is within the bounds given by ε.

Where We're Going

● The count-min sketch estimates with error at
most ε||a||₁ with probability at least 1 – δ.

● The count sketch estimates with an error at
most ε||a||₂ with probability at least 1 – δ.

● Count-min sketches will use less space than
count sketches for the same ε and δ, but
provide slightly weaker guarantees.

● Count-min sketches require only universal hash
functions, while count sketches require
pairwise independence.

The Count-Min Sketch

The Count-Min Sketch

● Rather than diving into the full count-min
sketch, we'll develop the data structure in
phases.

● First, we'll build a simple data structure that
on expectation provides good estimates, but
which does not have a high probability of
doing so.

● Next, we'll combine several of these data
structures together to build a data structure
that has a high probability of providing good
estimates.

Revisiting the Exact Solution

● In the exact solution to the frequency estimation
problem, we maintained a single counter for each
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a
counter to each xᵢ ∈ . Multiple � xᵢ's might be assigned
to the same counter.

● To increment(x), increment the counter for x.

● To estimate(x), read the value of the counter for x.

11 6 4 7

Revisiting the Exact Solution

● In the exact solution to the frequency estimation
problem, we maintained a single counter for each
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a
counter to each xᵢ ∈ . Multiple � xᵢ's might be assigned
to the same counter.

● To increment(x), increment the counter for x.

● To estimate(x), read the value of the counter for x.

12 6 4 7

Revisiting the Exact Solution

● In the exact solution to the frequency estimation
problem, we maintained a single counter for each
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a
counter to each xᵢ ∈ . Multiple � xᵢ's might be assigned
to the same counter.

● To increment(x), increment the counter for x.

● To estimate(x), read the value of the counter for x.

12 6 5 7

Our Initial Structure

● We can formalize this intuition by using
universal hash functions.

● Create an array count of w counters, each
initially zero.
● We'll choose w later on.

● Choose, from a family of universal hash ℋ
functions, a hash function h : → [� w].

● To increment(x), increment count[h(x)].

● To estimate(x), return count[h(x)].

Analyzing this Structure

● Recall: a is the vector representing the
true frequencies of the elements.
● aᵢ is the frequency of element xᵢ.

● Denote by âᵢ the value of estimate(xᵢ).
This is a random variable that depends
on the frequencies a and the hash
function h chosen.

● Goal: Show that on expectation, âᵢ is not
far from aᵢ.

Analyzing this Structure

● Let's look at âᵢ for some choice of xᵢ.

● The value of âᵢ is given by the true value of aᵢ, plus
the frequencies of all of the other elements that
hash into the same bucket as xᵢ.

● To account for the collisions, for each i ≠ j,
introduce a random variable Xj defined as follows:

● The value of âᵢ is then given by

X j={a j if h(xi)=h(x j)

0 otherwise

âi = ai + ∑
j≠i

X j

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai + ∑
j≠i

ai

w

= ai +
∥a∥1

w

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai + ∑
j≠i

ai

w

= ai +
∥a∥1

w

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai + ∑
j≠i

ai

w

= ai +
∥a∥1

w

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai + ∑
j≠i

ai

w

= ai +
∥a∥1

w

E[X j] = a j⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]

= a j⋅Pr [h(xi)=h(x j)]

≤
a j

w

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai + ∑
j≠i

ai

w

= ai +
∥a∥1

w

E[X j] = a j⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]

= a j⋅Pr [h(xi)=h(x j)]

≤
a j

w

X j={a j if h(xi)=h(x j)

0 otherwise

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai + ∑
j≠i

ai

w

= ai +
∥a∥1

w

E[X j] = a j⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]

= a j⋅Pr [h(xi)=h(x j)]

≤
a j

w

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai + ∑
j≠i

ai

w

= ai +
∥a∥1

w

E[X j] = a j⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]

= a j⋅Pr [h(xi)=h(x j)]

