
  

Frequency Estimators



  

Outline for Today

● Count-Min Sketches
● A simple and powerful data structure for 

estimating frequencies.

● Count Sketches
● Another approach for estimating 

frequencies.



  

Randomized Data Structures



  

Tradeoffs

● Data structure design is all about 
tradeoffs:
● Trade preprocessing time for query time.
● Trade asymptotic complexity for constant 

factors.
● Trade space for speed.
● Trade worst-case per-operation guarantees 

for worst-case aggregate guarantees.



  

Randomization

● Randomization opens up new routes for 
tradeoffs in data structures:
● Trade worst-case guarantees for average-case 

guarantees.
● Trade exact answers for approximate answers.

● This week, we'll explore two families of data 
structures that make these tradeoffs:
● Today: Frequency estimators.
● Wednesday: Hash tables.



  

Preliminaries: Classes of Hash Functions



  

Hashing in Practice

● In most programming languages, each object as a 
single hash code.
● C++: std::hash
● Java: Object.hashCode
● Python: __hash__

● Most algorithms and data structures that involve hash 
functions will not work if objects have just a single 
hash code.

● Typically, we model hash functions as mathematical 
functions from a universe  to some set {0, 1, …, �
m – 1}, then consider sets of these functions.

● We can then draw a random function from the set to 
serve as our hash function.



  

Universal Hash Functions

● Notation: Let [m] = {0, 1, 2, …, m – 1}.
● A set  is called a ℋ universal family of 

hash functions if it is a set of functions 
from  to [� m] where for any distinct 
x, y ∈  , we have�

● Intuitively, universal families of hash 
functions are classes of hash functions 
with low collision probabilities.

Pr
h∈ℋ

[h(x)=h(y )] ≤
1
m



  

Pairwise Independence

● A set  of hash functions from  to [ℋ � m]  is 
called pairwise independent if for any 
distinct x, y ∈  and for any � s, t ∈ [m], the 
following holds:

 
● Equivalently, h(x) and h(y) are pairwise 

independent random variables if x ≠ y.

● If  is a family of pairwise independent hash ℋ
functions, then

Pr
h∈ℋ

[h(x)=s  and h(y )=t ] =
1

m2

Pr
h∈ℋ

[h(x)=h(y )] =
1
m



  

Representing Families

● If any element of  fits into O(1) machine �
words, there are pairwise independent 
families that need O(1) space per 
function and can be evaluated in time 
O(1).

● Check CLRS for details.



  

Preliminaries: Vector Norms



  

● Let a ∈ ℝn be a vector.
● The L₁ norm of a, denoted ||a||₁, is 

defined as

 

 
● The L₂ norm of x, denoted ||a||₂, is 

defined as

L₁ and L₂ Norms

∥a∥1=∑
i=1

n

∣ai∣

∥a∥2=√∑
i=1

n

ai
2



  

Properties of Norms

● The following property of norms holds for 
any vector a ∈ ℝn. It's a good exercise to 
prove this on your own:

||a||₂  ≤  ||a||₁  ≤  Θ(n1/2) · ||a||₂
● The first bound is tight when exactly one 

component of a is nonzero.
● The second bound is tight when all 

components of a are equal.



  

Frequency Estimation



  

Frequency Estimators

● A frequency estimator is a data 
structure supporting the following 
operations:
● increment(x), which increments the number 

of times that x has been seen, and
● estimate(x), which returns an estimate of 

the frequency of x.

● Using hash tables, can solve exactly in 
space Θ(n) and expected O(1) costs on 
the operations.



  

Frequency Estimators

● Frequency estimation has many applications:
● Search engines: Finding frequent search 

queries.
● Network routing: Finding common source and 

destination addresses.
● In these applications, Θ(n) memory can be 

impractical.

● Unfortunately, this much memory is needed to 
be able to exactly answer queries.

● Goal: Get approximate answers to these 
queries in sublinear space.



  

Some Terminology

● Let's suppose that all elements x are 
drawn from some set  = { � x₁, x₂, … xₙ }.

● We can interpret the frequency 
estimation problem as follows:

Maintain an n-dimensional vector a
such that aᵢ is the frequency of xᵢ.

