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Outline for Today

● Data Structures on Integers
● How can we speed up operations that work 

on integer data?

● Tiered Bitvectors
● A simple data structure for ordered 

dictionaries.

● van Emde Boas Trees
● An extremely fast data structure for ordered 

dictionaries.



  

Integer Data Structures



  

Working with Integers

● Integers are interesting objects to work with:
● They can be treated as strings of bits, so we can use 

techniques from string processing.
● They fit into machine words, so we can process the 

bits in parallel with individual word operations.

● Today, we'll explore van Emde Boas trees, 
which rely on this second property.

● Wednesday, we'll see y-fast tries, which will 
pull together just about everything from the 
quarter.



  

Our Machine Model

● We will assume that we are working with a 
transdichotomous machine model.

● Memory is split apart into integer words 
composed of w bits each.

● The CPU can perform basic arithmetic 
operations (addition, subtraction, multiplication, 
division, shifts, AND, OR, etc.) on machine words 
in time O(1) each.

● When working on a problem where each instance 
has size n, we assume w = Ω(log n).



  

Ordered Dictionaries



  

Ordered Dictionaries

● An ordered dictionary is a data structure that 
maintains a set S of elements drawn from an ordered 
universe  and supports these operations:�
● insert(x), which adds x to S.
● is-empty(), which returns whether S = Ø.
● lookup(x), which returns whether x ∈ S.
● delete(x), which removes x from S.
● max() / min(), which returns the maximum or minimum 

element of S.
● successor(x), which returns the smallest element of S 

greater than x, and
● predecessor(x), which returns the largest element of S 

smaller than x.



  

Ordered Dictionaries

● Balanced BSTs support all ordered 
dictionary operations in time O(log n) 
each.

● Hash tables support insertion, lookups, 
and deletion in expected time O(1), but 
require time O(n) for min, max, 
successor, and predecessor.



  

Ordered Integer Dictionaries

● Suppose that our universe consists of natural 
numbers upper-bounded by some number U.
● Specifically, � = [U] = {0, 1, 2, …, U – 1}.

● Question: Can we design a data structure that 
supports the ordered dictionary operations on  �
faster than a balanced BST?

● The answer is yes, and we'll see van Emde Boas 
trees and y-fast tries as two possible solutions.



  

A Preliminary Approach: Bitvectors



  

Bitvectors

● A bitvector is an array of bits of length U.

● Represents a set of elements with O(1) insertions, 
deletions, and lookups:

● To insert x, set the bit for x to 1.
● To delete x, set the bit for x to 0.
● To lookup x, check whether the bit for x is 1.

● Space usage is Θ(U).

1101110010111011110001001101010111100110111101111
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Bitvectors

● A bitvector is an array of bits of length U.

● Represents a set of elements with O(1) insertions, 
deletions, and lookups:

● To insert x, set the bit for x to 1.
● To delete x, set the bit for x to 0.
● To lookup x, check whether the bit for x is 1.

● Space usage is Θ(U).
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Bitvectors

● The min, max, predecessor, and successor 
operations on bitvectors can be extremely slow.

● Runtime will be Θ(U) in the worst case.

000000000000000000000000010000000000000000000000000



  

Tiered Bitvectors

● Adapting an approach similar to our hybrid 
RMQs, we can put a summary structure on top 
of our bitvector.

● Break the universe U into Θ(U / B) blocks of 
size B.

● Create an auxiliary bitvector of size Θ(U / B) 
that stores which blocks are nonempty.

00100010 00000000 00011000 00000000 00000100 11110111 00000000 000001100010001000000000000110000000000000000100111101110000000000000000
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Tiered Bitvectors

● Adapting an approach similar to our hybrid 
RMQs, we can put a summary structure on top 
of our bitvector.

● Break the universe U into Θ(U / B) blocks of 
size B.

● Create an auxiliary bitvector of size Θ(U / B) 
that stores which blocks are nonempty.

00100010 00000000 00011000 00000000 00000100 11110111 00000000 00000000



  

Tiered Bitvectors

● Adapting an approach similar to our hybrid 
RMQs, we can put a summary structure on top 
of our bitvector.

● Break the universe U into Θ(U / B) blocks of 
size B.

● Create an auxiliary bitvector of size Θ(U / B) 
that stores which blocks are nonempty.

