
  

x-Fast and y-Fast Tries

Problem Set 7 due in the 
box up front. That's the 
last problem set of the 

quarter!

Problem Set 7 due in the 
box up front. That's the 
last problem set of the 

quarter!



  

Outline for Today

● Bitwise Tries
● A simple ordered dictionary for integers.

● x-Fast Tries
● Tries + Hashing

● y-Fast Tries
● Tries + Hashing + Subdivision + Balanced 

Trees + Amortization



  

Recap from Last Time



  

Ordered Dictionaries

● An ordered dictionary is a data structure that 
maintains a set S of elements drawn from an ordered 
universe  and supports these operations:�
● insert(x), which adds x to S.
● is-empty(), which returns whether S = Ø.
● lookup(x), which returns whether x ∈ S.
● delete(x), which removes x from S.
● max() / min(), which returns the maximum or minimum 

element of S.
● successor(x), which returns the smallest element of S 

greater than x, and
● predecessor(x), which returns the largest element of S 

smaller than x.



  

Integer Ordered Dictionaries

● Suppose that  = [� U] = {0, 1, …, U – 1}.
● A van Emde Boas tree is an ordered 

dictionary for [U] where
● min, max, and is-empty run in time O(1).
● All other operations run in time O(log log U).
● Space usage is Θ(U).

● Question: Can we achieve these same 
time bounds without using Θ(U) space?



  

The Machine Model

● We assume a transdichotomous 
machine model:
● Memory is composed of words of w bits 

each.
● Basic arithmetic and bitwise operations on 

words take time O(1) each.
● w = Ω(log n).



  

A Start: Bitwise Tries



  

Tries Revisited

● Recall: A trie is a 
simple data 
structure for storing 
strings.

● Integers can be 
thought of as 
strings of bits.

● Idea: Store integers 
in a bitwise trie.
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Finding Successors

● To compute 
successor(x), do the 
following:

● Search for x.

● If x is a leaf node, its 
successor is the next 
leaf.

● If you don't find x, back 
up until you find a node 
with a 1 child not 
already followed, follow 
the 1, then take the 
cheapest path down.
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Bitwise Tries

● When storing integers in [U], each 
integer will have Θ(log U) bits.

● Time for any of the ordered dictionary 
operations: O(log U).

● In order to match the time bounds of a 
van Emde Boas tree, we will need to 
speed this up exponentially.



  

Speeding up Successors

● There are two independent pieces that 
contribute to the O(log U) runtime:
● Need to search for the deepest node 

matching x that we can.
● From there, need to back up to node with an 

unfollowed 1 child and then descend to the 
next leaf.

● To speed this up to O(log log U), we'll 
need to work around each of these issues.
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Claim 1: The node found during 
the first phase of a successor 
query for x corresponds to the 

longest prefix of x that appears in 
the trie.

Claim 1: The node found during 
the first phase of a successor 
query for x corresponds to the 

longest prefix of x that appears in 
the trie.
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Claim 2: If a node v 
corresponds to a prefix of 

x, all of v's ancestors 
correspond to prefixes of x.

Claim 2: If a node v 
corresponds to a prefix of 

x, all of v's ancestors 
correspond to prefixes of x.
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Claim 3: If a node v does 
not correspond to a prefix of 
x, none of v's descendants 
correspond to prefixes of x.

Claim 3: If a node v does 
not correspond to a prefix of 
x, none of v's descendants 
correspond to prefixes of x.
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Claim 4: The deepest node 
corresponding to a prefix of 
x can be found by doing a 

binary search over the 
layers of the trie.

Claim 4: The deepest node 
corresponding to a prefix of 
x can be found by doing a 

binary search over the 
layers of the trie.



  

One Speedup

● Goal: Encode the trie so that we can do a binary 
search over its layers.

● One Solution: Store an array of cuckoo hash tables, 
one per layer of the trie, that stores all the nodes in 
that layer.

● Can now query, in worst-case time O(1), whether a 
node's prefix is present on a given layer.

● There are O(log U) layers in the trie.
● Binary search will take worst-case time O(log log U).
● Nice side-effect: Queries are now worst-case O(1), 

since we can just check the hash table at the bottom 
layer.



  

The Next Issue

● We can now find the node where the 
successor search would initially arrive.

● However, after arriving there, we have to 
back up to a node with a 1 child we 
didn't follow on the path down.

