

x-Fast and y-Fast Tries

Problem Set 7 due in the
box up front. That's the
last problem set of the

quarter!

Problem Set 7 due in the
box up front. That's the
last problem set of the

quarter!

Outline for Today

● Bitwise Tries
● A simple ordered dictionary for integers.

● x-Fast Tries
● Tries + Hashing

● y-Fast Tries
● Tries + Hashing + Subdivision + Balanced

Trees + Amortization

Recap from Last Time

Ordered Dictionaries

● An ordered dictionary is a data structure that
maintains a set S of elements drawn from an ordered
universe and supports these operations:�
● insert(x), which adds x to S.
● is-empty(), which returns whether S = Ø.
● lookup(x), which returns whether x ∈ S.
● delete(x), which removes x from S.
● max() / min(), which returns the maximum or minimum

element of S.
● successor(x), which returns the smallest element of S

greater than x, and
● predecessor(x), which returns the largest element of S

smaller than x.

Integer Ordered Dictionaries

● Suppose that = [� U] = {0, 1, …, U – 1}.
● A van Emde Boas tree is an ordered

dictionary for [U] where
● min, max, and is-empty run in time O(1).
● All other operations run in time O(log log U).
● Space usage is Θ(U).

● Question: Can we achieve these same
time bounds without using Θ(U) space?

The Machine Model

● We assume a transdichotomous
machine model:
● Memory is composed of words of w bits

each.
● Basic arithmetic and bitwise operations on

words take time O(1) each.
● w = Ω(log n).

A Start: Bitwise Tries

Tries Revisited

● Recall: A trie is a
simple data
structure for storing
strings.

● Integers can be
thought of as
strings of bits.

● Idea: Store integers
in a bitwise trie.

 0

 0

 0 1

 0 1 1

 1

 1 0 1

 1 0 1 1

 1 0

Finding Successors

● To compute
successor(x), do the
following:

● Search for x.

● If x is a leaf node, its
successor is the next
leaf.

● If you don't find x, back
up until you find a node
with a 1 child not
already followed, follow
the 1, then take the
cheapest path down.

 0

 0

 0 1

 0 1 1

 1

 1 0 1

 1 0 1 1

 1 0

Bitwise Tries

● When storing integers in [U], each
integer will have Θ(log U) bits.

● Time for any of the ordered dictionary
operations: O(log U).

● In order to match the time bounds of a
van Emde Boas tree, we will need to
speed this up exponentially.

Speeding up Successors

● There are two independent pieces that
contribute to the O(log U) runtime:
● Need to search for the deepest node

matching x that we can.
● From there, need to back up to node with an

unfollowed 1 child and then descend to the
next leaf.

● To speed this up to O(log log U), we'll
need to work around each of these issues.

1 1 1 0 1 0 1

1

1 0

0

0

0 0 1

0 1

0 0 0

0

0

0

0

0 0

1

10

0 1

0

0

 0010001 0010101 0100001 1000000 1010001 1011100 1011101

00100??

0010???

001010?

00101??

010000?

01000??

0100???

001???? 010????

00?????

100000?

10000??

1000???

100????

101000? 101110?

10111??10100??

1010??? 1011???

101????

10?????01?????

1??????

 ???????

1

0??????

1 1 0 1 0 1
001000?

1

1 0

0

0

0 0 1

0 1

0 0 0

0

0

0

0

0 0

1

10

0 1

0

0

 0010001 0010101 0100001 1000000 1010001 1011100 1011101

00100??

0010???

001010?

00101??

010000?

01000??

0100???

001???? 010????

00?????

100000?

10000??

1000???

100????

101000? 101110?

10111??10100??

1010??? 1011???

101????

10?????01?????

1??????

 ???????

1

0??????

1 1 0 1 0 1
001000?

1

1 0

0

0

0 0 1

0 1

0 0 0

0

0

0

0

0 0

1

10

0 1

0

0

Claim 1: The node found during
the first phase of a successor
query for x corresponds to the

longest prefix of x that appears in
the trie.

Claim 1: The node found during
the first phase of a successor
query for x corresponds to the

longest prefix of x that appears in
the trie.

 0010001 0010101 0100001 1000000 1010001 1011100 1011101

00100??

