

van Emde Boas Trees

Outline for Today

● Data Structures on Integers
● How can we speed up operations that work

on integer data?

● Tiered Bitvectors
● A simple data structure for ordered

dictionaries.

● van Emde Boas Trees
● An extremely fast data structure for ordered

dictionaries.

Integer Data Structures

Working with Integers

● Integers are interesting objects to work with:
● They can be treated as strings of bits, so we can use

techniques from string processing.
● They fit into machine words, so we can process the

bits in parallel with individual word operations.

● Today, we'll explore van Emde Boas trees,
which rely on this second property.

● Wednesday, we'll see y-fast tries, which will
pull together just about everything from the
quarter.

Our Machine Model

● We will assume that we are working with a
transdichotomous machine model.

● Memory is split apart into integer words
composed of w bits each.

● The CPU can perform basic arithmetic
operations (addition, subtraction, multiplication,
division, shifts, AND, OR, etc.) on machine words
in time O(1) each.

● When working on a problem where each instance
has size n, we assume w = Ω(log n).

Ordered Dictionaries

Ordered Dictionaries

● An ordered dictionary is a data structure that
maintains a set S of elements drawn from an ordered
universe and supports these operations:�
● insert(x), which adds x to S.
● is-empty(), which returns whether S = Ø.
● lookup(x), which returns whether x ∈ S.
● delete(x), which removes x from S.
● max() / min(), which returns the maximum or minimum

element of S.
● successor(x), which returns the smallest element of S

greater than x, and
● predecessor(x), which returns the largest element of S

smaller than x.

Ordered Dictionaries

● Balanced BSTs support all ordered
dictionary operations in time O(log n)
each.

● Hash tables support insertion, lookups,
and deletion in expected time O(1), but
require time O(n) for min, max,
successor, and predecessor.

Ordered Integer Dictionaries

● Suppose that our universe consists of natural
numbers upper-bounded by some number U.
● Specifically, � = [U] = {0, 1, 2, …, U – 1}.

● Question: Can we design a data structure that
supports the ordered dictionary operations on �
faster than a balanced BST?

● The answer is yes, and we'll see van Emde Boas
trees and y-fast tries as two possible solutions.

A Preliminary Approach: Bitvectors

Bitvectors

● A bitvector is an array of bits of length U.

● Represents a set of elements with O(1) insertions,
deletions, and lookups:

● To insert x, set the bit for x to 1.
● To delete x, set the bit for x to 0.
● To lookup x, check whether the bit for x is 1.

● Space usage is Θ(U).

1101110010111011110001001101010111100110111101111

Bitvectors

● A bitvector is an array of bits of length U.

● Represents a set of elements with O(1) insertions,
deletions, and lookups:

● To insert x, set the bit for x to 1.
● To delete x, set the bit for x to 0.
● To lookup x, check whether the bit for x is 1.

● Space usage is Θ(U).

1101110010111011110001001101010111100110111101111

Bitvectors

● A bitvector is an array of bits of length U.

● Represents a set of elements with O(1) insertions,
deletions, and lookups:

● To insert x, set the bit for x to 1.
● To delete x, set the bit for x to 0.
● To lookup x, check whether the bit for x is 1.

● Space usage is Θ(U).

1101100010111011110001001101010111100110111101111

Bitvectors

● A bitvector is an array of bits of length U.

● Represents a set of elements with O(1) insertions,
deletions, and lookups:

● To insert x, set the bit for x to 1.
● To delete x, set the bit for x to 0.
● To lookup x, check whether the bit for x is 1.

● Space usage is Θ(U).

1101100010111011110001001101010111100110111101111

Bitvectors

● A bitvector is an array of bits of length U.

● Represents a set of elements with O(1) insertions,
deletions, and lookups:

● To insert x, set the bit for x to 1.
● To delete x, set the bit for x to 0.
● To lookup x, check whether the bit for x is 1.

● Space usage is Θ(U).

1101100010111011110001001101010111100110111101111

Bitvectors

● A bitvector is an array of bits of length U.

● Represents a set of elements with O(1) insertions,
deletions, and lookups:

● To insert x, set the bit for x to 1.
● To delete x, set the bit for x to 0.
● To lookup x, check whether the bit for x is 1.

● Space usage is Θ(U).

1101100010111011110101001101010111100110111101111

Bitvectors

● A bitvector is an array of bits of length U.

● Represents a set of elements with O(1) insertions,
deletions, and lookups:

● To insert x, set the bit for x to 1.
● To delete x, set the bit for x to 0.
● To lookup x, check whether the bit for x is 1.

● Space usage is Θ(U).

1101100010111011110101001101010111100110111101111

Bitvectors

● The min, max, predecessor, and successor
operations on bitvectors can be extremely slow.