≤
a j

w

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai + ∑
j≠i

ai

w

= ai +
∥a∥1

w

E[X j] = a j⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]

= a j⋅Pr [h(xi)=h(x j)]

≤
a j

w

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

≤ ai + ∑
j≠i

a j

w

≤ ai +
∥a∥1

w

E[X j] = a j⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]

= a j⋅Pr [h(xi)=h(x j)]

≤
a j

w

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

≤ ai + ∑
j≠i

a j

w

≤ ai +
∥a∥1

w

E[X j] = a j⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]

= a j⋅Pr [h(xi)=h(x j)]

≤
a j

w

Analyzing this Structure

● On expectation, the value of estimate(xᵢ) is
at most ||a||₁ / w greater than aᵢ.

● Intuitively, makes sense; this is what you'd
get if all the extra error terms were uniformly
distributed across the counters.

● Increasing w increases memory usage, but
improves accuracy.

● Decreasing w decreases memory usage, but
decreases accuracy.

One Problem

● We have shown that on expectation, the
value of estimate(xᵢ) can be made close to
the true value.

● However, this data structure may give wildly
inaccurate results for most elements.
● Any low-frequency elements that collide with

high-frequency elements will have overreported
frequency.

Question: Can we bound the probability that
we overestimate the frequency of an
element?

12 6 5 7

One Problem

● We have shown that on expectation, the
value of estimate(xᵢ) can be made close to
the true value.

● However, this data structure may give wildly
inaccurate results for most elements.
● Any low-frequency elements that collide with

high-frequency elements will have overreported
frequency.

● Question: Can we bound the probability that
we overestimate the frequency of an
element?

A Useful Observation

● Notice that regardless of which hash
function we use or the size of the table,
we always have âᵢ ≥ aᵢ.

● This means that âᵢ – aᵢ ≥ 0.
● We have a one-sided error; this data

structure will never underreport the
frequency of an element, but it may
overreport it.

Bounding the Error Probability

● If X is a nonnegative random variable, then Markov's
inequality states that for any c > 0, we have

● We know that

● Therefore, we see

● By Markov's inequality, for any c > 0, we have

● Equivalently:

E[âi] ≤ ai + ∥a∥1/w

Pr [X > c⋅E[X]] ≤ 1/c

E[âi−ai] ≤ ∥a∥1/w

Pr [âi−ai >
c∥a∥1

w
] ≤ 1 /c

Pr [âi > ai +
c∥a∥1

w
] ≤ 1 /c

Bounding the Error Probability

● For any c > 0, we know that

● In particular:

● Given any 0 < ε < 1, let's set w = ⌈e / ε⌉. Then we

have

● This data structure uses O(1 / ε) space and gives
estimates with error at most ε||a||₁ with probability
at least 1 - 1 / e.

Pr [âi > ai +
c∥a∥1

w
] ≤ 1 /c

Pr [âi > ai +
e∥a∥1

w
] ≤ 1/e

Pr [âi > ai + ε∥a∥1] ≤ 1 /e

Tuning the Probability

● Right now, we can tune the accuracy ε of
the data structure, but we can't tune our
confidence in that answer (it's always
1 - 1 / e).

● Goal: Update the data structure so that
for any confidence 0 < δ < 1, the
probability that an estimate is correct is
at least 1 – δ.

Tuning the Probability

● If this structure has a constant
probability of giving a good estimate,
many copies of this structure in parallel
have an even better chance.

● Idea: Combine together multiple copies
of this data structure to boost confidence
in our estimates.

Running in Parallel

● Let's suppose that we run d independent
copies of this data structure.

● To increment(x) in the overall structure,
we call increment(x) on each of the
underlying data structures.

● The probability that at least one of them
provides a good estimate is quite high.

● Question: How do you know which one?