00100010 00000000 00011000 00000000 00000100 11110111 00000000 00000000

1 0 1 0 1 1 0 0



  

Tiered Bitvectors

● Using the same techniques we used for RMQ, we 
can speed up ordered dictionary operations so that 
they run in time O(U / B + B).

● As before, this is minimized when B = Θ(U1/2).

● Ordered dictionary runtimes are now all O(U1/2).

00100010 00000000 00011000 00000000 00000100 11110111 00000000 00000000

1 0 1 0 1 1 0 0



  

Tiered Bitvectors

● This approach does introduce some slowdown to 
the delete operation.

● Whenever we do a delete, we have to check 
whether the block is now empty and, if so, we need 
to clear the bit in the summary bitvector.

● New cost: O(U1/2).
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Tiered Bitvectors

● We can view our tiered bitvector structure in a 
different light that will help lead to future 
improvements.

● Instead of thinking of this as two bitvectors (a 
main and a summary), think of it as Θ(U1/2) 
smaller main bitvectors and a summary 
bitvector.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000
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Tiered Bitvectors

● To perform lookup(x) in this structure, check 
the ⌊x / U1/2⌋th bitvector to see if x mod U1/2 is 
present.

● In other words, our top-level lookup(x) call 
turns into a recursive lookup(⌊x / U1/2⌋) call in a 
smaller bitvector.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0
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Tiered Bitvectors

● To perform insert(x) in this structure, insert 
x mod U1/2 into the ⌊x / U1/2⌋th bitvector, then 
insert ⌊x / U1/2⌋ into the summary bitvector.

● Turns one insert call into two recursive insert 
calls.
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Tiered Bitvectors

● To perform insert(x) in this structure, insert 
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● Turns one insert call into two recursive insert 
calls.
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Tiered Bitvectors

● To perform insert(x) in this structure, insert 
x mod U1/2 into the ⌊x / U1/2⌋th bitvector, then 
insert ⌊x / U1/2⌋ into the summary bitvector.

● Turns one insert call into two recursive insert 
calls.
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Tiered Bitvectors

● To perform insert(x) in this structure, insert 
x mod U1/2 into the ⌊x / U1/2⌋th bitvector, then 
insert ⌊x / U1/2⌋ into the summary bitvector.

● Turns one insert call into two recursive insert 
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Tiered Bitvectors

● To perform insert(x) in this structure, insert 
x mod U1/2 into the ⌊x / U1/2⌋th bitvector, then 
insert ⌊x / U1/2⌋ into the summary bitvector.

● Turns one insert call into two recursive insert 
calls.

00100010 00000000 00000000 01000000 00000100 11110111 00000000 00000000

1 0 0 1 1 1 0 0

⌊25 / 8⌋ = 3     25 mod 8 = 1



  

Tiered Bitvectors

● To perform max(), call max on the summary 
structure.

● If it returns value v, return max of the vth 
bitvector.

● Turns one max call into two recursive maxs.
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Tiered Bitvectors

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

● To perform max(), call max on the summary 
structure.

● If it returns value v, return max of the vth 
bitvector.

● Turns one max call into two recursive maxs.



  

Tiered Bitvectors

● To perform successor(x), do the following:

● Find max in the ⌊x / U1/2⌋th bitvector.

● If it exists and is greater than x, find 
successor(x mod U1/2) in that bitvector.

● Otherwise, find successor(⌊x / U1/2⌋) in the summary 
structure; let it be j if it exists.

● Return min of the jth bitvector of it exists or ∞ 
otherwise.

● Turns successor into a max, a min, and a successor.
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Tiered Bitvectors

● To perform an is-empty query, return the 
result of that query on the summary structure.

● Turns one is-empty query into a single smaller 
is-empty query.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000
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Tiered Bitvectors

● To perform delete(x) in this structure, delete 
x mod U1/2 from the ⌊x / U1/2⌋th bitvector.

● Then, check is-empty on that bitvector, and if 
so, delete(⌊x / U1/2⌋) from the summary 
bitvector.

● Turns one delete call into up to two recursive 
deletes and one is-empty.
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Tiered Bitvectors

● To perform delete(x) in this structure, delete 
x mod U1/2 from the ⌊x / U1/2⌋th bitvector.

