Suffix Trees

Outline for Today

- Review from Last Time
- A quick refresher on tries.
- Suffix Tries
- A simple data structure for string searching.
- Suffix Trees
- A compact, powerful, and flexible data structure for string algorithms.
- Generalized Suffix Trees
- An even more flexible data structure.

Review from Last Time

Tries

- A trie is a tree that stores a collection of strings over some alphabet Σ.
- Each node corresponds to a prefix of some string in the set.
- Tries are sometimes called prefix trees, since each node in a trie corresponds to a prefix of one of the words in the trie.

Aho-Corasick String Matching

- The Aho-Corasick string matching algorithm is an algorithm for finding all occurrences of a set of strings P_{1}, \ldots, P_{k} inside a string T.
- Runtime is $\langle\mathrm{O}(n), \mathrm{O}(m+z)\rangle$, where
- $m=|T|$,
- $n=\left|P_{1}\right|+\ldots+\left|P_{k}\right|$, and
- z is the number of matches.
- Great for the case where the patterns are fixed and the text to search changes.

Genomics Databases

- Many string algorithms these days are developed for or used extensively in computational genomics.
- Typically, we have a huge database with many very large strings (genomes) that we'll preprocess to speed up future operations.
- Common problem: given a fixed string T to search and changing patterns P_{1}, \ldots, P_{k}, find all matches of those patterns in T.
- Question: Can we instead preprocess T to make it easy to search for variable patterns?

Suffix Tries

Substrings, Prefixes, and Suffixes

- Useful Fact 1: Given a trie storing a set of strings $S_{1}, S_{2}, \ldots, S_{k}$, it's possible to determine, in time $\mathrm{O}(|Q|)$, whether a query string Q is a prefix of any S_{i}.

Substrings, Prefixes, and Suffixes

- Useful Fact 1: Given a trie storing a set of strings $S_{1}, S_{2}, \ldots, S_{k}$, it's possible to determine, in time $\mathrm{O}(|Q|)$, whether a query string Q is a prefix of any S_{i}.
- Useful Fact 2: A string P is a substring of a string T if and only if P is a prefix of some suffix of T.
- Specifically, write $T=\alpha P \omega$; then T is a prefix of the suffix $P \omega$ of T.

Suffix Tries

- A suffix trie of T is a trie of all the suffixes of T.
- Given any pattern string P, we can check in time $\mathrm{O}(|P|)$ whether P is a substring of T by seeing whether P is a prefix in T's suffix trie.
- (Because that means that P is a prefix of a suffix of T.)

nonsense

Suffix Tries

- A suffix trie of T is a trie of all the suffixes of T.
- More generally, given any nonempty patterns P_{1}, \ldots, P_{k} of total length n, we can detect how many of those patterns are substrings of T in time $O(n)$.
- (Finding all matches is a bit trickier; more on that later.)

A Typical Transform

- Typically, we append some new character $\$ \notin \Sigma$ to the end of T, then construct the trie for $T \$$.
- Leaf nodes correspond to suffixes.
- Internal nodes correspond to prefixes of those suffixes.

Constructing Suffix Tries

- Once we build a single suffix trie for string T, we can efficiently detect whether patterns match in time $O(n)$.
- Question: How long does it take to construct a suffix trie?
- Problem: There's an $\Omega\left(m^{2}\right)$ lower bound on the worst-case complexity of any algorithm for building suffix tries.

A Degenerate Case

$a^{m} b^{m} \$$

A Degenerate Case

A Degenerate Case

Correcting the Problem

- Because suffix tries may have $\Omega\left(m^{2}\right)$ nodes, all suffix trie algorithms must run in time $\Omega\left(m^{2}\right)$ in the worst-case.
- Can we reduce the number of nodes in the trie?

Patricia Tries

- A "silly" node in a trie is a node that has exactly one child.
- A Patricia trie (or radix trie) is a trie where all "silly" nodes are merged with their parents.