Recognizing the Answer

● Recall: Each estimate âᵢ is the sum of two
independent terms:
● The actual value aᵢ.
● Some “noise” terms from other elements

colliding with xᵢ.
● Since the noise terms are always nonnegative,

larger values of âᵢ are less accurate than
smaller values of âᵢ.

● Idea: Take, as our estimate, the minimum
value of âᵢ from all of the data structures.

The Final Analysis

● For each independent copy of this data structure,
the probability that our estimate is within ε||a||₁ of
the true value is at least 1 – 1 / e.

● Let Ɛᵢ be the event that the ith copy of the data
structure provides an estimate within ε||a||₁ of the
true answer.

● Let Ɛ be the event that the aggregate data
structure provides an estimate within ε||a||₁.

● Question: What is Pr[Ɛ]?

The Final Analysis

● Since we're taking the minimum of all the
estimates, if any of the data structures provides a
good estimate, our estimate will be accurate.

● Therefore,

Pr[Ɛ] = Pr[∃i. Ɛᵢ]
● Equivalently:

Pr[Ɛ] = 1 – Pr[∀i. Ɛᵢ]
● Since all the estimates are independent:

Pr[Ɛ] = 1 – Pr[∀i. Ɛᵢ] ≤ 1 – 1/ed.

The Final Analysis

● We now have that

Pr[Ɛ] ≤ 1 – 1/ed.
● If we want the confidence to be 1 – δ, we can

choose δ such that

1 - δ = 1 – 1/ed

● Solving, we can choose d = ln (1 / δ).
● If we make ln (1 / δ) independent copies of our

data structure, the probability that our estimate
is off by at most ε||a||₁ is at least 1 – δ.

The Count-Min Sketch

● This data structure is called a count-min
sketch.

● Given parameters ε and δ, choose

w = ⌈e / ε⌉ d = ⌈ln (1 / δ)⌉
● Create an array count of size w × d and for each

row i, choose a hash function hᵢ : → [� w]
independently from a universal family of hash
functions .ℋ

● To increment(x), increment count[i][hᵢ(x)] for
each row i.

● To estimate(x), return the minimum value of
count[i][hᵢ(x)] across all rows i.

The Count-Min Sketch

● Update and query times are O(d), which
is O(ln (1 / δ)).

● Space usage is O((1 / ε) · ln (1 / δ)).
● This can be significantly better than just

storing a raw frequency count!

● Provides an estimate to within ε||a||₁ with
probability at least 1 – δ.

The General Pattern

● At a high level, the data structure works as follows:
● Create an array of counters tracking the frequencies of

various elements.
● Bound the probability that the estimate deviates

significantly from the true value.
● Store multiple independent copies of this data structure.
● Find a way to aggregate information across the copies.
● Bound the probability that the aggregate is wrong across

all instances.

● This same intuition forms the basis for the count
sketch, which we'll see next.

Time-Out for Announcements!

Upcoming Due Dates

● Problem Set 6 is due this Wednesday at
2:15PM.

● Final project proposals are due this
Wednesday at 2:15PM.
● Still need a project group? Stop by office

hours today!
● Please take this seriously! You don't want to

spend three weeks working on something you
don't care about!

Your Questions

“Why do problem sets exhibit point
deflation? The number of points problem

sets are out of appears to be a
non-increasing function of time!”

It makes grading simpler
and more focused on

providing useful feedback.

It makes grading simpler
and more focused on

providing useful feedback.

“How many (more) problem sets are there?”

Just one. Check the course
information handout for

more details.

Just one. Check the course
information handout for

more details.

“How do you imagine Excel represents
cells and sheets using data structures?”

I'm not actually sure! My guess is that they use a
hybrid approach combining hash tables/BSTs for

sparse grids and arrays for dense grids. You might
find this site useful:

http://msdn.microsoft.com/en-us/library/bb687869%28v=office.12%29.aspx

I'm not actually sure! My guess is that they use a
hybrid approach combining hash tables/BSTs for

sparse grids and arrays for dense grids. You might
find this site useful:

http://msdn.microsoft.com/en-us/library/bb687869%28v=office.12%29.aspx

http://msdn.microsoft.com/en-us/library/bb687869%28v=office.12%29.aspx
http://msdn.microsoft.com/en-us/library/bb687869%28v=office.12%29.aspx

“Huffman trees?”