● Then, check is-empty on that bitvector, and if 
so, delete(⌊x / U1/2⌋) from the summary 
bitvector.

● Turns one delete call into up to two recursive 
deletes and one is-empty.
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The Story So Far

● Each operation turns into recursive 
operations on a smaller bitvector:
● insert: 2x insert
● lookup: 1x lookup
● is-empty: 1x is-empty
● min: 2x min
● successor: 1x successor, 1x max, 1x min
● delete: 2x delete, 1x is-empty



  

A Recursive Approach

● Adding one tier to the bitvector sped things 
up appreciably.

● Idea: What if we apply this same approach 
to each of the smaller bitvectors?

● Builds a recursive data structure:
● If U ≤ 2, just use a normal bitvector.
● Otherwise, split the input apart into Θ(U1/2) 

blocks of size Θ(U1/2) and add a summary data 
structure on top.

● Answer queries using the recursive structure 
from before.



  

Our Data Structure

● Let  = [256].�
● The top-level structure looks like this:

  

● Each structure one level below (and the 
summary) looks like this:

0 1 2 3 4 ... 14 15 summary

0 1 2 3 summary



  

So... how efficient is it?



  

Analyzing the Operations

● Let's analyze the is-empty and lookup 
operations in this structure.

● Each makes a recursive call to a problem 
of size Θ(U1/2) and does O(1) work.

● Recurrence relation:

    T(2) = Θ(1)
    T(U) ≤ T(U1/2) + Θ(1)

● How do we solve this recurrence?



  

A Useful Substitution

● The Master Theorem is great for working with 
recurrences of the form

T(n) ≤ aT(n / b) + O(nd)
● This recurrence doesn't have this form because 

the “shrinking” step is a square root rather than a 
division.

● To address this, we'll transform the recurrence so 
that it fits into the above form.

● If we write U = 2k, then U1/2 = 2k/2.
● Turn the recurrence from a recurrence in U to a 

recurrence in k = log U.



  

The Substitution

● Define S(k) = T(2k).

● Since

       T(2) ≤ Θ(1)
      T(U) ≤ T(U1/2) + Θ(1) 

● We have

      S(1) ≤ Θ(1)
      S(k) ≤ S(k / 2) + Θ(1)

● This means that S(k) = O(log k).

● So T(U) = T(2lg U) = S(lg U) = O(log log U).



  

Analyzing the Operations

● The insert and min operations each make two 
recursive calls on subproblems of size Θ(U1/2) and do 
Θ(1) work.

● Gives this recurrence:

     T(2) ≤ Θ(1)
    T(U) ≤ 2T(U1/2) + Θ(1)   

● Substituting S(k) = T(2k) yields

     S(1) ≤ Θ(1)
    S(k) ≤ 2S(k / 2) + Θ(1)

● So S(k) = O(k).

● Therefore, T(U) = S(2lg U) = O(log U).



  

Analyzing the Operations

● Each delete call makes two recursive delete calls and 
one call to is-empty.

● As we saw, is-empty takes time O(log log U)

● Recurrence relation is

    T(2) ≤ Θ(1)
    T(U) ≤ 2T(U1/2) + O(log log U)

● Letting S(k) = T(2k) gives

    S(1) ≤ Θ(1)
    S(k) ≤ 2S(k / 2) + O(log k)

● Via the Master Theorem, S(k) = O(k).

● Thus T(U) = O(log U).



  

Analyzing the Operations

● Each successor call makes one recursive successor 
call and one call to max and min.

● As we saw, max and min takes time O(log U)

● Recurrence relation is

    T(2) ≤ Θ(1)
    T(U) ≤ T(U1/2) + O(log U)

● Letting S(k) = T(2k) gives

    S(1) ≤ Θ(1)
    S(k) ≤ T(k / 2) + O(k)

● Via the Master Theorem, S(k) = O(k).

● Thus T(U) = O(log U).



  

Where We Stand

● Right now, we have a data structure where 
lookups are exponentially faster than a 
balanced BST if n = Ω(log U).

● Other operations have runtime proportional to 
log U, which is (usually) greater than log n.

● Can we speed things up?



  

Time-Out for Announcements!