● This will take time O(log U).
● Can we do better?



  

A Useful Observation

● Our binary search for the longest prefix 
of x will either stop at
● a leaf node (so x is present), or
● an internal node.

● If we stop at a leaf node, the successor 
will be the next leaf in the trie.

● Idea: Thread a doubly-linked list through 
the leaf nodes.
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Successors of Internal Nodes

● Claim: If the binary search terminates at 
an internal node, that node must only 
have one child.
● If it doesn't, it has both a 0 child and a 1 

child, so there's a longer prefix that can be 
matched.

● Idea: Steal the missing pointer and use it 
to speed up successor and predecessor 
searches.



  

Threaded Binary Tries

● A threaded binary 
trie is a binary tree 
where

● each missing 0 pointer 
points to the inorder 
predecessor of the 
node and

● each missing 1 points 
to the inorder 
successor of the node.

● Related to threaded 
binary search trees; 
read up on them if 
you're curious!
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x-Fast Tries

● An x-Fast Trie is a 
threaded binary trie 
where leaves are 
stored in a 
doubly-linked list and 
where all nodes in 
each level are stored 
in a hash table.

● Can do lookups in 
time O(1).
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x-Fast Tries

● Claim: Can determine 
successor(x) in time 
O(log log U).

● Start by binary 
searching for the 
longest prefix of x.

● If at a leaf node, follow 
the forward pointer to 
the successor.

● If at an internal node 
with a missing 1, follow 
the 1 thread.

● If at an internal node 
with a missing 0, follow 
the 0 thread and follow 
the forward pointer.
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x-Fast Trie Maintenance

● Based on what we've seen:
● Lookups take worst-case time O(1).
● Successor and predecessor queries take 

worst-case time O(log log U).
● Min and max can be done in time O(log log U) 

by finding the predecessor of ∞ or the 
successor of -∞.

● How efficiently can we support insertions 
and deletions?



  

x-Fast Tries

● If we insert(x), we 
need to

● Add some new 
nodes to the trie.

● Wire x into the 
doubly-linked list 
of leaves.

● Update the 
thread pointers 
to include x.

● Worst-case will be 
Ω(log U) due to the 
first and third steps.

  0     

    0     

    0         

    0                   1    1   

  1 

    1                1

    1             1             1         

    1             0         

null



  

x-Fast Tries

● Here is an (amortized, 
expected) O(log U) 
time algorithm for 
insert(x):

● Find successor(x).

● Add x to the trie.

● Using the 
successor from 
before, wire x into 
the linked list.

● Walk up from x, its 
successor, and its 
predecessor and 
update threads.
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x-Fast Tries

● Here is an (amortized, 
expected) O(log U) 
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Deletion

● To delete(x), we need to
● Remove x from the trie.
● Splice x out of its linked list.
● Update thread pointers from x's former 

predecessor and successor.

● Runs in expected, amortized time O(log U).
● Full details are left as a proverbial Exercise to 

the Reader. ☺



  

Space Usage

● How much space is required in an x-fast trie?

● Each leaf node contributes at most O(log U) 
nodes in the trie.

● Total space usage for hash tables is 
proportional to total number of trie nodes.

● Total space: O(n log U).



  

For Reference

● van Emde Boas tree
● insert: O(log log U)
● delete: O(log log U)
● lookup: O(log log U)
● max: O(1)
● succ: O(log log U)
● is-empty: O(1)
● Space: O(U)

● x-Fast Trie
● insert: O(log U)*

● delete: O(log U)*

● lookup: O(1)
● max: O(log log U)
● succ: O(log log U)
● is-empty: O(1)
● Space: O(n log U)

* Expected, amortized



  

What Remains

● We need to speed 
up insert and 
delete to run in 
time O(log log U).

● We'd like to drop 
the space usage 
down to O(n).

● How can we do 
this?

● x-Fast Trie
● insert: O(log U)*

● delete: O(log U)*

● lookup: O(1)
● max: O(log log U)
● succ: O(log log U)
● is-empty: O(1)
● Space: O(n log U)

* Expected, amortized



  

Time-Out for Announcements!



  

Midterm: Tonight, 7PM – 10PM.

Good luck!



  

Your Questions!



  

“Can you release solutions to PS7 at the 
end of class so that we can review them 

before the exam?”

