

Range Minimum Queries
Part Two

Recap from Last Time

41 59 26 5331 41 59 26 53 58 97 93

The RMQ Problem

● The Range Minimum Query (RMQ)
problem is the following:

Given a fixed array A and two indices
i ≤ j, what is the smallest element out of

A[i], A[i + 1], …, A[j – 1], A[j]?

31 58 97 93

Why do we even care?

Lowest Common Ancestors

Lowest Common Ancestors

A

GD

E

B

C F

A B C C B A D E E D F F D A G G A

This is called an Euler tour of the
tree. Euler tours have all sorts of nice
properties. Depending on what topics
we explore, we might see some more

of them later in the quarter.

This is called an Euler tour of the
tree. Euler tours have all sorts of nice
properties. Depending on what topics
we explore, we might see some more

of them later in the quarter.

C B A E D F D A G A

0 0 012 1 12 2 1

Lowest Common Ancestors

A

GD

E

B

C F

A B C D E F G

0 1 2 1 2 2 1

C B A E D F D A G A

0 0 012 1 12 2 1

Lowest Common Ancestors

A

GD

E

B

C F

A B C D E F G

0 1 2 1 2 2 1

Solutions to RMQ can be used to create
fast solutions to LCA.

We'll use this fact next week!

A Notational Recap

Some Notation

● We'll say that an RMQ data structure has time
complexity ⟨p(n), q(n)⟩ if

● preprocessing takes time at most p(n) and

● queries take time at most q(n).

● Last time, we saw structures with the following
runtimes:

● ⟨O(n2), O(1)⟩ (full preprocessing)

● ⟨O(n log n), O(1)⟩ (sparse table)

● ⟨O(n log log n), O(1)⟩ (hybrid approach)

● ⟨O(n), O(n1/2)⟩ (blocking)

● ⟨O(n), O(log n)⟩ (hybrid approach)

● ⟨O(n), O(log log n)⟩ (hybrid approach)

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

This is just RMQ on
the block minima!

This is just RMQ on
the block minima!

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

This is just RMQ
inside the blocks!

This is just RMQ
inside the blocks!

The Framework

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution
for the block minimums and a ⟨p₂(n), q₂(n)⟩-time
RMQ solution within each block.

● Let the block size be b.

● In the hybrid structure, the preprocessing time is

O(n + p₁(n / b) + (n / b) p₂(b))

● The query time is

O(q₁(n / b) + q₂(b))

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

A Useful Observation

● Sparse tables can be constructed in time
O(n log n).

● If we use a sparse table as a top
structure, construction time is
O((n / b) log n).
● See last lecture for the math on this.

● Cute trick: If we choose b = Θ(log n),
then the construction time is O(n).

Is there an ⟨O(n), O(1)⟩ solution to RMQ?

Yes!

New Stuff!

An Observation

The Limits of Hybrids

● The preprocessing time on a hybrid structure is

O(n + p₁(n / b) + (n / b) p₂(b))
● The query time is

O(q₁(n / b) + q₂(b))
● To build an ⟨O(n), O(1)⟩ hybrid, we need to

have p₂(n) = O(n) and q₂(n) = O(1).
● We can't build an optimal solution with the

hybrid approach unless we already have
one!

● Or can we?

The Limits of Hybrids

The preprocessing time on a hybrid structure is

O(n + p₁(n / b) + (n / b) p₂(b))

The query time is

O(q₁(n / b) + q₂(b))

To build an ⟨O(n), O(1)⟩ hybrid, we need to
have p₂(n) = O(n) and q₂(n) = O(1).

We can't build an optimal solution with the
hybrid approach unless we already have
one!

Or can we?

This term comes from the cost of
building O(n / b) RMQ structures,

one per block of size b.

Is this a tight bound?

This term comes from the cost of
building O(n / b) RMQ structures,

one per block of size b.

Is this a tight bound?

A Key Difference

● Our original problem is

Solve RMQ on a single array in time
⟨O(n), O(1)⟩

● The new problem is

Solve RMQ on a large number of small
arrays with O(1) query time and total

preprocessing time O(n).
● These are not the same problem.
● Question: Why is this second problem any

easier than the first?