CLRS 16.3

(Or, check the CS106B
assignments page in a few weeks!)

CLRS 16.3

(Or, check the CS106B
assignments page in a few weeks!)

Back to CS166!

An Alternative: Count Sketches

The Motivation

● (Note: This is historically backwards; count
sketches came before count-min sketches.)

● In a count-min sketch, errors arise when
multiple elements collide.

● Errors are strictly additive; the more
elements collide in a bucket, the worse the
estimate for those elements.

● Question: Can we try to offset the “badness”
that results from the collisions?

The Setup

● As before, for some parameter w, we'll
create an array count of length w.

● As before, choose a hash function
h : → [� w] from a family .ℋ

● For each xᵢ ∈ , assign � xᵢ either +1 or -1.
● To increment(x), go to count[h(x)] and

add ±1 as appropriate.
● To estimate(x), return count[h(x)],

multiplied by ±1 as appropriate.

The Intuition

● Think about what introducing the ±1 term does
when collisions occur.

● If an element x collides with a frequent element
y, we're not going to get a good estimate for x
(but we wouldn't have gotten one anyway).

● If x collides with multiple infrequent elements,
the collisions between those elements will
partially offset one another and leave a better
estimate for x.

More Formally

● Let's formalize this idea more concretely.
● In addition to choosing h ∈ , choose a ℋ

second hash function s : � → {+1, -1}
from a pairwise independent family .�

● Assumption: The functions in are ℋ
independent of the functions in .�

● To increment(x), add s(x) to count[h(x)].
● To estimate(x), return s(x) · count[h(x)].

How accurate is our estimation?

Formalizing the Intuition

● As before, define âᵢ to be our estimate of aᵢ.

● As before, âᵢ will depend on how the other
elements are distributed. Unlike before, it now
also depends on signs given to the elements by s.

● Specifically, for each other xj that collides with xᵢ,
the error contribution will be

s(xᵢ) · s(xj) · aj

● Why?

● The counter for xᵢ will haves(xj) aj added in.

● We multiply the counter by s(xᵢ) before returning it.

Properties of s

Claim: Pr[s(xᵢ) · s(xj) = 1] = ½.

Proof: The product is 1 iff both of the signs are
+1 or both the signs are -1.

Using the definition of a pairwise independent
family of hash functions, each of those
possibilities has probability ¼ of occurring.

Since they're mutually exclusive, the overall
probability is ½. ■

Formalizing the Intuition

● As with count-min sketches, we'll introduce
random variables representing the error
contribution from other elements.

● For all j ≠ i, let Xj be a random variable defined as
follows:

● Notice that E[Xj] = 0.

X j={
a j if h(i)=h(j) and s(xi)s(x j)=1
0 if h(i)≠h(j)

−a j if h(i)=h(j) and s(xi)s(x j)=−1

Formalizing the Intuition

● We can now express âᵢ in terms of these
Xj variables.

● Specifically, âᵢ is given by the true value
of aᵢ plus extra amounts from collisions.

● Mathematically:

âi = ai + ∑
j≠i

X j

Computing the Expectation

● Something interesting happens when we
compute E[âᵢ]:

● On expectation, we get the exact value of aᵢ!

● How likely is this?

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai

Computing the Expectation

● Something interesting happens when we
compute E[âᵢ]:

● On expectation, we get the exact value of aᵢ!

● How likely is this?

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai

Computing the Expectation

● Something interesting happens when we
compute E[âᵢ]:

● On expectation, we get the exact value of aᵢ!

● How likely is this?

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai

Computing the Expectation

● Something interesting happens when we
compute E[âᵢ]:

● On expectation, we get the exact value of aᵢ!

