
  

Range Minimum Queries
Part Two



  

Recap from Last Time
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The RMQ Problem

● The Range Minimum Query (RMQ) 
problem is the following:

Given a fixed array A and two indices 
i ≤ j, what is the smallest element out of 

A[i], A[i + 1], …, A[j – 1], A[j]?
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Why do we even care?



  

Lowest Common Ancestors
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This is called an Euler tour of the 
tree. Euler tours have all sorts of nice 
properties. Depending on what topics 
we explore, we might see some more 

of them later in the quarter.
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of them later in the quarter.
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Solutions to RMQ can be used to create
fast solutions to LCA.

We'll use this fact next week!



  

A Notational Recap



  

Some Notation

● We'll say that an RMQ data structure has time 
complexity ⟨p(n), q(n)⟩ if

● preprocessing takes time at most p(n) and

● queries take time at most q(n).

● Last time, we saw structures with the following 
runtimes:

● ⟨O(n2), O(1)⟩ (full preprocessing)

● ⟨O(n log n), O(1)⟩ (sparse table)

● ⟨O(n log log n), O(1)⟩ (hybrid approach)

● ⟨O(n), O(n1/2)⟩ (blocking)

● ⟨O(n), O(log n)⟩ (hybrid approach)

● ⟨O(n), O(log log n)⟩ (hybrid approach)



  

Blocking Revisited
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This is just RMQ on 
the block minima!

This is just RMQ on 
the block minima!



  

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

This is just RMQ 
inside the blocks!

This is just RMQ 
inside the blocks!



  

The Framework

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution 
for the block minimums and a ⟨p₂(n), q₂(n)⟩-time 
RMQ solution within each block.

● Let the block size be b.

● In the hybrid structure, the preprocessing time is

O(n + p₁(n / b) + (n / b) p₂(b))

● The query time is

O(q₁(n / b) + q₂(b))
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A Useful Observation

● Sparse tables can be constructed in time 
O(n log n).

● If we use a sparse table as a top 
structure, construction time is 
O((n / b) log n).
● See last lecture for the math on this.

● Cute trick: If we choose b = Θ(log n), 
then the construction time is O(n).



  

Is there an ⟨O(n), O(1)⟩ solution to RMQ?

Yes!



  

New Stuff!



  

An Observation



  

The Limits of Hybrids

● The preprocessing time on a hybrid structure is

O(n + p₁(n / b) + (n / b) p₂(b))
● The query time is

O(q₁(n / b) + q₂(b))
● To build an ⟨O(n), O(1)⟩ hybrid, we need to 

have p₂(n) = O(n) and q₂(n) = O(1).
● We can't build an optimal solution with the 

hybrid approach unless we already have 
one!

● Or can we?



  

The Limits of Hybrids

The preprocessing time on a hybrid structure is

O(n + p₁(n / b) + (n / b) p₂(b))

The query time is

O(q₁(n / b) + q₂(b))

To build an ⟨O(n), O(1)⟩ hybrid, we need to 
have p₂(n) = O(n) and q₂(n) = O(1).

We can't build an optimal solution with the 
hybrid approach unless we already have 
one!

Or can we?

This term comes from the cost of 
building O(n / b) RMQ structures, 

one per block of size b.

Is this a tight bound?

This term comes from the cost of 
building O(n / b) RMQ structures, 

one per block of size b.

Is this a tight bound?



  

A Key Difference

● Our original problem is

Solve RMQ on a single array in time 
⟨O(n), O(1)⟩  

● The new problem is

Solve RMQ on a large number of small 
arrays with O(1) query time and total 

preprocessing time O(n).
● These are not the same problem.
● Question: Why is this second problem any 

easier than the first?
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An Observation

Claim: The indices of the 
answers to any range 

minimum queries on these 
two arrays are the same.

Claim: The indices of the 
answers to any range 

minimum queries on these 
two arrays are the same.



  

Modifying RMQ

● From this point forward, let's have 
RMQA(i, j) denote the index of the 
minimum value in the range rather than 
the value itself.

● Observation: If RMQ structures return 
indices rather than values, we can use a 
single RMQ structure for both of these 
arrays:

30 20 361 26110 16630 20 361 26110 16640 46440 464



  

Some Notation

● Let B₁ and B₂ be blocks of length b.