0010???

001010?

00101??

010000?

01000??

0100???

001???? 010????

00?????

100000?

10000??

1000???

100????

101000? 101110?

10111??10100??

1010??? 1011???

101????

10?????01?????

1??????

 ???????

1

0??????

1 1 0 1 0 1
001000?

1

1 0

0

0

0 0 1

0 1

0 0 0

0

0

0

0

0 0

1

10

0 1

0

0

 0010001 0010101 0100001 1000000 1010001 1011100 1011101

00100??

0010???

001010?

00101??

010000?

01000??

0100???

001???? 010????

00?????

100000?

10000??

1000???

100????

101000? 101110?

10111??10100??

1010??? 1011???

101????

10?????01?????

1??????

 ???????

1

0??????

1 1 0 1 0 1
001000?

1

1 0

0

0

0 0 1

0 1

0 0 0

0

0

0

0

0 0

1

10

0 1

0

0

Claim 2: If a node v
corresponds to a prefix of

x, all of v's ancestors
correspond to prefixes of x.

Claim 2: If a node v
corresponds to a prefix of

x, all of v's ancestors
correspond to prefixes of x.

 0010001 0010101 0100001 1000000 1010001 1011100 1011101

00100??

0010???

001010?

00101??

010000?

01000??

0100???

001???? 010????

00?????

100000?

10000??

1000???

100????

101000? 101110?

10111??10100??

1010??? 1011???

101????

10?????01?????

1??????

 ???????

1

0??????

1 1 0 1 0 1
001000?

1

1 0

0

0

0 0 1

0 1

0 0 0

0

0

0

0

0 0

1

10

0 1

0

0

 0010001 0010101 0100001 1000000 1010001 1011100 1011101

00100??

0010???

001010?

00101??

010000?

01000??

0100???

001???? 010????

00?????

100000?

10000??

1000???

100????

101000? 101110?

10111??10100??

1010??? 1011???

101????

10?????01?????

1??????

 ???????

1

0??????

1 1 0 1 0 1
001000?

1

1 0

0

0

0 0 1

0 1

0 0 0

0

0

0

0

0 0

1

10

0 1

0

0

Claim 3: If a node v does
not correspond to a prefix of
x, none of v's descendants
correspond to prefixes of x.

Claim 3: If a node v does
not correspond to a prefix of
x, none of v's descendants
correspond to prefixes of x.

 0010001 0010101 0100001 1000000 1010001 1011100 1011101

00100??

0010???

001010?

00101??

010000?

01000??

0100???

001???? 010????

00?????

100000?

10000??

1000???

100????

101000? 101110?

10111??10100??

1010??? 1011???

101????

10?????01?????

1??????

 ???????

1

0??????

1 1 0 1 0 1
001000?

1

1 0

0

0

0 0 1

0 1

0 0 0

0

0

0

0

0 0

1

10

0 1

0

0

 0010001 0010101 0100001 1000000 1010001 1011100 1011101

00100??

0010???

001010?

00101??

010000?

01000??

0100???

001???? 010????

00?????

100000?

10000??

1000???

100????

101000? 101110?

10111??10100??

1010??? 1011???

101????

10?????01?????

1??????

 ???????

1

0??????

1 1 0 1 0 1
001000?

1

1 0

0

0

0 0 1

0 1

0 0 0

0

0

0

0

0 0

1

10

0 1

0

0

Claim 4: The deepest node
corresponding to a prefix of
x can be found by doing a

binary search over the
layers of the trie.

Claim 4: The deepest node
corresponding to a prefix of
x can be found by doing a

binary search over the
layers of the trie.

One Speedup

● Goal: Encode the trie so that we can do a binary
search over its layers.

● One Solution: Store an array of cuckoo hash tables,
one per layer of the trie, that stores all the nodes in
that layer.

● Can now query, in worst-case time O(1), whether a
node's prefix is present on a given layer.

● There are O(log U) layers in the trie.
● Binary search will take worst-case time O(log log U).
● Nice side-effect: Queries are now worst-case O(1),

since we can just check the hash table at the bottom
layer.

The Next Issue

● We can now find the node where the
successor search would initially arrive.