● How likely is this?

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai

Computing the Expectation

● Something interesting happens when we
compute E[âᵢ]:

● On expectation, we get the exact value of aᵢ!

● How likely is this?

E[âi] = E[ai + ∑
j≠i

X j]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[X j]

= ai

A Hitch

● In the count-min sketch, we used Markov's
inequality to bound the probability that we get
a bad estimate.

● This worked because âᵢ – aᵢ was a nonnegative
random variable.

● However, âᵢ – aᵢ can be negative in the count
sketch because collisions can decrease the
estimate âᵢ below the true value aᵢ.

● We'll need to use a different technique to
bound the error.

Chebyshev to the Rescue

● Chebyshev's inequality states that for any
random variable X with finite variance, given
any c > 0, the following holds:

● If we can get the variance of âᵢ, we can bound
the probability that we get a bad estimate with
our data structure.

Pr [∣X−E[X]∣ ≥ c √Var [X]] ≤
1
c2

Computing the Variance

● Let's go compute Var[âᵢ]:

● Although Var is not a linear operator, because h
is pairwise independent, all of the Xj's are
independent. Therefore, the variance of the
sum is the sum of the variances.

Var [âi] = Var [ai + ∑
j≠i

X j]

= Var [∑
j≠i

X j]

= ∑
j≠i

Var [X j]

Computing the Variance

● Let's go compute Var[âᵢ]:

● Although Var is not a linear operator, because h
is pairwise independent, all of the Xj's are
independent. Therefore, the variance of the
sum is the sum of the variances.

Var [âi] = Var [ai + ∑
j≠i

X j]

= Var [∑
j≠i

X j]

= ∑
j≠i

Var [X j]

Computing the Variance

● Let's go compute Var[âᵢ]:

● Although Var is not a linear operator, because
our hash function is pairwise independent, all
of the Xj's are pairwise independent.

● Therefore, the variance of the sum is the sum
of the variances.

Var [âi] = Var [ai + ∑
j≠i

X j]

= Var [∑
j≠i

X j]

= ∑
j≠i

Var [X j]

Computing the Variance

● Let's go compute Var[âᵢ]:

● Although Var is not a linear operator, because
our hash function is pairwise independent, all
of the Xj's are pairwise independent.

● Therefore, the variance of the sum is the sum
of the variances.

Var [âi] = Var [ai + ∑
j≠i

X j]

= Var [∑
j≠i

X j]

= ∑
j≠i

Var [X j]

Computing the Variance

● Recall: Var[Xj] = E[Xj
2] – E[Xj]

2.

● We know that for all Xj that E[Xj] = 0.

● We can determine E[Xj
2] by looking at Xj

2:

● Therefore, E[Xj
2] = aj

2 Pr[h(i) = h(j)] = aj
2 / w.

X j
2={a j

2 if h(i)=h(j)
0 if h(i)≠h(j)

X j={
a j if h(i)=h(j) and s(xi)s(x j)=1
0 if h(i)≠h(j)

−a j if h(i)=h(j) and s(xi)s(x j)=−1

Using the Variance

Var [âi] = Var [ai + ∑
j≠i

X j]

= Var [∑
j≠i

X j]

= ∑
j≠i

Var [X j]

≤ ∑
j≠i

ai
2

w

≤
∥a∥2

2

w

Using the Variance

Var [âi] = Var [ai + ∑
j≠i

X j]

= Var [∑
j≠i

X j]

= ∑
j≠i

Var [X j]

= ∑
j≠i

a j
2

w

≤
∥a∥2

2

w

Using the Variance

Var [âi] = Var [ai + ∑
j≠i

X j]

= Var [∑
j≠i

X j]

= ∑
j≠i

Var [X j]