● We'll say that B₁ and B₂ have the same block 
type (denoted B₁ ~ B₂) if the following holds:

For all 0 ≤ i ≤ j < b:
RMQB₁(i, j) = RMQB₂(i, j)

● Intuitively, the RMQ answers for B₁ are always 
the same as the RMQ answers for B₂.

● If we build an RMQ to answer queries on some 
block B₁, we can reuse that RMQ structure on 
some other block B₂ iff B₁ ~ B₂.



  

Where We're Going
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Now, the details!



  

Detecting Block Types

● For this approach to work, we need to be 
able to check whether two blocks have the 
same block type.

● Problem: Our formal definition of B₁ ~ B₂ is 
defined in terms of RMQ.
● Not particularly useful a priori; we don't want to 

have to compute RMQ structures on B₁ and B₂ to 
decide whether they have the same block type!

● Is there a simpler way to determine whether 
two blocks have the same type?



  

An Initial Idea

● Since the elements of the array are ordered 
and we're looking for the smallest value in 
certain ranges, we might look at the 
permutation types of the blocks.

 

 

 
● Claim: If B₁ and B₂ have the same permutation 

on their elements, then B₁ ~ B₂.
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Some Problems

● There are two main problems with this approach.

● Problem One: It's possible for two blocks to have 
different permutations but the same block type.

● All three of these blocks have the same block type 
but different permutation types:

 

 

● Problem Two: The number of possible 
permutations of a block is b!.

● b has to be absolutely minuscule for b! to be small.

● Is there a better criterion we can use?

261 268 161 161 261 167

4 5 1 1 4 3
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161 167 166

11 43 35

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁ 
and B₂ must occur at the same position.

 

 

 

 
● Claim: This property must hold recursively on 

the subarrays to the left and right of the 
minimum.

261 268

14 22

261 268 161 167 166

14 22 11 43 35



  

Cartesian Trees

● A Cartesian tree is a binary tree derived from an 
array and defined as follows:

● The empty array has an empty Cartesian tree.
● For a nonempty array, the root stores the index of 

the minimum value. Its left and right children are 
Cartesian trees for the subarrays to the left and 
right of the minimum.

261 268 161 167 166 14 55 22 43 116 5 3 9 7
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Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then 
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so 
corresponding ranges have the same minima.

k k



  

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then 
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a 
recursive walk on the Cartesian tree.
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Building Cartesian Trees

● The previous theorem lets us check 
whether B₁ ~ B₂ by testing whether they 
have the same Cartesian tree.

● How efficiently can we actually build 
these trees?



  

Building Cartesian Trees

● Here's a naïve algorithm for constructing 
Cartesian trees:
● Find the minimum value.
● Recursively build a Cartesian tree for the array 

to the left of the minimum.
● Recursively build a Cartesian tree with the 

elements to the right of the minimum.
● Return the overall tree.

● How efficient is this approach?



  

Building Cartesian Trees

● This algorithm works by
● doing a linear scan over the array,
● identifying the minimum at whatever position it 

occupies, then
● recursively processing the left and right halves 

on the array.
● Similar to the recursion in quicksort: it 

depends on where the minima are.
● Always get good splits: Θ(n log n).
● Always get bad splits: Θ(n2).

● We're going to need to be faster than this.



  

A Better Approach

● It turns out that it's possible to build a Cartesian 
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the 
first element, then the first two, then the first 
three, then the first four, etc.
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Observation 1: This new 
node cannot end up as the 
left child of any node in the 
tree.

Observation 1: This new 
node cannot end up as the 
left child of any node in the 
tree.
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A Better Approach

● It turns out that it's possible to build a Cartesian 
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the 
first element, then the first two, then the first 
three, then the first four, etc.
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Observation 2: This new 
node will end up on the right 
spine of the tree.

Observation 2: This new 
node will end up on the right 
spine of the tree.



  

A Better Approach

● It turns out that it's possible to build a Cartesian 
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the 
first element, then the first two, then the first 
three, then the first four, etc.
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Observation 3: Cartesian 
trees are min-heaps with 
respect to the elements in 
the original array.

Observation 3: Cartesian 
trees are min-heaps with 
respect to the elements in 
the original array.