● Runtime will be Θ(U) in the worst case.

000000000000000000000000010000000000000000000000000

Tiered Bitvectors

● Adapting an approach similar to our hybrid
RMQs, we can put a summary structure on top
of our bitvector.

● Break the universe U into Θ(U / B) blocks of
size B.

● Create an auxiliary bitvector of size Θ(U / B)
that stores which blocks are nonempty.

00100010 00000000 00011000 00000000 00000100 11110111 00000000 000001100010001000000000000110000000000000000100111101110000000000000000

Tiered Bitvectors

● Adapting an approach similar to our hybrid
RMQs, we can put a summary structure on top
of our bitvector.

● Break the universe U into Θ(U / B) blocks of
size B.

● Create an auxiliary bitvector of size Θ(U / B)
that stores which blocks are nonempty.

00100010 00000000 00011000 00000000 00000100 11110111 00000000 00000000

Tiered Bitvectors

● Adapting an approach similar to our hybrid
RMQs, we can put a summary structure on top
of our bitvector.

● Break the universe U into Θ(U / B) blocks of
size B.

● Create an auxiliary bitvector of size Θ(U / B)
that stores which blocks are nonempty.

00100010 00000000 00011000 00000000 00000100 11110111 00000000 00000000

Tiered Bitvectors

● Adapting an approach similar to our hybrid
RMQs, we can put a summary structure on top
of our bitvector.

● Break the universe U into Θ(U / B) blocks of
size B.

● Create an auxiliary bitvector of size Θ(U / B)
that stores which blocks are nonempty.

00100010 00000000 00011000 00000000 00000100 11110111 00000000 00000000

1 0 1 0 1 1 0 0

Tiered Bitvectors

● Using the same techniques we used for RMQ, we
can speed up ordered dictionary operations so that
they run in time O(U / B + B).

● As before, this is minimized when B = Θ(U1/2).

● Ordered dictionary runtimes are now all O(U1/2).

00100010 00000000 00011000 00000000 00000100 11110111 00000000 00000000

1 0 1 0 1 1 0 0

Tiered Bitvectors

● This approach does introduce some slowdown to
the delete operation.

● Whenever we do a delete, we have to check
whether the block is now empty and, if so, we need
to clear the bit in the summary bitvector.

● New cost: O(U1/2).

00100010 00000000 00011000 00000000 00000100 11110111 00000000 00000000

1 0 1 0 1 1 0 0

Tiered Bitvectors

● This approach does introduce some slowdown to
the delete operation.

● Whenever we do a delete, we have to check
whether the block is now empty and, if so, we need
to clear the bit in the summary bitvector.

● New cost: O(U1/2).

00100010 00000000 00011000 00000000 00000100 11110111 00000000 00000000

1 0 1 0 1 1 0 0

Tiered Bitvectors

● This approach does introduce some slowdown to
the delete operation.

● Whenever we do a delete, we have to check
whether the block is now empty and, if so, we need
to clear the bit in the summary bitvector.

● New cost: O(U1/2).

00100010 00000000 00010000 00000000 00000100 11110111 00000000 00000000

1 0 1 0 1 1 0 0

Tiered Bitvectors

● This approach does introduce some slowdown to
the delete operation.

● Whenever we do a delete, we have to check
whether the block is now empty and, if so, we need
to clear the bit in the summary bitvector.

● New cost: O(U1/2).

00100010 00000000 00010000 00000000 00000100 11110111 00000000 00000000

1 0 1 0 1 1 0 0

Tiered Bitvectors

● This approach does introduce some slowdown to
the delete operation.

● Whenever we do a delete, we have to check
whether the block is now empty and, if so, we need
to clear the bit in the summary bitvector.

● New cost: O(U1/2).

00100010 00000000 00010000 00000000 00000100 11110111 00000000 00000000

1 0 1 0 1 1 0 0

Tiered Bitvectors

● This approach does introduce some slowdown to
the delete operation.

● Whenever we do a delete, we have to check
whether the block is now empty and, if so, we need
to clear the bit in the summary bitvector.

● New cost: O(U1/2).

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 1 0 1 1 0 0

Tiered Bitvectors

● This approach does introduce some slowdown to
the delete operation.

● Whenever we do a delete, we have to check
whether the block is now empty and, if so, we need
to clear the bit in the summary bitvector.

● New cost: O(U1/2).

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

Tiered Bitvectors

● This approach does introduce some slowdown to
the delete operation.

● Whenever we do a delete, we have to check
whether the block is now empty and, if so, we need
to clear the bit in the summary bitvector.

● New cost: O(U1/2).

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

Tiered Bitvectors

● We can view our tiered bitvector structure in a
different light that will help lead to future
improvements.