● We'll represent a implicitly in a format 
that uses reduced space.



  

Where We're Going

● Today, we'll see two data frequency 
estimation data structures.

● Each is parameterized over two 
quantities:
● An accuracy parameter ε ∈ (0, 1] 

determining how close to accurate we want 
our answers to be.

● A confidence parameter δ ∈ (0, 1] 
determining how likely it is that our estimate 
is within the bounds given by ε.



  

Where We're Going

● The count-min sketch estimates with error at 
most ε||a||₁ with probability at least 1 – δ.

● The count sketch estimates with an error at 
most ε||a||₂ with probability at least 1 – δ.

● Count-min sketches will use less space than 
count sketches for the same ε and δ, but 
provide slightly weaker guarantees.

● Count-min sketches require only universal hash 
functions, while count sketches require 
pairwise independence.



  

The Count-Min Sketch



  

The Count-Min Sketch

● Rather than diving into the full count-min 
sketch, we'll develop the data structure in 
phases.

● First, we'll build a simple data structure that 
on expectation provides good estimates, but 
which does not have a high probability of 
doing so.

● Next, we'll combine several of these data 
structures together to build a data structure 
that has a high probability of providing good 
estimates.



  

Revisiting the Exact Solution

● In the exact solution to the frequency estimation 
problem, we maintained a single counter for each 
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a 
counter to each xᵢ ∈ . Multiple � xᵢ's might be assigned 
to the same counter.

● To increment(x), increment the counter for x.

● To estimate(x), read the value of the counter for x.
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Our Initial Structure

● We can formalize this intuition by using 
universal hash functions.

● Create an array count of w counters, each 
initially zero.
● We'll choose w later on.

● Choose, from a family  of universal hash ℋ
functions, a hash function h :  → [� w].

● To increment(x), increment count[h(x)].

● To estimate(x), return count[h(x)].



  

Analyzing this Structure

● Recall: a is the vector representing the 
true frequencies of the elements.
● aᵢ is the frequency of element xᵢ.

● Denote by âᵢ the value of estimate(xᵢ). 
This is a random variable that depends 
on the frequencies a and the hash 
function h chosen.

● Goal: Show that on expectation, âᵢ is not 
far from aᵢ.



  

Analyzing this Structure

● Let's look at âᵢ for some choice of xᵢ.

● The value of âᵢ is given by the true value of aᵢ, plus 
the frequencies of all of the other elements that 
hash into the same bucket as xᵢ.

● To account for the collisions, for each i ≠ j, 
introduce a random variable Xj defined as follows:

● The value of âᵢ is then given by

X j={a j if h(xi)=h(x j)

0 otherwise

âi = ai + ∑
j≠i

X j



  

E[âi] = E[ai + ∑
j≠i

X j ]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[ X j ]        

= ai + ∑
j≠i

ai

w
            

= ai +
∥a∥1

w
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Analyzing this Structure

● On expectation, the value of estimate(xᵢ) is 
at most ||a||₁ / w greater than aᵢ.

● Intuitively, makes sense; this is what you'd 
get if all the extra error terms were uniformly 
distributed across the counters.

● Increasing w increases memory usage, but 
improves accuracy.

● Decreasing w decreases memory usage, but 
decreases accuracy.



  

One Problem

● We have shown that on expectation, the 
value of estimate(xᵢ) can be made close to 
the true value.

● However, this data structure may give wildly 
inaccurate results for most elements.
● Any low-frequency elements that collide with 

high-frequency elements will have overreported 
frequency.

Question: Can we bound the probability that 
we overestimate the frequency of an 
element?
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A Useful Observation

● Notice that regardless of which hash 
function we use or the size of the table, 
we always have âᵢ ≥ aᵢ.

● This means that âᵢ – aᵢ ≥ 0.
● We have a one-sided error; this data 

structure will never underreport the 
frequency of an element, but it may 
overreport it.