  

A Better Approach

● It turns out that it's possible to build a Cartesian 
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the 
first element, then the first two, then the first 
three, then the first four, etc.
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A Better Approach

● It turns out that it's possible to build a Cartesian 
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the 
first element, then the first two, then the first 
three, then the first four, etc.
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A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33



  

Analyzing the Runtime

● Adding in another node to the Cartesian tree might take 
time O(n), since we might have to pop everything off the 
stack.

● Since there are n nodes to add, the runtime of this approach 
is O(n2).

● Claim: This is a weak bound! The runtime is actually Θ(n).
● Proof: Work done per node is directly proportional to the 

number of stack operations performed when that node was 
processed.

● Total number of stack operations is at most 2n.
● Every node is pushed once.
● Every node is popped at most once.

● Total runtime is therefore Θ(n).



  

Time-Out for Announcements!



  



  

Problem Set One

● Problem Set One goes out today. It's due 
next Thursday (April 7) at the start of 
class (3:00PM).
● Explore the theory behind RMQ!
● Implement what you're seeing here!

● Start early! There aren't many problems, 
but you definitely don't want to have to 
figure everything out last-minute.



  

Problem Set Logistics

● We will be using GradeScope for assignment 
submissions this quarter.

● To use it, visit the GradeScope website and use 
the code

93DENM 

to register for CS166.
● No hardcopy assignments will be accepted. 

We're using GradeScope to track due dates and 
as a gradebook.



  

Problem Set Logistics

● You're welcome to work on this problem set 
individually or in a pair.

● If you work in a pair, just submit a single, 
joint problem set. You'll receive the same 
grade as your partner.

● Each assignment is independent, so feel 
free to work individually on one, then in a 
pair on the next, then in a different pair, 
etc.



  

Honor Code

● This probably isn't a surprise, but we 
take the Honor Code seriously in this 
class.

● Please review Handout #04 for our 
policies with regards to the Honor Code 
as applied to CS166.



  

Back to CS166!



  

The Story So Far

● Our high-level idea is to use the hybrid framework, 
but to avoid rebuilding RMQ structures for blocks 
when they've already been computed.

● Since we can build Cartesian trees in linear time, 
we can test if two blocks have the same type in 
linear time.

● Goal: Choose a block size that's small enough that 
there are duplicated blocks, but large enough that 
the top-level RMQ can be computed efficiently.

● So how many Cartesian trees are there?



  

Theorem: The number of Cartesian trees 
for an array of length b is at most 4b.

In case you're curious, the actual number is

                   ,
 

which is roughly equal to

              .

Look up the Catalan numbers for more information!

4b

b3 /2
√π

1
b+1 (2b

b )



  

Proof Approach

● Our stack-based algorithm for generating 
Cartesian trees is capable of producing a 
Cartesian tree for every possible input 
array.

● Therefore, if we can count the number of 
possible executions of that algorithm, we 
can count the number of Cartesian trees.

● Using a simple counting scheme, we can 
show that there are at most 4b possible 
executions.



  

The Insight

● Claim: The Cartesian tree produced by the stack-
based algorithm is uniquely determined by the 
sequence of pushes and pops made on the stack.

● There are at most 2b stack operations during the 
execution of the algorithm: b pushes and no more than 
b pops.

● Can represent the execution as a 2b-bit number, where 
1 means “push” and 0 means “pop.” We'll pad the end 
with 0's (pretend we pop everything from the stack.)

● We'll call this number the Cartesian tree number of a 
particular block.

● There are at most 22b = 4b possible 2b-bit numbers, so 
there are at most 4b possible Cartesian trees.



  

Cartesian Tree Numbers
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One Last Observation

● Recall: Our goal is to be able to detect when two 
blocks have the same type so that we can share RMQ 
structures between them.

● We've seen that two blocks have the same type if and 
only if they have the same Cartesian tree.

● Using the connection between Cartesian trees and 
Cartesian tree numbers, we can see that we don't 
actually have to build any Cartesian trees!

● We can just compute the Cartesian tree number of each 
block and use those numbers to test for block 
equivalence.



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0



  

Finishing Things Up

● Using the previous algorithm, we can compute 
the Cartesian tree number of a block in time 
O(b) and without actually building the tree.

● We now have a simple and efficient linear-time 
algorithm for testing whether two blocks have 
the same block type.

● And, we bounded the number of Cartesian 
trees at 4b using this setup!