● Instead of thinking of this as two bitvectors (a
main and a summary), think of it as Θ(U1/2)
smaller main bitvectors and a summary
bitvector.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

Tiered Bitvectors

● To perform lookup(x) in this structure, check
the ⌊x / U1/2⌋th bitvector to see if x mod U1/2 is
present.

● In other words, our top-level lookup(x) call
turns into a recursive lookup(⌊x / U1/2⌋) call in a
smaller bitvector.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

Tiered Bitvectors

● To perform lookup(x) in this structure, check
the ⌊x / U1/2⌋th bitvector to see if x mod U1/2 is
present.

● In other words, our top-level lookup(x) call
turns into a recursive lookup(⌊x / U1/2⌋) call in a
smaller bitvector.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

x = 42

Tiered Bitvectors

● To perform lookup(x) in this structure, check
the ⌊x / U1/2⌋th bitvector to see if x mod U1/2 is
present.

● In other words, our top-level lookup(x) call
turns into a recursive lookup(⌊x / U1/2⌋) call in a
smaller bitvector.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

⌊42 / 8⌋ = 5 42 mod 8 = 2

Tiered Bitvectors

● To perform lookup(x) in this structure, check
the ⌊x / U1/2⌋th bitvector to see if x mod U1/2 is
present.

● In other words, our top-level lookup(x) call
turns into a recursive lookup(⌊x / U1/2⌋) call in a
smaller bitvector.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

⌊42 / 8⌋ = 5 42 mod 8 = 2

Tiered Bitvectors

● To perform insert(x) in this structure, insert
x mod U1/2 into the ⌊x / U1/2⌋th bitvector, then
insert ⌊x / U1/2⌋ into the summary bitvector.

● Turns one insert call into two recursive insert
calls.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

Tiered Bitvectors

● To perform insert(x) in this structure, insert
x mod U1/2 into the ⌊x / U1/2⌋th bitvector, then
insert ⌊x / U1/2⌋ into the summary bitvector.

● Turns one insert call into two recursive insert
calls.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

x = 25

Tiered Bitvectors

● To perform insert(x) in this structure, insert
x mod U1/2 into the ⌊x / U1/2⌋th bitvector, then
insert ⌊x / U1/2⌋ into the summary bitvector.

● Turns one insert call into two recursive insert
calls.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

⌊25 / 8⌋ = 3 25 mod 8 = 1

Tiered Bitvectors

● To perform insert(x) in this structure, insert
x mod U1/2 into the ⌊x / U1/2⌋th bitvector, then
insert ⌊x / U1/2⌋ into the summary bitvector.

● Turns one insert call into two recursive insert
calls.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

⌊25 / 8⌋ = 3 25 mod 8 = 1

Tiered Bitvectors

● To perform insert(x) in this structure, insert
x mod U1/2 into the ⌊x / U1/2⌋th bitvector, then
insert ⌊x / U1/2⌋ into the summary bitvector.

● Turns one insert call into two recursive insert
calls.

00100010 00000000 00000000 01000000 00000100 11110111 00000000 00000000

1 0 0 1 1 1 0 0

⌊25 / 8⌋ = 3 25 mod 8 = 1

Tiered Bitvectors

● To perform max(), call max on the summary
structure.

● If it returns value v, return max of the vth
bitvector.

● Turns one max call into two recursive maxs.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

Tiered Bitvectors

● To perform max(), call max on the summary
structure.

● If it returns value v, return max of the vth
bitvector.

● Turns one max call into two recursive maxs.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

Tiered Bitvectors

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

● To perform max(), call max on the summary
structure.

● If it returns value v, return max of the vth
bitvector.

● Turns one max call into two recursive maxs.

Tiered Bitvectors

● To perform successor(x), do the following:

● Find max in the ⌊x / U1/2⌋th bitvector.

● If it exists and is greater than x, find
successor(x mod U1/2) in that bitvector.

● Otherwise, find successor(⌊x / U1/2⌋) in the summary
structure; let it be j if it exists.

● Return min of the jth bitvector of it exists or ∞
otherwise.

● Turns successor into a max, a min, and a successor.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

Tiered Bitvectors

● To perform an is-empty query, return the
result of that query on the summary structure.

● Turns one is-empty query into a single smaller
is-empty query.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

Tiered Bitvectors

● To perform delete(x) in this structure, delete
x mod U1/2 from the ⌊x / U1/2⌋th bitvector.

● Then, check is-empty on that bitvector, and if
so, delete(⌊x / U1/2⌋) from the summary
bitvector.

● Turns one delete call into up to two recursive
deletes and one is-empty.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

Tiered Bitvectors

● To perform delete(x) in this structure, delete
x mod U1/2 from the ⌊x / U1/2⌋th bitvector.