= ∑
j≠i

a j
2

w

≤
∥a∥2

2

w

Harnessing Chebyshev

● Chebyshev's Inequality says

● Applying this to âᵢ yields

● For any ε, choose ε = e1/2 / w1/2, so

● Therefore, choosing c = e1/2 gives

Pr [∣âi−ai∣ ≥
cε∥a∥2

√e] ≤ 1/e

Pr [∣X−E[X]∣ ≥ c √Var [X]] ≤ 1 /c2

Pr [∣âi−ai∣ ≥
c∥a∥2

√w] ≤ 1 /c2

Pr [∣âi−ai∣ ≥ ε∥a∥2] ≤ 1/e

The Story So Far

● We now know that, by setting ε = (e / w)1/2,
the estimate is within ε||a||₂ with probability
at least 1 / e.

● Solving for w, this means that we will choose
w = ⌈e / ε2⌉.

● Space usage is now O(1 / ε2), but the error
bound is now ε||a||₂ rather than ε||a||₁.

● As before, the next step is to reduce the error
probability.

Repetitions with a Catch

● As before, our goal is to make it possible to choose
a bound 0 < δ < 1 so that the confidence is at least
1 – δ.

● As before, we'll do this by making d independent
copies of the data structure and running each in
parallel.

● Unlike the count-min sketch, errors in count
sketches are two-sided; we can overshoot or
undershoot.

● Therefore, it's not meaningful to take the minimum
or maximum value.

● How do we know which value to report?

Working with the Median

● Claim: If we output the median estimate
given by the data structures, we have high
probability of giving the right answer.

● Intuition: The only way we report an answer
more than ε||a||₂ is if at least half of the data
structures output an answer that is more
than ε||a||₂ from the true answer.

● Each individual data structure is wrong with
probability at most 1 / e, so this is highly
unlikely.

The Setup

● Let X denote a random variable equal to
the number of data structures that
produce an answer not within ε||a||₂ of
the true answer.

● Since each independent data structure
has failure probability at most 1 / e, we
can upper-bound X with a Binom(d, 1 / e)
variable.

● We want to know Pr[X > d / 2].
● How can we determine this?

Chernoff Bounds

● The Chernoff bound says that if X ~ Binom(n, p)
and p < 1/2, then

● In our case, X ~ Binom(d, 1/e), so we know that

● Therefore, choosing d = O(log(1 / δ)) ensures that
Pr[X > d / 2] ≤ δ.

● Therefore, the success probability is at least 1 – δ.

Pr [X >
d
2

] ≤ e
−d(1/2−1/e)2

2(1/e)

= e−O(1)⋅d

Pr [X > n/2] < e
−n(1/2−p)2

2p

The Overall Construction

● The count sketch is the following data
structure.

● Given ε and δ, choose

w = ⌈e / ε2⌉ d = O(log(1 / δ))
● Create an array count of w × d counters.
● Choose hash functions hᵢ and sᵢ for each of the

d rows.
● To increment(x), add sᵢ(x) to count[i][hᵢ(x)] for

each row i.
● To estimate(x), return the median of

sᵢ(x) · count[i][hᵢ(x)] for each row i.

The Final Analysis

● With probability at least 1 – δ, all
estimates are accurate to within a factor
of ε||a||₂.

● Space usage is O(w × d), which we've
seen to be O((1 / ε2) · log(1 / δ)).

● Updates and queries run in time
O(log(1 / δ)).

● Trades factor of 1 / ε space for an
accuracy guarantee relative to ||a||₂
versus ||a||₁.

In Practice

● These data structures have been and
continue to be used in practice.

● These sketches and their variants have
been used at Google and Yahoo! (or at least,
there are papers coming from there about
their usage).

● Many other sketches exist as well for
estimating other quantities; they'd make for
really interesting final project topics!

Next Time

● Cuckoo Hashing
● A simple hashing scheme guaranteeing

worst-case O(1) lookups.

● Analyzing Cuckoo Hashing
● Pulling together techniques from everywhere

to analyze a seemingly simple structure.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