  

Bounding the Error Probability

● If X is a nonnegative random variable, then Markov's 
inequality states that for any c > 0, we have

● We know that

● Therefore, we see

● By Markov's inequality, for any c > 0, we have

 
● Equivalently:

 

E[âi] ≤ ai + ∥a∥1/w

Pr [ X > c⋅E[ X ]] ≤ 1/c

E[âi−ai] ≤ ∥a∥1/w

Pr [âi−ai >
c∥a∥1

w
] ≤ 1 /c

Pr [âi > ai +
c∥a∥1

w
] ≤ 1 /c



  

Bounding the Error Probability

● For any c > 0, we know that

 
● In particular:

 
● Given any 0 < ε < 1, let's set w = ⌈e / ε⌉. Then we 

have

● This data structure uses O(1 / ε) space and gives 
estimates with error at most ε||a||₁ with probability 
at least 1 - 1 / e.

Pr [âi > ai +
c∥a∥1

w
] ≤ 1 /c

Pr [âi > ai +
e∥a∥1

w
] ≤ 1/e

Pr [âi > ai + ε∥a∥1] ≤ 1 /e



  

Tuning the Probability

● Right now, we can tune the accuracy ε of 
the data structure, but we can't tune our 
confidence in that answer (it's always 
1 - 1 / e).

● Goal: Update the data structure so that 
for any confidence 0 < δ < 1, the 
probability that an estimate is correct is 
at least 1 – δ.



  

Tuning the Probability

● If this structure has a constant 
probability of giving a good estimate, 
many copies of this structure in parallel 
have an even better chance.

● Idea: Combine together multiple copies 
of this data structure to boost confidence 
in our estimates.



  

Running in Parallel

● Let's suppose that we run d independent 
copies of this data structure.

● To increment(x) in the overall structure, 
we call increment(x) on each of the 
underlying data structures.

● The probability that at least one of them 
provides a good estimate is quite high.

● Question: How do you know which one?



  

Recognizing the Answer

● Recall: Each estimate âᵢ is the sum of two 
independent terms:
● The actual value aᵢ.
● Some “noise” terms from other elements 

colliding with xᵢ.
● Since the noise terms are always nonnegative, 

larger values of âᵢ are less accurate than 
smaller values of âᵢ.

● Idea: Take, as our estimate, the minimum 
value of âᵢ from all of the data structures.



  

The Final Analysis

● For each independent copy of this data structure, 
the probability that our estimate is within ε||a||₁ of 
the true value is at least 1 – 1 / e.

● Let Ɛᵢ be the event that the ith copy of the data 
structure provides an estimate within ε||a||₁ of the 
true answer.

● Let Ɛ be the event that the aggregate data 
structure provides an estimate within ε||a||₁.

● Question: What is Pr[Ɛ]?



  

The Final Analysis

● Since we're taking the minimum of all the 
estimates, if any of the data structures provides a 
good estimate, our estimate will be accurate.

● Therefore,

Pr[Ɛ] = Pr[∃i. Ɛᵢ]    
● Equivalently:

Pr[Ɛ] = 1 – Pr[∀i. Ɛᵢ]    
● Since all the estimates are independent:

Pr[Ɛ] = 1 – Pr[∀i. Ɛᵢ] ≤ 1 – 1/ed.   



  

The Final Analysis

● We now have that

Pr[Ɛ] ≤ 1 – 1/ed.   
● If we want the confidence to be 1 – δ, we can 

choose δ such that

1 - δ = 1 – 1/ed  

● Solving, we can choose d = ln (1 / δ).
● If we make ln (1 / δ) independent copies of our 

data structure, the probability that our estimate 
is off by at most ε||a||₁ is at least 1 – δ.



  

The Count-Min Sketch

● This data structure is called a count-min 
sketch.

● Given parameters ε and δ, choose

w = ⌈e / ε⌉        d = ⌈ln (1 / δ)⌉
● Create an array count of size w × d and for each 

row i, choose a hash function hᵢ :  → [� w] 
independently from a universal family of hash 
functions .ℋ

● To increment(x), increment count[i][hᵢ(x)] for 
each row i.

● To estimate(x), return the minimum value of 
count[i][hᵢ(x)] across all rows i.



  

The Count-Min Sketch

● Update and query times are O(d), which 
is O(ln (1 / δ)).

● Space usage is O((1 / ε) · ln (1 / δ)).
● This can be significantly better than just 

storing a raw frequency count!