● Then, check is-empty on that bitvector, and if
so, delete(⌊x / U1/2⌋) from the summary
bitvector.

● Turns one delete call into up to two recursive
deletes and one is-empty.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

Tiered Bitvectors

● To perform delete(x) in this structure, delete
x mod U1/2 from the ⌊x / U1/2⌋th bitvector.

● Then, check is-empty on that bitvector, and if
so, delete(⌊x / U1/2⌋) from the summary
bitvector.

● Turns one delete call into up to two recursive
deletes and one is-empty.

00100010 00000000 00000000 00000000 00000000 11110111 00000000 00000000

1 0 0 0 0 1 0 0

The Story So Far

● Each operation turns into recursive
operations on a smaller bitvector:
● insert: 2x insert
● lookup: 1x lookup
● is-empty: 1x is-empty
● min: 2x min
● successor: 1x successor, 1x max, 1x min
● delete: 2x delete, 1x is-empty

A Recursive Approach

● Adding one tier to the bitvector sped things
up appreciably.

● Idea: What if we apply this same approach
to each of the smaller bitvectors?

● Builds a recursive data structure:
● If U ≤ 2, just use a normal bitvector.
● Otherwise, split the input apart into Θ(U1/2)

blocks of size Θ(U1/2) and add a summary data
structure on top.

● Answer queries using the recursive structure
from before.

Our Data Structure

● Let = [256].�
● The top-level structure looks like this:

● Each structure one level below (and the
summary) looks like this:

0 1 2 3 4 ... 14 15 summary

0 1 2 3 summary

So... how efficient is it?

Analyzing the Operations

● Let's analyze the is-empty and lookup
operations in this structure.

● Each makes a recursive call to a problem
of size Θ(U1/2) and does O(1) work.

● Recurrence relation:

 T(2) = Θ(1)
 T(U) ≤ T(U1/2) + Θ(1)

● How do we solve this recurrence?

A Useful Substitution

● The Master Theorem is great for working with
recurrences of the form

T(n) ≤ aT(n / b) + O(nd)
● This recurrence doesn't have this form because

the “shrinking” step is a square root rather than a
division.

● To address this, we'll transform the recurrence so
that it fits into the above form.

● If we write U = 2k, then U1/2 = 2k/2.
● Turn the recurrence from a recurrence in U to a

recurrence in k = log U.

The Substitution

● Define S(k) = T(2k).

● Since

 T(2) ≤ Θ(1)
 T(U) ≤ T(U1/2) + Θ(1)

● We have

 S(1) ≤ Θ(1)
 S(k) ≤ S(k / 2) + Θ(1)

● This means that S(k) = O(log k).

● So T(U) = T(2lg U) = S(lg U) = O(log log U).

Analyzing the Operations

● The insert and min operations each make two
recursive calls on subproblems of size Θ(U1/2) and do
Θ(1) work.

● Gives this recurrence:

 T(2) ≤ Θ(1)
 T(U) ≤ 2T(U1/2) + Θ(1)

● Substituting S(k) = T(2k) yields

 S(1) ≤ Θ(1)
 S(k) ≤ 2S(k / 2) + Θ(1)

● So S(k) = O(k).

● Therefore, T(U) = S(2lg U) = O(log U).

Analyzing the Operations

● Each delete call makes two recursive delete calls and
one call to is-empty.

● As we saw, is-empty takes time O(log log U)

● Recurrence relation is

 T(2) ≤ Θ(1)
 T(U) ≤ 2T(U1/2) + O(log log U)

● Letting S(k) = T(2k) gives

 S(1) ≤ Θ(1)
 S(k) ≤ 2S(k / 2) + O(log k)

● Via the Master Theorem, S(k) = O(k).

● Thus T(U) = O(log U).

Analyzing the Operations

● Each successor call makes one recursive successor
call and one call to max and min.

● As we saw, max and min takes time O(log U)

● Recurrence relation is

 T(2) ≤ Θ(1)
 T(U) ≤ T(U1/2) + O(log U)

● Letting S(k) = T(2k) gives

 S(1) ≤ Θ(1)
 S(k) ≤ T(k / 2) + O(k)

● Via the Master Theorem, S(k) = O(k).

● Thus T(U) = O(log U).

Where We Stand

● Right now, we have a data structure where
lookups are exponentially faster than a
balanced BST if n = Ω(log U).

● Other operations have runtime proportional to
log U, which is (usually) greater than log n.

● Can we speed things up?

Time-Out for Announcements!

Midterm Logistics

● The midterm is this Wednesday from 7PM – 10PM.
● Rooms assigned by last name:

● A – S: Go to Meyer Forum (Meyer 124)
● T – Z: Go to Meyer 147.