Yep! I'll hand them 
out at the end of 

lecture.

Yep! I'll hand them 
out at the end of 

lecture.



  

“What is your process when writing 
homework/practice/test/etc. problems? 

How do you come up with them?”

For the theory questions, I mostly read 
everything I can get my hands on. For 

the coding questions, I try picking 
coding questions that either solidify 
details or have an unexpected result.

For the theory questions, I mostly read 
everything I can get my hands on. For 

the coding questions, I try picking 
coding questions that either solidify 
details or have an unexpected result.



  

“What are the mean scores on the 
assignments? What's the grade curve going 

to be like on the class overall? Trying to 
figure out whether to switch to C/NC... <3”

I honestly don't know. The 
curve will depend on how 

the midterm and final 
projects end up turning out.

I honestly don't know. The 
curve will depend on how 

the midterm and final 
projects end up turning out.



  

“Why is there a problem set due the same 
day as the exam?”

It's the best out of a 
lot of not particularly 

good options.

It's the best out of a 
lot of not particularly 

good options.



  

Back to CS166!



  

y-Fast Tries



  

y-Fast Tries

● The y-Fast Trie is a data structure that 
will match the vEB time bounds in an 
expected, amortized sense while 
requiring only O(n) space.

● It's built out of an x-fast trie and a 
collection of red/black trees.



  

The Motivating Idea

● Suppose we have a red/black tree with 
Θ(log U) nodes.

● Any ordered dictionary operation on the tree 
will then take time O(log log U).

● Idea: Store the elements in the ordered 
dictionary in a collection of red/black trees 
with Θ(log U) elements each.



  

The Idea

0 - 54 65 - 91 103 - 133 154 - 258



  

The Idea

0 - 54 65 - 91 103 - 133 154 - 258

Each of these trees 
has between ½ log U 

and 2 log U nodes.

Each of these trees 
has between ½ log U 

and 2 log U nodes.



  

The Idea

0 - 54 65 - 91 103 - 133 154 - 258

To perform lookup(x), 
we determine which 
tree would contain x, 

then check there.

To perform lookup(x), 
we determine which 
tree would contain x, 

then check there.



  

The Idea

0 - 54 65 - 91 103 - 133 154 - 258

If a tree gets too big, 
we can split it into two 
trees by cutting at the 

median element.

If a tree gets too big, 
we can split it into two 
trees by cutting at the 

median element.



  

The Idea

0 - 54 65 - 91 103 - 133 221 - 258154 - 181

If a tree gets too big, 
we can split it into two 
trees by cutting at the 

median element.

If a tree gets too big, 
we can split it into two 
trees by cutting at the 

median element.



  

The Idea

0 - 54 65 - 91 103 - 133 221 - 258154 - 181

Similarly, if trees get 
too small, we can 

concatenate the tree 
with a neighbor.

Similarly, if trees get 
too small, we can 

concatenate the tree 
with a neighbor.



  

The Idea

0 - 91 103 - 133 221 - 258154 - 181

Similarly, if trees get 
too small, we can 

concatenate the tree 
with a neighbor.

Similarly, if trees get 
too small, we can 

concatenate the tree 
with a neighbor.



  

The Idea

0 - 91 103 - 133 221 - 258154 - 181

That might create a 
tree that's too big, in 
which case we split it 

in half.

That might create a 
tree that's too big, in 
which case we split it 

in half.



  

The Idea

0 - 91 103 - 133 221 - 258154 - 181

To determine successor(x), we find 
the tree that would contain x, and 

take its successor there or the 
minimum value from the next tree.

To determine successor(x), we find 
the tree that would contain x, and 

take its successor there or the 
minimum value from the next tree.



  

The Idea

0 - 91 103 - 133 221 - 258154 - 181



  

The Idea

0 - 91 103 - 133 221 - 258154 - 181



  

The Idea

How do we efficiently 
determine which tree a 

given element belongs to?

How do we efficiently 
determine which tree a 

given element belongs to?

0 - 91 103 - 133 221 - 258154 - 181



  

The Idea

0 - 91 103 - 133 221 - 258154 - 181

91 133 181



  

The Idea

0 - 91 103 - 133 221 - 258154 - 181

91 133 181

To do lookup(x), find the smallest 
max value that's at least x, then go 

into the preceding tree.