30 20 361 26110 16630 20 361 26110 16640 46440 464

An Observation

Claim: The indices of the
answers to any range

minimum queries on these
two arrays are the same.

Claim: The indices of the
answers to any range

minimum queries on these
two arrays are the same.

Modifying RMQ

● From this point forward, let's have
RMQA(i, j) denote the index of the
minimum value in the range rather than
the value itself.

● Observation: If RMQ structures return
indices rather than values, we can use a
single RMQ structure for both of these
arrays:

30 20 361 26110 16630 20 361 26110 16640 46440 464

Some Notation

● Let B₁ and B₂ be blocks of length b.

● We'll say that B₁ and B₂ have the same block
type (denoted B₁ ~ B₂) if the following holds:

For all 0 ≤ i ≤ j < b:
RMQB₁(i, j) = RMQB₂(i, j)

● Intuitively, the RMQ answers for B₁ are always
the same as the RMQ answers for B₂.

● If we build an RMQ to answer queries on some
block B₁, we can reuse that RMQ structure on
some other block B₂ iff B₁ ~ B₂.

Where We're Going

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27

RMQ
Structure

RMQ
Structure

RMQ
Structure

Now, the details!

Detecting Block Types

● For this approach to work, we need to be
able to check whether two blocks have the
same block type.

● Problem: Our formal definition of B₁ ~ B₂ is
defined in terms of RMQ.
● Not particularly useful a priori; we don't want to

have to compute RMQ structures on B₁ and B₂ to
decide whether they have the same block type!

● Is there a simpler way to determine whether
two blocks have the same type?

An Initial Idea

● Since the elements of the array are ordered
and we're looking for the smallest value in
certain ranges, we might look at the
permutation types of the blocks.

● Claim: If B₁ and B₂ have the same permutation

on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27

1 2 3 2 3 1 2 1 3 1 2 3

3 1 2 3 2 1 3 2 1 2 3 1

Some Problems

● There are two main problems with this approach.

● Problem One: It's possible for two blocks to have
different permutations but the same block type.

● All three of these blocks have the same block type
but different permutation types:

● Problem Two: The number of possible
permutations of a block is b!.

● b has to be absolutely minuscule for b! to be small.

● Is there a better criterion we can use?

261 268 161 161 261 167

4 5 1 1 4 3

167 166

3 2

166 268

2 5

167 261 161

3 4 1

268 166

5 2

161 167 166

11 43 35

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

261 268 161 167 166

14 22 11 43 35

Cartesian Trees

● A Cartesian tree is a binary tree derived from an
array and defined as follows:

● The empty array has an empty Cartesian tree.
● For a nonempty array, the root stores the index of

the minimum value. Its left and right children are
Cartesian trees for the subarrays to the left and
right of the minimum.

261 268 161 167 166 14 55 22 43 116 5 3 9 7

2

0 4

31

2

4

3

1

0

4

0

2

31

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have the same minima.

k k

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

7

3

12

14

13

100

1

2

4

5

6 11

9

8

Building Cartesian Trees

● The previous theorem lets us check
whether B₁ ~ B₂ by testing whether they
have the same Cartesian tree.

● How efficiently can we actually build
these trees?

Building Cartesian Trees

● Here's a naïve algorithm for constructing
Cartesian trees:
● Find the minimum value.
● Recursively build a Cartesian tree for the array

to the left of the minimum.
● Recursively build a Cartesian tree with the

elements to the right of the minimum.
● Return the overall tree.

● How efficient is this approach?

Building Cartesian Trees

● This algorithm works by
● doing a linear scan over the array,
● identifying the minimum at whatever position it

occupies, then
● recursively processing the left and right halves

on the array.
● Similar to the recursion in quicksort: it

depends on where the minima are.
● Always get good splits: Θ(n log n).
● Always get bad splits: Θ(n2).

● We're going to need to be faster than this.

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

Observation 1: This new
node cannot end up as the
left child of any node in the
tree.

Observation 1: This new
node cannot end up as the
left child of any node in the
tree.

6

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

Observation 2: This new
node will end up on the right
spine of the tree.

Observation 2: This new
node will end up on the right
spine of the tree.

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

Observation 3: Cartesian
trees are min-heaps with
respect to the elements in
the original array.