● Provides an estimate to within ε||a||₁ with 
probability at least 1 – δ.



  

The General Pattern

● At a high level, the data structure works as follows:
● Create an array of counters tracking the frequencies of 

various elements.
● Bound the probability that the estimate deviates 

significantly from the true value.
● Store multiple independent copies of this data structure.
● Find a way to aggregate information across the copies.
● Bound the probability that the aggregate is wrong across 

all instances.

● This same intuition forms the basis for the count 
sketch, which we'll see next.



  

Time-Out for Announcements!



  

Upcoming Due Dates

● Problem Set 6 is due this Wednesday at 
2:15PM.

● Final project proposals are due this 
Wednesday at 2:15PM.
● Still need a project group? Stop by office 

hours today!
● Please take this seriously! You don't want to 

spend three weeks working on something you 
don't care about!



  

Your Questions



  

“Why do problem sets exhibit point 
deflation? The number of points problem 

sets are out of appears to be a 
non-increasing function of time!”

It makes grading simpler 
and more focused on 

providing useful feedback.

It makes grading simpler 
and more focused on 

providing useful feedback.



  

“How many (more) problem sets are there?”

Just one. Check the course 
information handout for 

more details.

Just one. Check the course 
information handout for 

more details.



  

“How do you imagine Excel represents 
cells and sheets using data structures?”

I'm not actually sure! My guess is that they use a 
hybrid approach combining hash tables/BSTs for 

sparse grids and arrays for dense grids. You might 
find this site useful:

http://msdn.microsoft.com/en-us/library/bb687869%28v=office.12%29.aspx

I'm not actually sure! My guess is that they use a 
hybrid approach combining hash tables/BSTs for 

sparse grids and arrays for dense grids. You might 
find this site useful:

http://msdn.microsoft.com/en-us/library/bb687869%28v=office.12%29.aspx

http://msdn.microsoft.com/en-us/library/bb687869%28v=office.12%29.aspx
http://msdn.microsoft.com/en-us/library/bb687869%28v=office.12%29.aspx


  

“Huffman trees?”

CLRS 16.3
 

(Or, check the CS106B 
assignments page in a few weeks!)

CLRS 16.3
 

(Or, check the CS106B 
assignments page in a few weeks!)



  

Back to CS166!



  

An Alternative: Count Sketches



  

The Motivation

● (Note: This is historically backwards; count 
sketches came before count-min sketches.)

● In a count-min sketch, errors arise when 
multiple elements collide.

● Errors are strictly additive; the more 
elements collide in a bucket, the worse the 
estimate for those elements.

● Question: Can we try to offset the “badness” 
that results from the collisions?



  

The Setup

● As before, for some parameter w, we'll 
create an array count of length w.

● As before, choose a hash function 
h :   → [� w] from a family .ℋ

● For each xᵢ ∈ , assign � xᵢ either +1 or -1.
● To increment(x), go to count[h(x)] and 

add ±1 as appropriate.
● To estimate(x), return count[h(x)], 

multiplied by ±1 as appropriate.



  

The Intuition

● Think about what introducing the ±1 term does 
when collisions occur.

● If an element x collides with a frequent element 
y, we're not going to get a good estimate for x 
(but we wouldn't have gotten one anyway).

● If x collides with multiple infrequent elements, 
the collisions between those elements will 
partially offset one another and leave a better 
estimate for x.



  

More Formally

● Let's formalize this idea more concretely.
● In addition to choosing h ∈ , choose a ℋ

second hash function s : � → {+1, -1} 
from a pairwise independent family .�

● Assumption: The functions in  are ℋ
independent of the functions in .�

● To increment(x), add s(x) to count[h(x)].
● To estimate(x), return s(x) · count[h(x)].



  

How accurate is our estimation?



  

Formalizing the Intuition

● As before, define âᵢ to be our estimate of aᵢ.

● As before, âᵢ will depend on how the other 
elements are distributed. Unlike before, it now 
also depends on signs given to the elements by s.

● Specifically, for each other xj that collides with xᵢ, 
the error contribution will be

s(xᵢ) · s(xj) · aj

● Why?

● The counter for xᵢ will haves(xj) aj added in.