  

The Fischer-Heun Structure

● In 2005, Fischer and Heun introduced a (slight variation on) 
the following RMQ data structure.

● Use a hybrid approach with block size b (we'll choose b 
later), a sparse table as a top RMQ structure, and the full 
precomputation data structure for the blocks.

● However, make the following modifications:

● Make a table of length 4b storing pointers to RMQ structures. 
The index corresponds to the Cartesian tree number. Initially, 
the array is empty.

● When computing the RMQ for a particular block, first compute 
its Cartesian tree number t.

● If there's an RMQ structure for t in the array, use it.

● Otherwise, compute the RMQ structure for the current block, 
store it in the array and index t, then use it.
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Fischer-Heun, Schematically
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⟨O(n2), O(1)⟩
RMQ Structure

⟨O(n2), O(1)⟩
RMQ Structure

⟨O(n2), O(1)⟩
RMQ Structure

⟨O(n log n), O(1)⟩

What's the query time on this structure?

Answer: O(1)

What's the query time on this structure?

Answer: O(1)
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RMQ Structure
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RMQ Structure

⟨O(n log n), O(1)⟩

What's the preprocessing time for this structure if the block size is b?
 

O(n) time to compute block minima.
O((n / b) log n) time to build the sparse table.
O(b2) per smaller RMQ structure, of which at most 4b are built.

 

Total: O(n + (n / b) log n + 4b b2)

What's the preprocessing time for this structure if the block size is b?
 

O(n) time to compute block minima.
O((n / b) log n) time to build the sparse table.
O(b2) per smaller RMQ structure, of which at most 4b are built.

 

Total: O(n + (n / b) log n + 4b b2)



  

The Finishing Touches

● The runtime is

O(n + (n / b) log n + 4b b2)
● As we saw earlier, if we set b = Θ(log n), then

(n / b) log n = O(n)
● Suppose we set b = log₄ (n1/2) = ¼log₂ n. Then

4b b2 = n1/2 (log₂ n)2 = o(n)
● With b = ¼log₂ n, the preprocessing time is

    = O(n + n + n1/2 (log n)2) = O(n)
● We finally have an ⟨O(n), O(1)⟩ RMQ solution!



  

Practical Concerns

● This structure is actually reasonably 
efficient; preprocessing is relatively fast.

● In practice, the ⟨O(n), O(log n)⟩ hybrid we 
talked about last time is a bit faster.
● Constant factor in the Fischer-Heun's O(n) 

preprocessing is a bit higher.
● Constant factor in the hybrid approach's O(n) 

and O(log n) are very low.

● Check the Fischer-Heun paper for details.



  

Wait a Minute...

● This approach assumes that the Cartesian tree 
numbers will fit into individual machine words!

● If b = ¼ log₂ n, then each Cartesian tree number 
will have ½ log₂ n bits.

● Cartesian tree numbers will fit into a machine 
word if n fits into a machine word.

● In the transdichotomous machine model, we 
assume the problem size always fits into a machine 
word.

● Reasonable – think about how real computers work.

● So there's nothing to worry about.



  

The Method of Four Russians

● The technique employed here is an example of 
the Method of Four Russians.

● Idea:
● Split the input apart into blocks of size Θ(log n).
● Using the fact that there can only be polynomially 

many different blocks of size Θ(log n), precompute 
all possible answers for each possible block and 
store them for later use.

● Combine the results together using a top-level 
structure on an input of size Θ(n / log n).

● This technique is used frequently to shave log 
factors off of runtimes.



  

Why Study RMQ?

● I chose RMQ as our first problem for a few reasons:

● See different approaches to the same problem. 
Different intuitions produced different runtimes.

● Build data structures out of other data structures. 
Many modern data structures use other data structures 
as building blocks, and it's very evident here.

● See the Method of Four Russians. This trick looks like 
magic the first few times you see it and shows up in lots 
of places.

● Explore modern data structures. This is relatively 
recent data structure (2005), and I wanted to show you 
that the field is still very active!

● So what's next?



  

Next Time

● Tries
● A powerful and versatile data structure for 

sets of strings.

● Substring Searching
● Challenges in implementing .indexOf.

● The Aho-Corasick Algorithm
● A linear-time substring search algorithm that 

doubles as a data structure!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