● You can bring a double-sided sheet of 8.5” × 11” paper
with any notes you would like.

● Any topics up through and including today's lecture
may be covered.

● Review session tonight from 7:30PM – 9:30PM in Gates
104.

● We'll hold an alternate exam from 4PM – 7PM in
Gates 159 on the exam day; please email us ASAP if
you would like to take the exam at this time.

Final Project Topics

● Approximate Distance
Oracles

● Binary Decision
Diagrams

● Burrows-Wheeler
Transforms

● Cardinality Estimators

● Deterministic Skip Lists

● Extensible Hashing

● Hopscotch Hashing

● Link/Cut Trees

● Lock-Free Queues

● Nearest-Neighbor
Searching

● R-Trees

● Robin Hood Hashing

● Ropes

● Scapegoat Trees

● Segment Trees

● Soft Heaps

Final Project Presentations

● Final project presentations will run during
Week 10.

● We'll send out a signup form at 5:45PM
tonight.

● Please have one person from your group
choose a time slot and list the names of your
group members.

● Time slot choices are final – please make sure
you can make the time you choose!

Your Questions!

“When designing data structures, how do you
know what is “good” and what is not? That is,

sometimes we are happy with linear,
sometimes with logarithmic, etc. How do we

know how good we should aim for?”

It's really on a case-by-case basis. In some
cases, “good” might mean “anything

better than the naïve approach.” In other
areas where there's more progress, it
might be “better than the current best
solution.” When lower bounds exist, it

might be “matching the lower bound.” In
practical settings, it can mean “fast

enough to work on large inputs.”

It's really on a case-by-case basis. In some
cases, “good” might mean “anything

better than the naïve approach.” In other
areas where there's more progress, it
might be “better than the current best
solution.” When lower bounds exist, it

might be “matching the lower bound.” In
practical settings, it can mean “fast

enough to work on large inputs.”

“What is your favorite proof? What was your
favorite data structure to code up?”

That's a tough one!

The proof of Cantor's theorem is simple, straightforward,
and totally counterintuitive. It's one of my favorites since it

blows everyones' minds the first time they see it.

I think the most fun I had with a data structure was with
the binomial heap, since it was so much fun watching the
theory I'd read in CLRS actually work out. Plus, it was fun

getting to implement binary arithmetic!

That's a tough one!

The proof of Cantor's theorem is simple, straightforward,
and totally counterintuitive. It's one of my favorites since it

blows everyones' minds the first time they see it.

I think the most fun I had with a data structure was with
the binomial heap, since it was so much fun watching the
theory I'd read in CLRS actually work out. Plus, it was fun

getting to implement binary arithmetic!

“If you were taking a midterm like this one,
what would you put on your one-page cheat

sheet?”

I don't think I can really answer honestly since I know
what's on the exam. ☺

I'd probably write out a summary of all the main data
structures and the key tricks, then review it a day later and
write down all the topics I couldn't fully remember. The act

of writing things out really helps some people (like me!)
learn things.

I don't think I can really answer honestly since I know
what's on the exam. ☺

I'd probably write out a summary of all the main data
structures and the key tricks, then review it a day later and
write down all the topics I couldn't fully remember. The act

of writing things out really helps some people (like me!)
learn things.

“What's the best way to receive one-on-one
help with problem sets (perhaps pertaining to
a specific aspect of a solution attempt)? Office

hours sometimes don't work if there's a
crowd.”

You can always email us with
questions if you'd like. If you'd like to
meet one-on-one with us, send us an

email and we can try to work
something out!

You can always email us with
questions if you'd like. If you'd like to
meet one-on-one with us, send us an

email and we can try to work
something out!

Back to CS166!

Identifying Inefficiencies

● A few operations seem like easy candidates for
speedups:
● is-empty certainly seems like it shouldn't take time

O(log log U).
● max and min can probably don't actually need time

O(log U).

● We'll show how to speed up these three
operations.

● By doing so, we'll significantly improve the
runtimes of the other operations.

Improving Min and Max

● Suppose you have a priority queue where
finding the min takes time ω(1).

● How could you modify it so that finding the
min can be done in time O(1)?

● Answer: Store the minimum outside of the
priority queue.

min

Improving Min and Max

● Suppose you have a priority queue where
finding the min takes time ω(1).

● How could you modify it so that finding the
min can be done in time O(1)?

● Answer: Store the minimum outside of the
priority queue.

min

137

Improving Min and Max

● Suppose you have a priority queue where
finding the min takes time ω(1).

● How could you modify it so that finding the
min can be done in time O(1)?

● Answer: Store the minimum outside of the
priority queue.

min

137

Improving Min and Max

● Suppose you have a priority queue where
finding the min takes time ω(1).