Observation 3: Cartesian
trees are min-heaps with
respect to the elements in
the original array.

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

55

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

55

7

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

Analyzing the Runtime

● Adding in another node to the Cartesian tree might take
time O(n), since we might have to pop everything off the
stack.

● Since there are n nodes to add, the runtime of this approach
is O(n2).

● Claim: This is a weak bound! The runtime is actually Θ(n).
● Proof: Work done per node is directly proportional to the

number of stack operations performed when that node was
processed.

● Total number of stack operations is at most 2n.
● Every node is pushed once.
● Every node is popped at most once.

● Total runtime is therefore Θ(n).

Time-Out for Announcements!

Problem Set One

● Problem Set One goes out today. It's due
next Thursday (April 7) at the start of
class (3:00PM).
● Explore the theory behind RMQ!
● Implement what you're seeing here!

● Start early! There aren't many problems,
but you definitely don't want to have to
figure everything out last-minute.

Problem Set Logistics

● We will be using GradeScope for assignment
submissions this quarter.

● To use it, visit the GradeScope website and use
the code

93DENM

to register for CS166.
● No hardcopy assignments will be accepted.

We're using GradeScope to track due dates and
as a gradebook.

Problem Set Logistics

● You're welcome to work on this problem set
individually or in a pair.

● If you work in a pair, just submit a single,
joint problem set. You'll receive the same
grade as your partner.

● Each assignment is independent, so feel
free to work individually on one, then in a
pair on the next, then in a different pair,
etc.

Honor Code

● This probably isn't a surprise, but we
take the Honor Code seriously in this
class.

● Please review Handout #04 for our
policies with regards to the Honor Code
as applied to CS166.

Back to CS166!

The Story So Far

● Our high-level idea is to use the hybrid framework,
but to avoid rebuilding RMQ structures for blocks
when they've already been computed.

● Since we can build Cartesian trees in linear time,
we can test if two blocks have the same type in
linear time.

● Goal: Choose a block size that's small enough that
there are duplicated blocks, but large enough that
the top-level RMQ can be computed efficiently.

● So how many Cartesian trees are there?

Theorem: The number of Cartesian trees
for an array of length b is at most 4b.

In case you're curious, the actual number is

 ,

which is roughly equal to

 .

Look up the Catalan numbers for more information!

4b

b3 /2
√π

1
b+1 (2b

b)

Proof Approach

● Our stack-based algorithm for generating
Cartesian trees is capable of producing a
Cartesian tree for every possible input
array.

● Therefore, if we can count the number of
possible executions of that algorithm, we
can count the number of Cartesian trees.

● Using a simple counting scheme, we can
show that there are at most 4b possible
executions.

The Insight

● Claim: The Cartesian tree produced by the stack-
based algorithm is uniquely determined by the
sequence of pushes and pops made on the stack.

● There are at most 2b stack operations during the
execution of the algorithm: b pushes and no more than
b pops.

● Can represent the execution as a 2b-bit number, where
1 means “push” and 0 means “pop.” We'll pad the end
with 0's (pretend we pop everything from the stack.)

● We'll call this number the Cartesian tree number of a
particular block.

● There are at most 22b = 4b possible 2b-bit numbers, so
there are at most 4b possible Cartesian trees.

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1 0 0

32

45

16

18

9

33

One Last Observation

● Recall: Our goal is to be able to detect when two
blocks have the same type so that we can share RMQ
structures between them.

● We've seen that two blocks have the same type if and
only if they have the same Cartesian tree.

● Using the connection between Cartesian trees and
Cartesian tree numbers, we can see that we don't
actually have to build any Cartesian trees!

● We can just compute the Cartesian tree number of each
block and use those numbers to test for block
equivalence.

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0

Finishing Things Up

● Using the previous algorithm, we can compute
the Cartesian tree number of a block in time
O(b) and without actually building the tree.

● We now have a simple and efficient linear-time
algorithm for testing whether two blocks have
the same block type.

● And, we bounded the number of Cartesian
trees at 4b using this setup!

The Fischer-Heun Structure

● In 2005, Fischer and Heun introduced a (slight variation on)
the following RMQ data structure.