● However, after arriving there, we have to
back up to a node with a 1 child we
didn't follow on the path down.

● This will take time O(log U).
● Can we do better?

A Useful Observation

● Our binary search for the longest prefix
of x will either stop at
● a leaf node (so x is present), or
● an internal node.

● If we stop at a leaf node, the successor
will be the next leaf in the trie.

● Idea: Thread a doubly-linked list through
the leaf nodes.

 0010001 0010101 0100001 1000000 1010001 1011100 1011101

00100??

0010???

001010?

00101??

010000?

01000??

0100???

001???? 010????

00?????

100000?

10000??

1000???

100????

101000? 101110?

10111??10100??

1010??? 1011???

101????

10?????01?????

1??????

 ???????

1

0??????

1 1 0 1 0 1
001000?

1

1 0

0

0

0 0 1

0 1

0 0 0

0

0

0

0

0 0

1

10

0 1

0

0

 0010001 0010101 0100001 1000000 1010001 1011100 1011101

00100??

0010???

001010?

00101??

010000?

01000??

0100???

001???? 010????

00?????

100000?

10000??

1000???

100????

101000? 101110?

10111??10100??

1010??? 1011???

101????

10?????01?????

1??????

 ???????

1

0??????

1 1 0 1 0 1
001000?

1

1 0

0

0

0 0 1

0 1

0 0 0

0

0

0

0

0 0

1

10

0 1

0

0

Successors of Internal Nodes

● Claim: If the binary search terminates at
an internal node, that node must only
have one child.
● If it doesn't, it has both a 0 child and a 1

child, so there's a longer prefix that can be
matched.

● Idea: Steal the missing pointer and use it
to speed up successor and predecessor
searches.

Threaded Binary Tries

● A threaded binary
trie is a binary tree
where

● each missing 0 pointer
points to the inorder
predecessor of the
node and

● each missing 1 points
to the inorder
successor of the node.

● Related to threaded
binary search trees;
read up on them if
you're curious!

 0

 0

 0 1

 0 1 1

 1

 1 0 1

 1 1 1 1

 1 0

null

x-Fast Tries

● An x-Fast Trie is a
threaded binary trie
where leaves are
stored in a
doubly-linked list and
where all nodes in
each level are stored
in a hash table.

● Can do lookups in
time O(1).

 0

 0

 0 1

 0 1 1

 1

 1 0 1

 1 1 1 1

 1 0

null

x-Fast Tries

● Claim: Can determine
successor(x) in time
O(log log U).

● Start by binary
searching for the
longest prefix of x.

● If at a leaf node, follow
the forward pointer to
the successor.

● If at an internal node
with a missing 1, follow
the 1 thread.

● If at an internal node
with a missing 0, follow
the 0 thread and follow
the forward pointer.

 0

 0

 0 1

 0 1 1

 1

 1 0 1

 1 1 1 1

 1 0

null

x-Fast Trie Maintenance

● Based on what we've seen:
● Lookups take worst-case time O(1).
● Successor and predecessor queries take

worst-case time O(log log U).
● Min and max can be done in time O(log log U)

by finding the predecessor of ∞ or the
successor of -∞.

● How efficiently can we support insertions
and deletions?

x-Fast Tries

● If we insert(x), we
need to

● Add some new
nodes to the trie.

● Wire x into the
doubly-linked list
of leaves.

● Update the
thread pointers
to include x.

● Worst-case will be
Ω(log U) due to the
first and third steps.

 0

 0

 0

 0 1 1

 1

 1 1

 1 1 1

 1 0

null

x-Fast Tries

● Here is an (amortized,
expected) O(log U)
time algorithm for
insert(x):

● Find successor(x).

● Add x to the trie.

● Using the
successor from
before, wire x into
the linked list.

● Walk up from x, its
successor, and its
predecessor and
update threads.

 0

 0

 0

 0 1 1

 1

 1 1

 1 1 1

 1 0

null

x-Fast Tries

● Here is an (amortized,
expected) O(log U)
time algorithm for
insert(x):

● Find successor(x).

● Add x to the trie.

● Using the
successor from
before, wire x into
the linked list.

● Walk up from x, its
successor, and its
predecessor and
update threads.