  

Midterm Logistics

● The midterm is this Wednesday from 7PM – 10PM.
● Rooms assigned by last name:

● A – S: Go to Meyer Forum (Meyer 124)
● T – Z: Go to Meyer 147.

● You can bring a double-sided sheet of 8.5” × 11” paper 
with any notes you would like.

● Any topics up through and including today's lecture 
may be covered.

● Review session tonight from 7:30PM – 9:30PM in Gates 
104.

● We'll hold an alternate exam from 4PM – 7PM in 
Gates 159 on the exam day; please email us ASAP if 
you would like to take the exam at this time.



  

Final Project Topics

● Approximate Distance 
Oracles

● Binary Decision 
Diagrams

● Burrows-Wheeler 
Transforms

● Cardinality Estimators

● Deterministic Skip Lists

● Extensible Hashing

● Hopscotch Hashing

● Link/Cut Trees

● Lock-Free Queues

● Nearest-Neighbor 
Searching

● R-Trees

● Robin Hood Hashing

● Ropes

● Scapegoat Trees

● Segment Trees

● Soft Heaps



  

Final Project Presentations

● Final project presentations will run during 
Week 10.

● We'll send out a signup form at 5:45PM 
tonight.

● Please have one person from your group 
choose a time slot and list the names of your 
group members.

● Time slot choices are final – please make sure 
you can make the time you choose!



  

Your Questions!



  

“When designing data structures, how do you 
know what is “good” and what is not? That is, 

sometimes we are happy with linear, 
sometimes with logarithmic, etc. How do we 

know how good we should aim for?”

It's really on a case-by-case basis. In some 
cases, “good” might mean “anything 

better than the naïve approach.” In other 
areas where there's more progress, it 
might be “better than the current best 
solution.” When lower bounds exist, it 

might be “matching the lower bound.” In 
practical settings, it can mean “fast 

enough to work on large inputs.”

It's really on a case-by-case basis. In some 
cases, “good” might mean “anything 

better than the naïve approach.” In other 
areas where there's more progress, it 
might be “better than the current best 
solution.” When lower bounds exist, it 

might be “matching the lower bound.” In 
practical settings, it can mean “fast 

enough to work on large inputs.”



  

“What is your favorite proof? What was your 
favorite data structure to code up?”

That's a tough one!
 

The proof of Cantor's theorem is simple, straightforward, 
and totally counterintuitive. It's one of my favorites since it 

blows everyones' minds the first time they see it.
 

I think the most fun I had with a data structure was with 
the binomial heap, since it was so much fun watching the 
theory I'd read in CLRS actually work out. Plus, it was fun 

getting to implement binary arithmetic!

That's a tough one!
 

The proof of Cantor's theorem is simple, straightforward, 
and totally counterintuitive. It's one of my favorites since it 

blows everyones' minds the first time they see it.
 

I think the most fun I had with a data structure was with 
the binomial heap, since it was so much fun watching the 
theory I'd read in CLRS actually work out. Plus, it was fun 

getting to implement binary arithmetic!



  

“If you were taking a midterm like this one, 
what would you put on your one-page cheat 

sheet?”

I don't think I can really answer honestly since I know 
what's on the exam. ☺

I'd probably write out a summary of all the main data 
structures and the key tricks, then review it a day later and 
write down all the topics I couldn't fully remember. The act 

of writing things out really helps some people (like me!) 
learn things.

I don't think I can really answer honestly since I know 
what's on the exam. ☺

I'd probably write out a summary of all the main data 
structures and the key tricks, then review it a day later and 
write down all the topics I couldn't fully remember. The act 

of writing things out really helps some people (like me!) 
learn things.



  

“What's the best way to receive one-on-one 
help with problem sets (perhaps pertaining to 
a specific aspect of a solution attempt)? Office 

hours sometimes don't work if there's a 
crowd.”

You can always email us with 
questions if you'd like. If you'd like to 
meet one-on-one with us, send us an 

email and we can try to work 
something out!

You can always email us with 
questions if you'd like. If you'd like to 
meet one-on-one with us, send us an 

email and we can try to work 
something out!



  

Back to CS166!



  

Identifying Inefficiencies

● A few operations seem like easy candidates for 
speedups:
● is-empty certainly seems like it shouldn't take time 

O(log log U).
● max and min can probably don't actually need time 

O(log U).