● How could you modify it so that finding the
min can be done in time O(1)?

● Answer: Store the minimum outside of the
priority queue.

min

13742

Improving Min and Max

● Suppose you have a priority queue where
finding the min takes time ω(1).

● How could you modify it so that finding the
min can be done in time O(1)?

● Answer: Store the minimum outside of the
priority queue.

min

42

137

Improving Min and Max

● Suppose you have a priority queue where
finding the min takes time ω(1).

● How could you modify it so that finding the
min can be done in time O(1)?

● Answer: Store the minimum outside of the
priority queue.

min

42

137

271

Improving Min and Max

● Suppose you have a priority queue where
finding the min takes time ω(1).

● How could you modify it so that finding the
min can be done in time O(1)?

● Answer: Store the minimum outside of the
priority queue.

min

42

137

271

Improving Min and Max

● Suppose you have a priority queue where
finding the min takes time ω(1).

● How could you modify it so that finding the
min can be done in time O(1)?

● Answer: Store the minimum outside of the
priority queue.

min

42

137

271

84

Improving Min and Max

● Suppose you have a priority queue where
finding the min takes time ω(1).

● How could you modify it so that finding the
min can be done in time O(1)?

● Answer: Store the minimum outside of the
priority queue.

min

42

137

271

84

Improving Min and Max

● Suppose you have a priority queue where
finding the min takes time ω(1).

● How could you modify it so that finding the
min can be done in time O(1)?

● Answer: Store the minimum outside of the
priority queue.

min

137

271

84

Improving Min and Max

● Suppose you have a priority queue where
finding the min takes time ω(1).

● How could you modify it so that finding the
min can be done in time O(1)?

● Answer: Store the minimum outside of the
priority queue.

min

84

137

271

van Emde Boas Trees

● A van Emde Boas tree is a slight modification to
our previous structure.

● As before, split the universe into Θ(U1/2) blocks of
size Θ(U1/2).

● As before, have the structure also store a summary
of size Θ(U1/2).

● Additionally, have the data structure store the
minimum and maximum separately from the rest of
the structure.

● Each recursive copy of the data structure stores its
own min and max storing the min and max value in
its substructure.

van Emde Boas Trees

● Let = [256].�
● The top-level structure looks like this:

● Each structure one level below (and the
summary) looks like this:

0 1 2 3 4 ... 14 15 summary

0 1 2 3 summary

min max

min max

vEB Tree Lookups

● Lookups in a vEB tree work as before,
but with one extra step: check whether
the value being searched for is the min
or max value.

0 1 2 3 4 5 6 7 summary

15

min
62

max

vEB Tree Insertions

● Insertions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to handle the case where the tree is

empty.

May need to handle the case where the tree has
just one element.

May need to displace min or max into the tree.

0 1 2 3 4 5 6 7 summary min max

vEB Tree Insertions

● Insertions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to handle the case where the tree is

empty.

May need to handle the case where the tree has
just one element.

May need to displace min or max into the tree.

0 1 2 3 4 5 6 7 summary

33

min
33

max

vEB Tree Insertions

● Insertions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to handle the case where the tree is

empty.
● May need to handle the case where the tree has

just one element.

May need to displace min or max into the tree.

0 1 2 3 4 5 6 7 summary

33

min
33

max

vEB Tree Insertions

● Insertions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to handle the case where the tree is

empty.
● May need to handle the case where the tree has

just one element.

May need to displace min or max into the tree.

0 1 2 3 4 5 6 7 summary

13

min
33

max

vEB Tree Insertions

● Insertions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to handle the case where the tree is

empty.
● May need to handle the case where the tree has

just one element.
● May need to displace min or max into the tree.

0 1 2 3 4 5 6 7 summary

13

min
33

max

vEB Tree Insertions

● Insertions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to handle the case where the tree is

empty.
● May need to handle the case where the tree has

just one element.
● May need to displace min or max into the tree.

0 1 2 3 4 5 6 7 summary

13

min
33

max

3

vEB Tree Insertions

● Insertions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to handle the case where the tree is

empty.
● May need to handle the case where the tree has

just one element.
● May need to displace min or max into the tree.

0 1 2 3 4 5 6 7 summary

3

min
33

max

13

vEB Tree Insertions

● Insertions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to handle the case where the tree is

empty.
● May need to handle the case where the tree has

just one element.
● May need to displace min or max into the tree.

0 1 2 3 4 5 6 7 summary

3

min
33

max

13

vEB Tree Insertions

● Insertions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to handle the case where the tree is

empty.
● May need to handle the case where the tree has

just one element.
● May need to displace min or max into the tree.

0 1 2 3 4 5 6 7 summary

3

min
33

max

13 1

vEB Tree Deletions

● Deletions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to pull an element to fill in a missing

min or max.