To do lookup(x), find the smallest 
max value that's at least x, then go 

into the preceding tree.



  

The Idea

0 - 91 103 - 133 221 - 258154 - 181

91 133 181

To do lookup(x), find successor(x) 
in the set of maxes, then go into 

the preceding tree.

To do lookup(x), find successor(x) 
in the set of maxes, then go into 

the preceding tree.
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To determine successor(x), find successor(x) in 
the maxes, then return the successor of x in that 

subtree or the min of the next subtree.

To determine successor(x), find successor(x) in 
the maxes, then return the successor of x in that 

subtree or the min of the next subtree.
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To insert(x), compute successor(x) and insert x 
into the tree before it. If the tree splits, insert a 

new max into the top list.

To insert(x), compute successor(x) and insert x 
into the tree before it. If the tree splits, insert a 

new max into the top list.
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To delete(x), do a lookup for x and delete it from 
that tree. If x was the max of a tree, don't delete 
it from the top list. Contract trees if necessary.

To delete(x), do a lookup for x and delete it from 
that tree. If x was the max of a tree, don't delete 
it from the top list. Contract trees if necessary.
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91 133 181
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How do we store the set of maxes so that we get 
efficient successor queries?

How do we store the set of maxes so that we get 
efficient successor queries?



  

y-Fast Tries

● A y-Fast Trie is constructed as follows:
● Keys are stored in a collection of red/black trees, each of 

which has between ½ log U and 2 log U keys.
● From each tree (except the first), choose a 

representative element.
– Representatives demarcate the boundaries between trees.

● Store each representative in the x-fast trie.

● Intuitively:
● The x-fast trie helps locate which red/black trees need to 

be consulted for an operation.
● Most operations are then done on red/black trees, which 

then take time O(log log U) each.



  

Analyzing y-Fast Tries

● The operations lookup, successor, min, and max 
can all be implemented by doing O(1) BST 
operations and one call to successor in the x-fast 
trie.
● Total runtime: O(log log U).

● insert and delete do O(1) BST operations, but 
also have to do O(1) insertions or deletions into 
the x-fast trie.
● Total runtime: O(log U).
● … or is it?



  

Analyzing y-Fast Tries

● Each insertion does O(log log U) work inserting 
and (potentially) splitting a red/black tree.

● The insertion in the x-fast trie takes time 
O(log U).

● However, we only split a red/black tree if its size 
doubles from log U to 2 log U, so we must have 
done at least O(log U) insertions before we 
needed to split.

● The extra cost amortizes across those operations 
to O(1), so the amortized cost of an insertion is 
O(log log U).



  

Analyzing y-Fast Tries

● Each deletion does O(log log U) work deleting from, 
(potentially) joining a red/black tree, and 
(potentially) splitting the resulting red/black tree.

● The insertions and deletions in the x-fast trie take 
time at most O(log U).

● However, we only join a tree with its neighbor if its 
size dropped from log U to ½ log U, which means 
there were O(log U) intervening deletions.

● The extra cost amortizes across those operations to 
O(1), so the amortized cost of an insertion is 
O(log log U).



  

Space Usage

● So what about space usage?
● Total space used across all the red/black 

trees is O(n).
● The x-fast trie stores Θ(n / log U) total 

elements.
● Space usage:

Θ((n / log U) · log U) = Θ(n).
● We're back down to linear space!



  

For Reference

● van Emde Boas tree
● insert: O(log log U)
● delete: O(log log U)
● lookup: O(log log U)
● max: O(1)
● succ: O(log log U)
● is-empty: O(1)
● Space: O(U)

● x-Fast Trie
● insert: O(log log U)*

● delete: O(log log U)*

● lookup: O(log log U)
● max: O(log log U)
● succ: O(log log U)
● is-empty: O(1)
● Space: O(n)

* Expected, amortized.



  

What We Needed

● An x-fast trie requires tries and cuckoo 
hashing.

● The y-fast trie requires amortized analysis and 
split/join on balanced, augmented BSTs.

● y-fast tries also use the “blocking” technique 
from RMQ we used to shave off log factors.



  

Next Time

● Disjoint-Set Forests
● A data structure for incremental connectivity 

in general graphs.

● The Ackermann Inverse Function
● One of the slowest-growing functions you'll 

ever encounter in practice.



  

Why All This Matters



  

Best of luck on the exam!
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