 0

 0

 0

 0 1 1

 1

 1 1

 1 1 1

 1 0

0101

null

x-Fast Tries

● Here is an (amortized,
expected) O(log U)
time algorithm for
insert(x):

● Find successor(x).

● Add x to the trie.

● Using the
successor from
before, wire x into
the linked list.

● Walk up from x, its
successor, and its
predecessor and
update threads.

★

 0

 0

 0

 0 1 1

 1

 1 1

 1 1 1

 1 0

0101

null

x-Fast Tries

● Here is an (amortized,
expected) O(log U)
time algorithm for
insert(x):

● Find successor(x).

● Add x to the trie.

● Using the
successor from
before, wire x into
the linked list.

● Walk up from x, its
successor, and its
predecessor and
update threads.

★

 0

 0

 0

 0 1 1

 1

 1 1

 1 1 1

 1 0

0101

0

 1

null

x-Fast Tries

● Here is an (amortized,
expected) O(log U)
time algorithm for
insert(x):

● Find successor(x).

● Add x to the trie.

● Using the
successor from
before, wire x into
the linked list.

● Walk up from x, its
successor, and its
predecessor and
update threads.

★

 0

 0

 0

 0 1 1

 1

 1 1

 1 1 1

 1 0

0101

0

 1

null

x-Fast Tries

● Here is an (amortized,
expected) O(log U)
time algorithm for
insert(x):

● Find successor(x).

● Add x to the trie.

● Using the
successor from
before, wire x into
the linked list.

● Walk up from x, its
successor, and its
predecessor and
update threads.

★

 0

 0

 0

 0 1 1

 1

 1 1

 1 1 1

 1 0

0101

0

 1

null

x-Fast Tries

● Here is an (amortized,
expected) O(log U)
time algorithm for
insert(x):

● Find successor(x).

● Add x to the trie.

● Using the
successor from
before, wire x into
the linked list.

● Walk up from x, its
successor, and its
predecessor and
update threads.

★

 0

 0

 0

 0 1 1

 1

 1 1

 1 1 1

 1 0

0101

0

 1

null

x-Fast Tries

● Here is an (amortized,
expected) O(log U)
time algorithm for
insert(x):

● Find successor(x).

● Add x to the trie.

● Using the
successor from
before, wire x into
the linked list.

● Walk up from x, its
successor, and its
predecessor and
update threads.

★

 0

 0

 0

 0 1 1

 1

 1 1

 1 1 1

 1 0

0101

0

 1

null

Deletion

● To delete(x), we need to
● Remove x from the trie.
● Splice x out of its linked list.
● Update thread pointers from x's former

predecessor and successor.

● Runs in expected, amortized time O(log U).
● Full details are left as a proverbial Exercise to

the Reader. ☺

Space Usage

● How much space is required in an x-fast trie?

● Each leaf node contributes at most O(log U)
nodes in the trie.

● Total space usage for hash tables is
proportional to total number of trie nodes.

● Total space: O(n log U).

For Reference

● van Emde Boas tree
● insert: O(log log U)
● delete: O(log log U)
● lookup: O(log log U)
● max: O(1)
● succ: O(log log U)
● is-empty: O(1)
● Space: O(U)

● x-Fast Trie
● insert: O(log U)*

● delete: O(log U)*

● lookup: O(1)
● max: O(log log U)
● succ: O(log log U)
● is-empty: O(1)
● Space: O(n log U)

* Expected, amortized

What Remains

● We need to speed
up insert and
delete to run in
time O(log log U).

● We'd like to drop
the space usage
down to O(n).

● How can we do
this?

● x-Fast Trie
● insert: O(log U)*

● delete: O(log U)*

● lookup: O(1)
● max: O(log log U)
● succ: O(log log U)
● is-empty: O(1)
● Space: O(n log U)

* Expected, amortized

Time-Out for Announcements!

Midterm: Tonight, 7PM – 10PM.

Good luck!

Your Questions!

“Can you release solutions to PS7 at the
end of class so that we can review them

before the exam?”

Yep! I'll hand them
out at the end of

lecture.

Yep! I'll hand them
out at the end of

lecture.

“What is your process when writing
homework/practice/test/etc. problems?