May need to clear min or max.

0 1 2 3 4 5 6 7 summary

3

min
33

max

vEB Tree Deletions

● Deletions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to pull an element to fill in a missing

min or max.

May need to clear min or max.

0 1 2 3 4 5 6 7 summary min
33

max

vEB Tree Deletions

● Deletions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to pull an element to fill in a missing

min or max.

May need to clear min or max.

0 1 2 3 4 5 6 7 summary min
33

max

We need to find the
minimum element in

these buckets.

We need to find the
minimum element in

these buckets.

vEB Tree Deletions

● Deletions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to pull an element to fill in a missing

min or max.

May need to clear min or max.

★ ★ ★ ★

0 1 2 3 4 5 6 7 summary min
33

max

We need to find the
minimum element in

these buckets.

We need to find the
minimum element in

these buckets.

vEB Tree Deletions

● Deletions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to pull an element to fill in a missing

min or max.

May need to clear min or max.

★ ★ ★ ★

0 1 2 3 4 5 6 7 summary min
33

max

Ask the summary for
the first nonempty

block...

Ask the summary for
the first nonempty

block...

We need to find the
minimum element in

these buckets.

We need to find the
minimum element in

these buckets.

vEB Tree Deletions

● Deletions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to pull an element to fill in a missing

min or max.

May need to clear min or max.

★ ★ ★ ★

0 1 2 3 4 5 6 7 summary min
33

max

Ask the summary for
the first nonempty

block...

Ask the summary for
the first nonempty

block...

We need to find the
minimum element in

these buckets.

We need to find the
minimum element in

these buckets.

...then delete its minimum
and pull min up here.

...then delete its minimum
and pull min up here.

vEB Tree Deletions

● Deletions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to pull an element to fill in a missing

min or max.

May need to clear min or max.

★ ★ ★ ★

0 1 2 3 4 5 6 7 summary

13

min
33

max

Ask the summary for
the first nonempty

block...

Ask the summary for
the first nonempty

block...

We need to find the
minimum element in

these buckets.

We need to find the
minimum element in

these buckets.

...then delete its minimum
and pull min up here.

...then delete its minimum
and pull min up here.

vEB Tree Deletions

● Deletions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to pull an element to fill in a missing

min or max.

May need to clear min or max.

0 1 2 3 4 5 6 7 summary

13

min
33

max

vEB Tree Deletions

● Deletions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to pull an element to fill in a missing

min or max.
● May need to clear min or max.

0 1 2 3 4 5 6 7 summary

13

min
33

max

vEB Tree Deletions

● Deletions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to pull an element to fill in a missing

min or max.
● May need to clear min or max.

0 1 2 3 4 5 6 7 summary min
33

max

vEB Tree Deletions

● Deletions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to pull an element to fill in a missing

min or max.
● May need to clear min or max.

0 1 2 3 4 5 6 7 summary

33

min
33

max

vEB Tree Deletions

● Deletions in a vEB tree work as before, but
with extra logic to handle min and max.
● May need to pull an element to fill in a missing

min or max.
● May need to clear min or max.

0 1 2 3 4 5 6 7 summary min max

Analyzing the Runtime

● This simple change profoundly affects the
runtime of the operations for several reasons:
● We can now instantly query for the min and max

values in a tree.
● The behavior of insert and delete changes slightly

when working with empty or nearly empty trees.

● min, max, and is-empty run in time O(1).
● lookup runs in time O(log log U) as before.
● Let's revisit all the operations to see how

efficiently they work.

Updating insert

● The logic for insert(x) works as follows:
● If the tree is empty or has just one element, update

min and max appropriately and stop.
● Potentially displace the min or max and insert that

value instead of x.
● Insert x mod U1/2 into the appropriate substructure.
● Insert ⌊x / U1/2⌋ into the summary.

● Recurrence relation:

 T(2) = Θ(1)
 T(U) = 2T(U1/2) + Θ(1).

● Still solves to O(log U). Can we do better?

An Observation

● The summary structure stores the indices of
the substructures that are nonempty.

● Therefore, we only need to insert ⌊x / U1/2⌋
into the summary if that block previously was
empty.

● Here's our new approach:
● If the ⌊x / U1/2⌋th substructure is not empty:

– Call insert(x mod U1/2) into that substructure.
● Otherwise:

– Call insert(x mod U1/2) into that substructure.
– Call insert(⌊x / U1/2⌋) into the summary structure.

● Useful Fact: Inserting an element into an empty
vEB tree takes time O(1).

We only make at most one “real” recursive call:

If we don't recurse into the summary, we only made
one recursive call down into a substructure.

If we make a recursive call into the summary, we did
so because the other call was on an empty subtree,
which isn't a “real” recursive call.