● We'll show how to speed up these three 
operations.

● By doing so, we'll significantly improve the 
runtimes of the other operations.



  

Improving Min and Max

● Suppose you have a priority queue where 
finding the min takes time ω(1).

● How could you modify it so that finding the 
min can be done in time O(1)?

● Answer: Store the minimum outside of the 
priority queue.

min
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Improving Min and Max

● Suppose you have a priority queue where 
finding the min takes time ω(1).

● How could you modify it so that finding the 
min can be done in time O(1)?

● Answer: Store the minimum outside of the 
priority queue.

min

84
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van Emde Boas Trees

● A van Emde Boas tree is a slight modification to 
our previous structure.

● As before, split the universe into Θ(U1/2) blocks of 
size Θ(U1/2).

● As before, have the structure also store a summary 
of size Θ(U1/2).

● Additionally, have the data structure store the 
minimum and maximum separately from the rest of 
the structure.

● Each recursive copy of the data structure stores its 
own min and max storing the min and max value in 
its substructure.



  

van Emde Boas Trees

● Let  = [256].�
● The top-level structure looks like this:

  

● Each structure one level below (and the 
summary) looks like this:

0 1 2 3 4 ... 14 15 summary

0 1 2 3 summary

min max

min max



  

vEB Tree Lookups

● Lookups in a vEB tree work as before, 
but with one extra step: check whether 
the value being searched for is the min 
or max value.

0 1 2 3 4 5 6 7 summary

15
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62

max



  

vEB Tree Insertions

● Insertions in a vEB tree work as before, but 
with extra logic to handle min and max.
● May need to handle the case where the tree is 

empty.

May need to handle the case where the tree has 
just one element.

May need to displace min or max into the tree.

0 1 2 3 4 5 6 7 summary min max
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vEB Tree Insertions

● Insertions in a vEB tree work as before, but 
with extra logic to handle min and max.
● May need to handle the case where the tree is 
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just one element.
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vEB Tree Deletions

● Deletions in a vEB tree work as before, but 
with extra logic to handle min and max.
● May need to pull an element to fill in a missing 

min or max.

May need to clear min or max.
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vEB Tree Deletions

● Deletions in a vEB tree work as before, but 
with extra logic to handle min and max.
● May need to pull an element to fill in a missing 

min or max.

May need to clear min or max.
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We need to find the 
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these buckets.
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vEB Tree Deletions

● Deletions in a vEB tree work as before, but 
with extra logic to handle min and max.
● May need to pull an element to fill in a missing 

min or max.
● May need to clear min or max.

0 1 2 3 4 5 6 7 summary min max



  

Analyzing the Runtime

● This simple change profoundly affects the 
runtime of the operations for several reasons:
● We can now instantly query for the min and max 

values in a tree.
● The behavior of insert and delete changes slightly 

when working with empty or nearly empty trees.

● min, max, and is-empty run in time O(1).
● lookup runs in time O(log log U) as before.
● Let's revisit all the operations to see how 

efficiently they work.



  

Updating insert

● The logic for insert(x) works as follows:
● If the tree is empty or has just one element, update 

min and max appropriately and stop.
● Potentially displace the min or max and insert that 

value instead of x.
● Insert x mod U1/2 into the appropriate substructure.
● Insert ⌊x / U1/2⌋ into the summary.

● Recurrence relation:

      T(2) = Θ(1)
     T(U) = 2T(U1/2) + Θ(1).

● Still solves to O(log U). Can we do better?



  

An Observation

● The summary structure stores the indices of 
the substructures that are nonempty.

● Therefore, we only need to insert ⌊x / U1/2⌋ 
into the summary if that block previously was 
empty.

● Here's our new approach:
● If the ⌊x / U1/2⌋th substructure is not empty:

– Call insert(x mod U1/2) into that substructure.
● Otherwise:

– Call insert(x mod U1/2) into that substructure.
– Call insert(⌊x / U1/2⌋) into the summary structure.



  

● Useful Fact: Inserting an element into an empty 
vEB tree takes time O(1).

We only make at most one “real” recursive call:

If we don't recurse into the summary, we only made 
one recursive call down into a substructure.

If we make a recursive call into the summary, we did 
so because the other call was on an empty subtree, 
which isn't a “real” recursive call.

