

Dynamic Graphs

Outline for Today

● Euler Tour Trees Revisited
● Dynamic connectivity in forests.

● The Key Idea
● Maintaining dynamic connectivity in general graphs

● Dynamic Graphs
● A data structure for dynamic connectivity.

● Implementation Details
● Speeding up the implementation.

The Dynamic Connectivity Problem

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so
that queries of the form “are nodes u and v

connected?”

Using Θ(m + n) preprocessing, can preprocess the
graph to answer queries in time O(1).

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● Here's a straightforward solution:
● Start by doing a DFS to label all nodes with a

connected component number.
● When adding an edge between two nodes in the

same CC, do nothing.
● When adding an edge between two nodes in

different CC's, relabel all nodes in the smaller CC.
● When deleting an edge, rerun DFS on that CC to see

if it split.

● Queries run in time O(1); insertions and deletions
can take time O(m + n).

● Can we do better?

What We Know

● Recall: The Euler tour tree data structure
solves dynamic connectivity in forests in time
O(log n) per query.

● Supports the following operations:
● link(u, v): Adds edge {u, v} to the forest.
● cut(u, v): Deletes edge {u, v} from the forest.
● is-connected(u, v): Returns whether u and v are

connected.

● Implemented on top of balanced BSTs; can
augment to compute summary information
about each tree.

The Challenge

● Numerous issues arise in scaling up from forests
to complete graphs.
● In a forest, a link connects two distinct trees. In a

general graph, the endpoints of a link might already be
connected.

● In a forest, a cut splits one tree into two. In a general
graph, a cut might not change connectivity.

● In a forest, there is a unique path between any two
nodes in each tree. In a general graph, there can be
many.

● As of 2014, there is no known Euler-tour-like
approach for maintaining dynamic connectivity.

The Basic Idea

● Let G be an undirected graph and let be a ℱ
spanning forest for G.

● Observation: Two nodes u and v are
connected in G iff they are connected in .ℱ

● Idea: Try to maintain a spanning forest for ℱ
G, represented as Euler tour trees.

● The challenge will be efficiently maintaining .ℱ

Maintaining a Forest

Every edge is either a
tree edge in the forest or ℱ
an auxiliary edge running
between two nodes in the

same tree in .ℱ

Every edge is either a
tree edge in the forest or ℱ
an auxiliary edge running
between two nodes in the

same tree in .ℱ

Maintaining a Forest

Maintaining a Forest

Maintaining a Forest

The Challenge

● Goal: Devise a way of storing edges such that we
don't repeatedly rescan the same edges trying to
glue trees together.

● Idea: Associate a “specificity” with each edge,
initially 0.

● Edges with higher specificity refer to more
restricted regions of the graph.

● Edges with lower specificity refer to more
general regions of the graph.

● Adjust the specificity of edges in response to
deletions.

 0

0 0

0

Edge Specificity

0 0

 0 0

0

 0

0

0

0 0

0

 0

 0 0

0

0

0

 0

 0

 0

 0

 0

0

0

 0

 0

0

0

 0

0 0

0

Edge Specificity

0 0

 0 0

0

 0

0

0

0 0

 0

 0 0

0

0

0

 0

 0

 0

 0

 0

0

0

 0

 0

0

0

 1

1 1

0

Edge Specificity

0 0

 0 0

0

 0

0

0

0 0

 1

 0 1

1

0

1

 1

 1

 0

 0

 0

0

0

 0

 0

0

1

 1

1 1

0

Edge Specificity

0 0

 0 0

0

 0

0

0

0 0

 1

 0 1

1

0

1

 1

 1

 0

 0

 0

0

0

 0

 0

0

1

 1

1 1

0

Edge Specificity

0 0

 0 0

0

 0

0

0

0 0

 1

 0 1

1

0

1

 1

 1

 0

 0

 0

0

0

 0

 0

0

1

 1

1 1

0

Edge Specificity

0 0

 0 0

0

 0

0

0

0

 1

 0 1

1

0

1

 1

 1

 0

 0

 0

0

0

 0

 0

0

1

The Approach

● To delete a tree edge {u, v} with specificity k:

● Let Tu and Tv be the resulting trees.

● Push all edges of specificity k in Tu up to specificity
k + 1.

● For all edges incident to Tu of specificity k:

– If that edge connects Tu to Tv, add it to and stop.ℱ

– Otherwise, it connects Tu to itself, so increase its specificity.

● If the previous iteration didn't reconnect Tu and Tv,
repeat the above loop on specificity k – 1.

What Remains

● Some correctness concerns:
● When searching for a replacement edge, we

always search for edges with specificity no
greater than the deleted edge.

● How do we know that we won't “miss” a
potential glue edge?

● The runtime analysis:
● How efficient is this solution?