New recurrence relation:

 T(2) = Θ(1)
 T(U) ≤ T(U1/2) + Θ(1)

As we've seen, this solves to O(log log U).

A Very Clever Insight

0 1 2 3 4 5 6 7 summary min max

● Useful Fact: Inserting an element into an empty
vEB tree takes time O(1).

We only make at most one “real” recursive call:

If we don't recurse into the summary, we only made
one recursive call down into a substructure.

If we make a recursive call into the summary, we did
so because the other call was on an empty subtree,
which isn't a “real” recursive call.

New recurrence relation:

 T(2) = Θ(1)
 T(U) ≤ T(U1/2) + Θ(1)

As we've seen, this solves to O(log log U).

A Very Clever Insight

0 1 2 3 4 5 6 7 summary

42

min
42

max

A Very Clever Insight

● Useful Fact: Inserting an element into an empty
vEB tree takes time O(1).

● We only make at most one “real” recursive call:
● If we don't recurse into the summary, we only made

one recursive call down into a substructure.
● If we make a recursive call into the summary, we did

so because the other call was on an empty subtree,
which isn't a “real” recursive call.

● New recurrence relation:

 T(2) = Θ(1)
 T(U) ≤ T(U1/2) + Θ(1)

● As we've seen, this solves to O(log log U).

Analyzing delete

● The logic for delete(x) works as follows:
● If the tree has just one element, update min and max

appropriately and stop.
● If min or max are being deleted, replace them with the

min or max of the first or last nonempty tree, then
proceed as if deleting that element instead.

● Delete x mod U1/2 from its subtree.
● If that subtree is empty, delete ⌊x / U1/2⌋ from the summary.

● Recurrence relation:

 T(2) = Θ(1)
 T(U) ≤ 2T(U1/2) + Θ(1).

● Still solves to O(log U). However, is this bound tight?

A Better Analysis

● Observation: Deleting the last element out of a
vEB tree takes time O(1).
● Just need to update the min and max fields.

● Therefore, delete makes at most one “real”
recursive call:
● If it empties a subtree, the recursive call that did so

ran in time O(1) and the “real” call is on the
summary structure.

● If it doesn't, then there's no second call on the
summary structure.

The New Runtime

● With this factored in, the runtime of doing an
delete is given by the recurrence

 T(2) = Θ(1)
 T(U) ≤ T(U1/2) + Θ(1)

● As we've seen, this solves to O(log log U).

Finding a Successor

★ ★ ★

0 1 2 3 4 5 6 7 summary

2

min
39

max

● In a vEB tree, we can find a successor as follows:
● If the tree is empty or x > max(), there is no successor.
● Otherwise, let i be the index of the tree containing x.
● If subtree i is nonempty and x is less than i's max, x's

successor is the successor in subtree i.
● Otherwise, find the successor j of i in the summary.
● If j exists, return the minimum value in tree j.
● Otherwise, return the tree max.

Finding a Successor

● In a vEB tree, we can find a successor as follows:
● If the tree is empty or x > max(), there is no successor.
● Otherwise, let i be the index of the tree containing x.
● If subtree i is nonempty and x is less than i's max, x's

successor is the successor in subtree i.
● Otherwise, find the successor j of i in the summary.
● If j exists, return the minimum value in tree j.
● Otherwise, return the tree max.

● At most one recursive call is made and each other
operation needed runs in time O(1).

● Recurrence: T(U) ≤ T(U1/2) + Θ(1); solves to O(log log U).

van Emde Boas Trees

● The van Emde Boas tree supports insertions,
deletions, lookups, successor queries, and
predecessor queries in time O(log log U).

● It can answer min, max, and is-empty queries
in time O(1).

● If n = ω(log U), this is exponentially faster
than a balanced BST!

The Catch

● There is, unfortunately, one way in which
vEB trees stumble: space usage.

● We've assumed that the complete vEB
tree has been constructed before we
make any queries on it.

● How much space does it use?

The Recurrence

● The space usage of a van Emde Boas tree is
given by the following recurrence relation:

 S(2) = Θ(1)

 S(U) = (U1/2 + 1)S(U1/2) + Θ(U1/2)

● Using the substitution method, this can be
shown to be Θ(U).

● Space usage is proportional to the size of the
universe, not the number of elements stored!

Challenge:

Can we match the time bounds on van
Emde Boas trees, but use o(U) space?

Next Time

● x-Fast Tries
● A randomized data structure matching the vEB

bounds and using O(n log U) space.

● y-Fast Tries
● A randomized data structure matching the vEB

bounds in an amortized sense and using O(n) space.

● These data structures pull together just about
everything we've covered this quarter – I hope
they make for great midterm review!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122