● We multiply the counter by s(xᵢ) before returning it.



  

Properties of s

Claim: Pr[s(xᵢ) · s(xj) = 1]  =  ½.

Proof: The product is 1 iff both of the signs are
+1 or both the signs are -1.

Using the definition of a pairwise independent 
family of hash functions, each of those 
possibilities has probability ¼ of occurring.

Since they're mutually exclusive, the overall 
probability is ½. ■



  

Formalizing the Intuition

● As with count-min sketches, we'll introduce 
random variables representing the error 
contribution from other elements.

● For all j ≠ i, let Xj be a random variable defined as 
follows:

● Notice that E[Xj] = 0.

X j={
a j if h(i)=h( j) and s(xi)s(x j)=1
0 if h(i)≠h( j)

−a j if h(i)=h( j) and s(xi)s(x j)=−1



  

Formalizing the Intuition

● We can now express âᵢ in terms of these 
Xj variables.

● Specifically, âᵢ is given by the true value 
of aᵢ plus extra amounts from collisions.

● Mathematically:

âi = ai + ∑
j≠i

X j



  

Computing the Expectation

● Something interesting happens when we 
compute E[âᵢ]:

 

● On expectation, we get the exact value of aᵢ!

● How likely is this?

E[âi] = E[ai + ∑
j≠i

X j ]

= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[ X j]     

= ai                      
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= E[ai] + E[∑
j≠i

X j]

= ai + ∑
j≠i

E[ X j]     

= ai                      



  

A Hitch

● In the count-min sketch, we used Markov's 
inequality to bound the probability that we get 
a bad estimate.

● This worked because âᵢ – aᵢ was a nonnegative 
random variable.

● However, âᵢ – aᵢ can be negative in the count 
sketch because collisions can decrease the 
estimate âᵢ below the true value aᵢ.

● We'll need to use a different technique to 
bound the error.



  

Chebyshev to the Rescue

● Chebyshev's inequality states that for any 
random variable X with finite variance, given 
any c > 0, the following holds:

 

● If we can get the variance of âᵢ, we can bound 
the probability that we get a bad estimate with 
our data structure.

Pr [ ∣X−E[ X ]∣ ≥ c √Var [ X ] ] ≤
1
c2



  

Computing the Variance

● Let's go compute Var[âᵢ]:

 

● Although Var is not a linear operator, because h 
is pairwise independent, all of the Xj's are 
independent. Therefore, the variance of the 
sum is the sum of the variances.

Var [âi] = Var [ai + ∑
j≠i

X j]

= Var [∑
j≠i

X j ]

= ∑
j≠i

Var [ X j ]                
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= Var [∑
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X j ]

= ∑
j≠i

Var [ X j ]                



  

Computing the Variance

● Recall: Var[Xj] = E[Xj
2] – E[Xj]

2.

● We know that for all Xj that E[Xj] = 0.

● We can determine E[Xj
2] by looking at Xj

2:

● Therefore, E[Xj
2] = aj

2 Pr[h(i) = h(j)] = aj
2 / w.

X j
2={a j

2 if h(i)=h( j)
0 if h(i)≠h( j)

X j={
a j if h(i)=h( j) and s(xi)s(x j)=1
0 if h(i)≠h( j)

−a j if h(i)=h( j) and s(xi)s(x j)=−1



  

Using the Variance

Var [âi] = Var [ai + ∑
j≠i

X j]

= Var [∑
j≠i

X j ]

= ∑
j≠i

Var [ X j ]                

≤ ∑
j≠i

ai
2

w
                        

≤
∥a∥2

2

w
                         



  

Using the Variance

Var [âi] = Var [ai + ∑
j≠i

X j]

= Var [∑
j≠i

X j ]

= ∑
j≠i

Var [ X j ]                

= ∑
j≠i

a j
2

w
                        

≤
∥a∥2

2

w
                         



  

Using the Variance

Var [âi] = Var [ai + ∑
j≠i

X j]

= Var [∑
j≠i

X j ]

= ∑
j≠i

Var [ X j ]                

= ∑
j≠i

a j
2

w
                        

≤
∥a∥2

2

w
                         



  