 1

1 1

0

Arguing Correctness

1

 0 0

0

 0

0

0

0

 2

 0 2

1

0

 2

 1

 0

 0

 0

0

0

 0

 0

0

1

The Invariant

● Invariant 1: is a ℱ maximum spanning
tree of G.

● Can quickly check that this holds in these
cases:
● Insertion: Add non-tree edge.
● Insertion: Add tree edge.
● Deletion: Delete non-tree edge.

The Invariant

● What happens if we delete a tree edge
with specificity k?
● Push up all edges in Tu with specificity k.

● Search for edges of specificity k, k – 1, …, 0
to repair the tree.

● Things to check:
● Does this preserve an MST?
● Why can't we miss an edge?

The Runtime Analysis

The Representation

● Store a series of forests ₀, ₁, ₂, …, ℱ ℱ ℱ .
● Forest ℱₖ stores all edges at specificities

k or greater.
● Thus ₀ = and ₀ ⊇ ₁ ⊇ …ℱ ℱ ℱ ℱ

● This enables us to query whether two
nodes are connected by edges of level k
or greater.

The Representation

● We can now think about our operations in terms of
the hierarchical ℱₖ forests.

● Inserting a new tree edge can be done in time
O(log n) by linking the endpoints in the overall
tree ₀.ℱ

● Pushing a tree edge e of specificity k up to level
k + 1 can be done in time O(log n) linking the
endpoints of e in ℱₖ₊₁.

● No need to cut them in ℱₖ; the forests are structure
so that ℱₖ₊₁ ⊆ ℱₖ.

Details We'll Ignore

● I'm going to gloss over some details, but
you can trust me on these:
● Auxiliary edges are stored in auxiliary data

structures. Insertion or deletion takes time
O(log n) each.

● It's possible to iterate across all edges of
level k incident to a given tree “efficiently.”

● Check the original paper for details; it's
not really worth focusing on right now.

Runtime Analysis

● Connectivity queries can be answered in
time O(log n) by querying ₀.ℱ

● Inserting an edge takes time O(log n).
● Deleting an auxiliary edge takes time

O(log n) (due to bookkeeping overhead.)

The Final Analysis

● Deleting a tree edge requires the following:
● Deleting that tree edge from each of the forests in

total time O(r log n), where r is the number of forests.
● Possibly push up k edges from one layer to the next in

total time O(k log n).
● Possibly insert an edge into r forests in total time

O(r log n).

● Total cost: O(r log n + k log n)
● This could be O(m log n) per operation!

A Problem

● Consider an n-clique.

● Delete some tree edge that splits the tree into a
collection of one node and n – 1 nodes.

● If we push down the edges of the (n – 1)-node
connected component, we could spend Θ(n2 log n)
work trying to find an edge to connect it back to
the remaining node.

● Repeat this on the (n – 1)-node tree in the forest,
then repeat this on the (n – 2)-node tree, etc.

● Sums to Θ(n3 log n) total work across all n
deletions.

Time-Out for Announcements!

Problem Set 7

● PS7 has been graded; we'll return it at
the end of lecture today.

Presentations

● Final project presentations run all week.
● Presentations are open to everyone; feel

free to stop on by to any of the talks (as
long as it's not for your own data
structure.)
● They've been really, really great so far!

Your Questions!

“This class has been fantastic! If I like it,
what other classes would you suggest

taking?”

Awww, thanks! ☺

I'm planning on talking about this
in depth in Wednesday's lecture. I

hope that's okay with you!

Awww, thanks! ☺

I'm planning on talking about this
in depth in Wednesday's lecture. I

hope that's okay with you!

“Splay trees seem like they would be useful
in data compression (analogous to Huffman

coding), but I can't find any common
examples of their usage. Is there some

example I'm missing, or is there a reason
why they aren't as useful as expected?”

There has been some work done on
this. Check “Applications of Splay
Trees to Data Compression” by

Douglas Jones as one source.

There has been some work done on
this. Check “Applications of Splay
Trees to Data Compression” by

Douglas Jones as one source.

“Any idea what the curve will be like? What
percentage of people do you see getting an

A?”

I have no idea – it depends on final
project grades. I usually put the median

as the cutoff between B/B+, but
depending on how people do I might be

more generous.

I have no idea – it depends on final
project grades. I usually put the median

as the cutoff between B/B+, but
depending on how people do I might be

more generous.

“Recently we've developed bounds that
don't reflect actual relative performance

times. What is the role of this kind of work?
Does it contribute to a larger theoretical

understanding or is it mostly paper fodder
and cool math?”

It's a little bit of both. ☺

We want to simultaneously build new
tools and push back our understanding

of theoretical limitations. The hard
math enables us to do both.

It's a little bit of both. ☺

We want to simultaneously build new
tools and push back our understanding

of theoretical limitations. The hard
math enables us to do both.

“You're a really good teacher - what habits
and techniques do you think set you apart?

Besides practice, are there any specific
things that made you better over time?”