How do you come up with them?”

For the theory questions, I mostly read
everything I can get my hands on. For

the coding questions, I try picking
coding questions that either solidify
details or have an unexpected result.

For the theory questions, I mostly read
everything I can get my hands on. For

the coding questions, I try picking
coding questions that either solidify
details or have an unexpected result.

“What are the mean scores on the
assignments? What's the grade curve going

to be like on the class overall? Trying to
figure out whether to switch to C/NC... <3”

I honestly don't know. The
curve will depend on how

the midterm and final
projects end up turning out.

I honestly don't know. The
curve will depend on how

the midterm and final
projects end up turning out.

“Why is there a problem set due the same
day as the exam?”

It's the best out of a
lot of not particularly

good options.

It's the best out of a
lot of not particularly

good options.

Back to CS166!

y-Fast Tries

y-Fast Tries

● The y-Fast Trie is a data structure that
will match the vEB time bounds in an
expected, amortized sense while
requiring only O(n) space.

● It's built out of an x-fast trie and a
collection of red/black trees.

The Motivating Idea

● Suppose we have a red/black tree with
Θ(log U) nodes.

● Any ordered dictionary operation on the tree
will then take time O(log log U).

● Idea: Store the elements in the ordered
dictionary in a collection of red/black trees
with Θ(log U) elements each.

The Idea

0 - 54 65 - 91 103 - 133 154 - 258

The Idea

0 - 54 65 - 91 103 - 133 154 - 258

Each of these trees
has between ½ log U

and 2 log U nodes.

Each of these trees
has between ½ log U

and 2 log U nodes.

The Idea

0 - 54 65 - 91 103 - 133 154 - 258

To perform lookup(x),
we determine which
tree would contain x,

then check there.

To perform lookup(x),
we determine which
tree would contain x,

then check there.

The Idea

0 - 54 65 - 91 103 - 133 154 - 258

If a tree gets too big,
we can split it into two
trees by cutting at the

median element.

If a tree gets too big,
we can split it into two
trees by cutting at the

median element.

The Idea

0 - 54 65 - 91 103 - 133 221 - 258154 - 181

If a tree gets too big,
we can split it into two
trees by cutting at the

median element.

If a tree gets too big,
we can split it into two
trees by cutting at the

median element.

The Idea

0 - 54 65 - 91 103 - 133 221 - 258154 - 181

Similarly, if trees get
too small, we can

concatenate the tree
with a neighbor.

Similarly, if trees get
too small, we can

concatenate the tree
with a neighbor.

The Idea

0 - 91 103 - 133 221 - 258154 - 181

Similarly, if trees get
too small, we can

concatenate the tree
with a neighbor.

Similarly, if trees get
too small, we can

concatenate the tree
with a neighbor.

The Idea

0 - 91 103 - 133 221 - 258154 - 181

That might create a
tree that's too big, in
which case we split it

in half.

That might create a
tree that's too big, in
which case we split it

in half.

The Idea

0 - 91 103 - 133 221 - 258154 - 181

To determine successor(x), we find
the tree that would contain x, and

take its successor there or the
minimum value from the next tree.

To determine successor(x), we find
the tree that would contain x, and

take its successor there or the
minimum value from the next tree.

The Idea

0 - 91 103 - 133 221 - 258154 - 181

The Idea

0 - 91 103 - 133 221 - 258154 - 181

The Idea

How do we efficiently
determine which tree a

given element belongs to?

How do we efficiently
determine which tree a

given element belongs to?

0 - 91 103 - 133 221 - 258154 - 181

The Idea

0 - 91 103 - 133 221 - 258154 - 181

91 133 181

The Idea

0 - 91 103 - 133 221 - 258154 - 181

91 133 181

To do lookup(x), find the smallest
max value that's at least x, then go

into the preceding tree.

To do lookup(x), find the smallest
max value that's at least x, then go

into the preceding tree.

The Idea

0 - 91 103 - 133 221 - 258154 - 181

91 133 181

To do lookup(x), find successor(x)
in the set of maxes, then go into

the preceding tree.

To do lookup(x), find successor(x)
in the set of maxes, then go into

the preceding tree.