Patricia Tries

- A "silly" node in a trie is a node that has exactly one child.
- A Patricia trie (or radix trie) is a trie where all "silly" nodes are merged with their parents.

nonsense\$

Suffix Trees

- A suffix tree for a string T is an Patricia trie of $T \$$ where each leaf is labeled with the index where the corresponding suffix starts in $T \$$.

nonsense\$

Suffix Trees

- A suffix tree for a string T is an Patricia trie of $T \$$ where each leaf is labeled with the index where the corresponding suffix starts in T\$.

nonsense\$
012345678

Suffix Trees

- A suffix tree for a string T is an Patricia trie of $T \$$ where each leaf is labeled with the index where the corresponding suffix starts in $T \$$.

nonsense\$
012345678

Properties of Suffix Trees

- If $|T|=m$, the suffix tree has exactly $m+1$ leaf nodes.
- For any $T \neq \varepsilon$, all internal nodes in the suffix tree have at least two children.
- Number of nodes in a suffix tree is $\Theta(m)$.

Suffix Tree Representations

- Suffix trees may have $\Theta(m)$ nodes, but the labels on the edges can have size $\omega(1)$.
- This means that a naïve representation of a suffix tree may take $\omega(m)$ space.
- Useful fact: Each edge in a suffix tree is labeled with a consecutive range of characters from w.
- Trick: Represent each edge labeled with a string α as a pair of integers [start, end] representing where in the string α appears.

Suffix Tree Representations

nonsense\$ 012345678

Suffix Tree Representations

nonsense\$
012345678

Suffix Tree Representations

Building Suffix Trees

- Using this representation, suffix trees can be constructed using space $\Theta(m)$.
- Claim: There are $\Theta(m)$-time algorithms for building suffix trees.
- These algorithms are not trivial! We'll discuss one of them next time.

Application: Multi-String Matching

String Matching

- Suppose we preprocess a string $\$$ T by building a suffix tree for it.
- Given any pattern string P of length n, we can determine, in time $O(n)$, whether n is a substring of P by looking it up in the suffix tree.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(\mathrm{m})$ time $\$$ preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(m)$ time $\$$ preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

Observation 1: Every occurrence of P in T is a prefix of some suffix of T.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(m)$ time $\$$ preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

Observation 2: Every suffix of $T \$$ beginning with some pattern P appears in the subtree found by searching for P.

String Matching

- Claim: After spending $\mathrm{O}(\mathrm{m})$ time $\$$ preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(\mathrm{m})$ time $\$$ preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(m)$ time preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(m)$ time preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(\mathrm{m})$ time $\$$ preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(\mathrm{m})$ time $\$$ preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(m)$ time preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(m)$ time preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(\mathrm{m})$ time $\$$ preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(\mathrm{m})$ time $\$$ preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(m)$ time preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

String Matching

- Claim: After spending $\mathrm{O}(m)$ time preprocessing T\$, can find all matches of a string P in time $\mathrm{O}(n+z)$, where z is the number of matches.

nonsense\$
012345678

Finding All Matches

- To find all matches of string P, start by searching the tree for P.
- If the search falls off the tree, report no matches.
- Otherwise, let v be the node at which the search stops, or the endpoint of the edge where it stops if it ends in the middle of an edge.
- Do a DFS and report the numbers of all the leaves found in this subtree. The indices reported this way give back all positions at which P occurs.

Finding All Matches

To find all matches of string P, start by searching the tree for P.
If the search falls off the tree, report no matches.
Otherwise, let v be the node at which the search stops, or the endpoint of the edge where it stops if it ends in the middle of an edge.

- Do a DFS and report the numbers of all the leaves found in this subtree. The indices reported this way give back all positions at which P occurs.

Finding All Matches

To find all matches of string P, start by searching the tree for P.
If the search falls off the tree, report no matches.
Otherwise, let v be the node at which the search stops, or the endpoint of the edge where it stops if it ends in the middle of an edge.

- Do a DFS and report the numbers of all the leaves found in this subtree. The indices reported this way give back all positions at which P occurs.

How fast is this step?