● Use a hybrid approach with block size b (we'll choose b
later), a sparse table as a top RMQ structure, and the full
precomputation data structure for the blocks.

● However, make the following modifications:

● Make a table of length 4b storing pointers to RMQ structures.
The index corresponds to the Cartesian tree number. Initially,
the array is empty.

● When computing the RMQ for a particular block, first compute
its Cartesian tree number t.

● If there's an RMQ structure for t in the array, use it.

● Otherwise, compute the RMQ structure for the current block,
store it in the array and index t, then use it.

31 26 23 62 27

Fischer-Heun, Schematically

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27

⟨O(n2), O(1)⟩
RMQ Structure

⟨O(n2), O(1)⟩
RMQ Structure

⟨O(n2), O(1)⟩
RMQ Structure

⟨O(n log n), O(1)⟩

What's the query time on this structure?

Answer: O(1)

What's the query time on this structure?

Answer: O(1)

31 26 23 62 27

Fischer-Heun, Schematically

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27

⟨O(n2), O(1)⟩
RMQ Structure

⟨O(n2), O(1)⟩
RMQ Structure

⟨O(n2), O(1)⟩
RMQ Structure

⟨O(n log n), O(1)⟩

What's the preprocessing time for this structure if the block size is b?

O(n) time to compute block minima.
O((n / b) log n) time to build the sparse table.
O(b2) per smaller RMQ structure, of which at most 4b are built.

Total: O(n + (n / b) log n + 4b b2)

What's the preprocessing time for this structure if the block size is b?

O(n) time to compute block minima.
O((n / b) log n) time to build the sparse table.
O(b2) per smaller RMQ structure, of which at most 4b are built.

Total: O(n + (n / b) log n + 4b b2)

The Finishing Touches

● The runtime is

O(n + (n / b) log n + 4b b2)
● As we saw earlier, if we set b = Θ(log n), then

(n / b) log n = O(n)
● Suppose we set b = log₄ (n1/2) = ¼log₂ n. Then

4b b2 = n1/2 (log₂ n)2 = o(n)
● With b = ¼log₂ n, the preprocessing time is

 = O(n + n + n1/2 (log n)2) = O(n)
● We finally have an ⟨O(n), O(1)⟩ RMQ solution!

Practical Concerns

● This structure is actually reasonably
efficient; preprocessing is relatively fast.

● In practice, the ⟨O(n), O(log n)⟩ hybrid we
talked about last time is a bit faster.
● Constant factor in the Fischer-Heun's O(n)

preprocessing is a bit higher.
● Constant factor in the hybrid approach's O(n)

and O(log n) are very low.

● Check the Fischer-Heun paper for details.

Wait a Minute...

● This approach assumes that the Cartesian tree
numbers will fit into individual machine words!

● If b = ¼ log₂ n, then each Cartesian tree number
will have ½ log₂ n bits.

● Cartesian tree numbers will fit into a machine
word if n fits into a machine word.

● In the transdichotomous machine model, we
assume the problem size always fits into a machine
word.

● Reasonable – think about how real computers work.

● So there's nothing to worry about.

The Method of Four Russians

● The technique employed here is an example of
the Method of Four Russians.

● Idea:
● Split the input apart into blocks of size Θ(log n).
● Using the fact that there can only be polynomially

many different blocks of size Θ(log n), precompute
all possible answers for each possible block and
store them for later use.

● Combine the results together using a top-level
structure on an input of size Θ(n / log n).

● This technique is used frequently to shave log
factors off of runtimes.

Why Study RMQ?

● I chose RMQ as our first problem for a few reasons:

● See different approaches to the same problem.
Different intuitions produced different runtimes.

● Build data structures out of other data structures.
Many modern data structures use other data structures
as building blocks, and it's very evident here.

● See the Method of Four Russians. This trick looks like
magic the first few times you see it and shows up in lots
of places.

● Explore modern data structures. This is relatively
recent data structure (2005), and I wanted to show you
that the field is still very active!

● So what's next?

Next Time

● Tries
● A powerful and versatile data structure for

sets of strings.

● Substring Searching
● Challenges in implementing .indexOf.

● The Aho-Corasick Algorithm
● A linear-time substring search algorithm that

doubles as a data structure!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