The Idea

0 - 91 103 - 133 221 - 258154 - 181

91 133 181

To determine successor(x), find successor(x) in
the maxes, then return the successor of x in that

subtree or the min of the next subtree.

To determine successor(x), find successor(x) in
the maxes, then return the successor of x in that

subtree or the min of the next subtree.

The Idea

0 - 91 103 - 133 221 - 258154 - 181

91 133 181

To insert(x), compute successor(x) and insert x
into the tree before it. If the tree splits, insert a

new max into the top list.

To insert(x), compute successor(x) and insert x
into the tree before it. If the tree splits, insert a

new max into the top list.

The Idea

0 - 91 103 - 133 221 - 258154 - 181

91 133 181

To delete(x), do a lookup for x and delete it from
that tree. If x was the max of a tree, don't delete
it from the top list. Contract trees if necessary.

To delete(x), do a lookup for x and delete it from
that tree. If x was the max of a tree, don't delete
it from the top list. Contract trees if necessary.

The Idea

0 - 91 103 - 133 221 - 258154 - 181

91 133 181

The Idea

0 - 91 103 - 133 221 - 258154 - 181

91 133 181

How do we store the set of maxes so that we get
efficient successor queries?

How do we store the set of maxes so that we get
efficient successor queries?

y-Fast Tries

● A y-Fast Trie is constructed as follows:
● Keys are stored in a collection of red/black trees, each of

which has between ½ log U and 2 log U keys.
● From each tree (except the first), choose a

representative element.
– Representatives demarcate the boundaries between trees.

● Store each representative in the x-fast trie.

● Intuitively:
● The x-fast trie helps locate which red/black trees need to

be consulted for an operation.
● Most operations are then done on red/black trees, which

then take time O(log log U) each.

Analyzing y-Fast Tries

● The operations lookup, successor, min, and max
can all be implemented by doing O(1) BST
operations and one call to successor in the x-fast
trie.
● Total runtime: O(log log U).

● insert and delete do O(1) BST operations, but
also have to do O(1) insertions or deletions into
the x-fast trie.
● Total runtime: O(log U).
● … or is it?

Analyzing y-Fast Tries

● Each insertion does O(log log U) work inserting
and (potentially) splitting a red/black tree.

● The insertion in the x-fast trie takes time
O(log U).

● However, we only split a red/black tree if its size
doubles from log U to 2 log U, so we must have
done at least O(log U) insertions before we
needed to split.

● The extra cost amortizes across those operations
to O(1), so the amortized cost of an insertion is
O(log log U).

Analyzing y-Fast Tries

● Each deletion does O(log log U) work deleting from,
(potentially) joining a red/black tree, and
(potentially) splitting the resulting red/black tree.

● The insertions and deletions in the x-fast trie take
time at most O(log U).

● However, we only join a tree with its neighbor if its
size dropped from log U to ½ log U, which means
there were O(log U) intervening deletions.

● The extra cost amortizes across those operations to
O(1), so the amortized cost of an insertion is
O(log log U).

Space Usage

● So what about space usage?
● Total space used across all the red/black

trees is O(n).
● The x-fast trie stores Θ(n / log U) total

elements.
● Space usage:

Θ((n / log U) · log U) = Θ(n).
● We're back down to linear space!

For Reference

● van Emde Boas tree
● insert: O(log log U)
● delete: O(log log U)
● lookup: O(log log U)
● max: O(1)
● succ: O(log log U)
● is-empty: O(1)
● Space: O(U)

● x-Fast Trie
● insert: O(log log U)*

● delete: O(log log U)*

● lookup: O(log log U)
● max: O(log log U)
● succ: O(log log U)
● is-empty: O(1)
● Space: O(n)

* Expected, amortized.

What We Needed

● An x-fast trie requires tries and cuckoo
hashing.

● The y-fast trie requires amortized analysis and
split/join on balanced, augmented BSTs.

● y-fast tries also use the “blocking” technique
from RMQ we used to shave off log factors.

Next Time

● Disjoint-Set Forests
● A data structure for incremental connectivity

in general graphs.

● The Ackermann Inverse Function
● One of the slowest-growing functions you'll

ever encounter in practice.

Why All This Matters

Best of luck on the exam!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