Awww, thanks! ☺

I'd be happy to talk offline about this if
you'd like. Most of it is just guesswork

and learning from experience.

Awww, thanks! ☺

I'd be happy to talk offline about this if
you'd like. Most of it is just guesswork

and learning from experience.

Back to CS166!

Where We Are

● We have a nifty data structure for
maintaining dynamic connectivity.

● However, the time bounds on deletion
are weak because we can push edges
down many levels deep.

● Can we update our data structure so that
deletions become less expensive?

Fixing the Problem

● On Problem Set Three, you saw a data
structure for decremental connectivity.

● Idea: When splitting a tree in two, only
relabel the nodes in the smaller
connected component.

● This ensures each node is only relabeled
at most O(log n) times and enables a
clean amortized analysis.

Fixing the Problem

● Modification: When splitting a tree into two
trees T₁ and T₂ by cutting an edge of specificity
k, only increase the specificities of the level-k
edges in the tree with fewer edges of level k or
greater.

00 0

 0 0

0

 1

1

1

1 1

 1

A Second Invariant

● Recall: We've hierarchically decomposed ℱ
into ₀, ₁, … where ℱ ℱ ℱₖ consists of all tree
edges of specificity k or greater.

● Invariant 2: For all k, the maximum number of
nodes in any connected component of ℱₖ is
n / 2k.

● Corollary: There are at most lg n distinct
possible specificities.

Checking the Invariant

● Any CC in ₀ = has at most ℱ ℱ n nodes because
there are n possible nodes.

● Insertions preserve the invariant because they
only add edges to ₀.ℱ

● Suppose we delete an edge in ℱₖ and form two
trees T₁ and T₂.

● We only increase the specificities of edges of
level k in the smaller of T₁ and T₂.

● Since any CC in ℱₖ has at most n / 2k nodes, this
means any CC that gets pushed down can have
at most n / 2k+1 nodes.

The Final Analysis

● Deleting a tree edge requires the following:
● Deleting that tree edge from each of the lg n

forests in total time O(log2 n).
● Possibly push up k edges from one layer to the

next in total time O(k log n).
● Possibly insert an edge into lg n forests in total

time O(log2 n).

● Total cost: O(log2 n + k log n)
● Each operation can still be pretty expensive.

The Final Analysis

● Recall: Edge levels range from 0 to lg n, and
edge levels never decrease.

● Idea: Put lg n credits on each edge when that
edge is added to the graph.

● Each credit can pay for the O(log n) work
necessary to push an edge up a level.

● (This is the same idea from the decremental
structure on the problem set.)

The Final Analysis

● Insertions have a base cost of O(log n).
● Adds lg n credits, each of which cost

O(log n) units of work.
● Amortized cost: O(log2 n).

The Final Analysis

● Deletions have cost O(log2 n + k log n),
where k is the number of edges
promoted.

● Can spend one credit from each edge as
it's promoted; won't run out of credits.

● Amortized cost: O(log2 n).

The Final Analysis

● The dynamic graph data structure
supports the following operations in the
indicated amortized runtimes:
● is-connected: O(log n)
● insert: O(log2 n)
● delete: O(log2 n)

● This is significantly better than the naïve
solution!

● Can we do better?

One Quick Speedup

● Recall: Each Euler tour tree is represented by
a balanced BST.

● Lookup times in Euler tour trees is
proportional to the tree height.
● Walk from each node up to the root and compare

whether the roots are the same.

● If we represent ₀ (and just ₀) using a B-tree ℱ ℱ
of order Θ(log n), queries can be answered in
time

O(loglog n n) = O(log n / log log n)

The Final Analysis

● The dynamic graph data structure, with
the B-tree modification, supports the
following operations in the indicated
amortized runtimes:
● is-connected: O(log n / log log n)
● insert: O(log2 n)
● delete: O(log2 n)

● In practice, log n ≤ 60 and log log n ≤ 6.

Going Forward

● Since this data structure was developed in 1999,
there have been some new developments.

● If randomization is allowed, we can get these
bounds:

● is-connected: O(log n / log log log n)
● insert: O(log n · (log log n)3) amortized
● delete: O(log n · (log log n)3) expected amortized

● A lower-bound of Ω(log n) per insert or deletion is
known to exist, and there's still a gap!

More Dynamic Problems

● Many other dynamic graph problems exist:
● Maintaining an MST; can do in O(log4 n) time per

insertion or deletion.
● Maintaining single-source or all-pairs shortest paths.
● Maintaining reachability in a directed graph.

● All of these problems were solved in the static case
40+ years ago.

● We have somewhat decent solutions to the dynamic
cases.

● This is an active area of research!

Next Time

● The Big Picture
● Wow, we covered a lot! What exactly did we

see in this class?

● Your Questions
● What didn't we cover that you wanted to

learn in this class?

● Where to Go From Here
● Next steps in theory (and in life?)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