Harnessing Chebyshev

● Chebyshev's Inequality says

● Applying this to âᵢ yields

 
 

● For any ε, choose ε = e1/2 / w1/2, so 

 
 

● Therefore, choosing c = e1/2 gives

Pr [ ∣âi−ai∣ ≥
cε∥a∥2

√e ] ≤ 1/e

Pr [ ∣X−E[ X ]∣ ≥ c √Var [ X ] ] ≤ 1 /c2

Pr [ ∣âi−ai∣ ≥
c∥a∥2

√w ] ≤ 1 /c2

Pr [ ∣âi−ai∣ ≥ ε∥a∥2 ] ≤ 1/e



  

The Story So Far

● We now know that, by setting ε = (e / w)1/2, 
the estimate is within ε||a||₂ with probability 
at least 1 / e.

● Solving for w, this means that we will choose 
w = ⌈e / ε2⌉.

● Space usage is now O(1 / ε2), but the error 
bound is now ε||a||₂ rather than ε||a||₁.

● As before, the next step is to reduce the error 
probability.



  

Repetitions with a Catch

● As before, our goal is to make it possible to choose 
a bound 0 < δ < 1 so that the confidence is at least 
1 – δ.

● As before, we'll do this by making d independent 
copies of the data structure and running each in 
parallel.

● Unlike the count-min sketch, errors in count 
sketches are two-sided; we can overshoot or 
undershoot.

● Therefore, it's not meaningful to take the minimum 
or maximum value.

● How do we know which value to report?



  

Working with the Median

● Claim: If we output the median estimate 
given by the data structures, we have high 
probability of giving the right answer.

● Intuition: The only way we report an answer 
more than ε||a||₂ is if at least half of the data 
structures output an answer that is more 
than ε||a||₂ from the true answer.

● Each individual data structure is wrong with 
probability at most 1 / e, so this is highly 
unlikely.



  

The Setup

● Let X denote a random variable equal to 
the number of data structures that 
produce an answer not within ε||a||₂ of 
the true answer.

● Since each independent data structure 
has failure probability at most 1 / e, we 
can upper-bound X with a Binom(d, 1 / e) 
variable.

● We want to know Pr[X > d / 2].
● How can we determine this?



  

Chernoff Bounds

● The Chernoff bound says that if X ~ Binom(n, p) 
and p < 1/2, then

 
● In our case, X ~ Binom(d, 1/e), so we know that

   

  

● Therefore, choosing d = O(log(1 / δ)) ensures that 
Pr[X > d / 2] ≤ δ.

● Therefore, the success probability is at least 1 – δ.

Pr [ X >
d
2

] ≤ e
−d(1/2−1/e)2

2(1/e)    

= e−O(1)⋅d         

Pr [ X > n/2 ] < e
−n(1/2−p)2

2p



  

The Overall Construction

● The count sketch is the following data 
structure.

● Given ε and δ, choose

w = ⌈e / ε2⌉      d = O(log(1 / δ))
● Create an array count of w × d counters.
● Choose hash functions hᵢ and sᵢ for each of the 

d rows.
● To increment(x), add sᵢ(x) to count[i][hᵢ(x)] for 

each row i.
● To estimate(x), return the median of

sᵢ(x) · count[i][hᵢ(x)] for each row i.



  

The Final Analysis

● With probability at least 1 – δ, all 
estimates are accurate to within a factor 
of ε||a||₂.

● Space usage is O(w × d), which we've 
seen to be O((1 / ε2) · log(1 / δ)).

● Updates and queries run in time 
O(log(1 / δ)).

● Trades factor of 1 / ε space for an 
accuracy guarantee relative to ||a||₂ 
versus ||a||₁.



  

In Practice

● These data structures have been and 
continue to be used in practice.

● These sketches and their variants have 
been used at Google and Yahoo! (or at least, 
there are papers coming from there about 
their usage).

● Many other sketches exist as well for 
estimating other quantities; they'd make for 
really interesting final project topics!



  

Next Time

● Cuckoo Hashing
● A simple hashing scheme guaranteeing 

worst-case O(1) lookups.

● Analyzing Cuckoo Hashing
● Pulling together techniques from everywhere 

to analyze a seemingly simple structure.
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