New recurrence relation:

    T(2) = Θ(1)
    T(U) ≤ T(U1/2) + Θ(1)

As we've seen, this solves to O(log log U).

A Very Clever Insight

0 1 2 3 4 5 6 7 summary min max
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A Very Clever Insight

● Useful Fact: Inserting an element into an empty 
vEB tree takes time O(1).

● We only make at most one “real” recursive call:
● If we don't recurse into the summary, we only made 

one recursive call down into a substructure.
● If we make a recursive call into the summary, we did 

so because the other call was on an empty subtree, 
which isn't a “real” recursive call.

● New recurrence relation:

    T(2) = Θ(1)
    T(U) ≤ T(U1/2) + Θ(1)

● As we've seen, this solves to O(log log U).



  

Analyzing delete

● The logic for delete(x) works as follows:
● If the tree has just one element, update min and max 

appropriately and stop.
● If min or max are being deleted, replace them with the 

min or max of the first or last nonempty tree, then 
proceed as if deleting that element instead.

● Delete x mod U1/2 from its subtree.
● If that subtree is empty, delete ⌊x / U1/2⌋ from the summary.

● Recurrence relation:

      T(2) = Θ(1)
      T(U) ≤ 2T(U1/2) + Θ(1).

● Still solves to O(log U). However, is this bound tight?



  

A Better Analysis

● Observation: Deleting the last element out of a 
vEB tree takes time O(1).
● Just need to update the min and max fields.

● Therefore, delete makes at most one “real” 
recursive call:
● If it empties a subtree, the recursive call that did so 

ran in time O(1) and the “real” call is on the 
summary structure.

● If it doesn't, then there's no second call on the 
summary structure.



  

The New Runtime

● With this factored in, the runtime of doing an 
delete is given by the recurrence

    T(2) = Θ(1) 
    T(U) ≤ T(U1/2) + Θ(1)

● As we've seen, this solves to O(log log U).



  

Finding a Successor

★ ★ ★

0 1 2 3 4 5 6 7 summary

2

min
39

max

● In a vEB tree, we can find a successor as follows:
● If the tree is empty or x > max(), there is no successor.
● Otherwise, let i be the index of the tree containing x.
● If subtree i is nonempty and x is less than i's max, x's 

successor is the successor in subtree i.
● Otherwise, find the successor j of i in the summary.
● If j exists, return the minimum value in tree j.
● Otherwise, return the tree max.



  

Finding a Successor

● In a vEB tree, we can find a successor as follows:
● If the tree is empty or x > max(), there is no successor.
● Otherwise, let i be the index of the tree containing x.
● If subtree i is nonempty and x is less than i's max, x's 

successor is the successor in subtree i.
● Otherwise, find the successor j of i in the summary.
● If j exists, return the minimum value in tree j.
● Otherwise, return the tree max.

● At most one recursive call is made and each other 
operation needed runs in time O(1).

● Recurrence: T(U) ≤ T(U1/2) + Θ(1); solves to O(log log U).



  

van Emde Boas Trees

● The van Emde Boas tree supports insertions, 
deletions, lookups, successor queries, and 
predecessor queries in time O(log log U).

● It can answer min, max, and is-empty queries 
in time O(1).

● If n = ω(log U), this is exponentially faster 
than a balanced BST!



  

The Catch

● There is, unfortunately, one way in which 
vEB trees stumble: space usage.

● We've assumed that the complete vEB 
tree has been constructed before we 
make any queries on it.

● How much space does it use?



  

The Recurrence

● The space usage of a van Emde Boas tree is 
given by the following recurrence relation:

    S(2) = Θ(1)

    S(U) = (U1/2 + 1)S(U1/2) + Θ(U1/2)

● Using the substitution method, this can be 
shown to be Θ(U).

● Space usage is proportional to the size of the 
universe, not the number of elements stored!



  

Challenge:
 

Can we match the time bounds on van 
Emde Boas trees, but use o(U) space?



  

Next Time

● x-Fast Tries
● A randomized data structure matching the vEB 

bounds and using O(n log U) space.

● y-Fast Tries
● A randomized data structure matching the vEB 

bounds in an amortized sense and using O(n) space.

● These data structures pull together just about 
everything we've covered this quarter – I hope 
they make for great midterm review!
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