Claim: The DFS to find all leaves in the subtree corresponding to prefix P takes time $\mathrm{O}(z)$, where z is the number of matches.
Proof: If the DFS reports z matches, it must have visited z different leaf nodes.
Since each internal node of a suffix tree has at least two children, the total number of internal nodes visited during the DFS is at most $z-1$.
During the DFS, we don't need to actually match the characters on the edges. We just follow the edges, which takes time $O(1)$.
Therefore, the DFS visits at most $O(z)$ nodes and edges and spends $O(1)$ time per node or edge, so the total runtime is $O(z)$. \square

Reverse Aho-Corasick

- Given patterns $P_{1}, \ldots P_{k}$ of total length n, suffix trees can find all matches of those patterns in time $\mathrm{O}(m+n+z)$.
- Search for all matches of each P_{i}; total time across all searches is $\mathrm{O}(n+z)$.
- Acts as a "reverse" Aho-Corasick:
- Aho-Corasick string matching runs in time $\langle\mathrm{O}(n), \mathrm{O}(m+z)\rangle$
- Suffix tree string matching runs in time〈 $\mathrm{O}(m), \mathrm{O}(n+z)$)

Another Application: Longest Repeated Substring

Longest Repeated Substring

- Consider the following problem:

Given a string T, find the longest substring w of T that appears in at least two different positions.

- Applications to computational biology: more than half of the human genome is formed from repeated DNA sequences!

Longest Repeated Substring

nonsense\$
012345678

Longest Repeated Substring

Longest Repeated Substring

Longest Repeated Substring

Longest Repeated Substring

Observation 3: If w is a longest repeated substring, it corresponds to a full path to an internal node.

nonsense\$ 012345678

Longest Repeated Substring

- For each node v in a suffix tree, let $s(v)$ be the string that it corresponds to.
- The string depth of a node v is defined as $|s(v)|$, the length of the string v corresponds to.
- The longest repeated substring in T can be found by finding the internal node in T with the maximum string depth.

Longest Repeated Substring

- Here's an $O(m)$-time algorithm for solving the longest repeated substring problem:
- Build the suffix tree for T in time $\mathrm{O}(m)$.
- Run a DFS over T, tracking the string depth as you go, to find the internal node of maximum string depth.
- Recover the string T corresponds to.
- Good exercise: How might you find the longest substring of T that repeats at least k times?

Challenge Problem:

Solve this problem in linear time without using suffix trees (or suffix arrays).

Time-Out for Announcements!

Problem Set One

- Problem Set One was due today at 3:00PM.
- Want to use your late days? Submit by Saturday at 3:00PM.
- Solutions will go out on Tuesday.
- Problem Set Two goes out on Tuesday have a good weekend!

Talk Today

- Jon Kleinberg (who authored Algorithm Design along with Eva Tardos) is giving a talk today at $4: 15 \mathrm{PM}$ in the Mackenzie Boardroom.
- Focus is on algorithms for solving problems with agents who don't plan rationally.
- Sounds really fun - hopefully we'll finish with a little buffer time. ©

Back to CS166!

Generalized Suffix Trees

Suffix Trees for Multiple Strings

- Suffix trees store information about a single string and exports a huge amount of structural information about that string.
- However, many applications require information about the structure of multiple different strings.

Generalized Suffix Trees

- A generalized suffix tree for T_{1}, \ldots, T_{k} is a Patricia trie of all suffixes of $T_{1} \$_{1}, \ldots, T_{k} \$_{k}$. Each T_{i} has a unique end marker.
- Leaves are tagged with $\mathbf{i}: \mathbf{j}$, meaning " j th suffix of string T_{i} "

Generalized Suffix Trees

- Claim: A generalized suffix tree for strings T_{1}, \ldots, T_{k} of total length m can be constructed in time $\Theta(m)$.
- Use a two-phase algorithm:
- Construct a suffix tree for the single string $T_{1} \$_{1} T_{2} \$_{2} \ldots T_{k} \$_{k}$ in time $\Theta(m)$.
- This will end up with some invalid suffixes.
- Do a DFS over the suffix tree and prune the invalid suffixes.
- Runs in time $\mathrm{O}(m)$ if implemented intelligently.

Applications of Generalized Suffix Trees

Longest Common Substring

- Consider the following problem:

Given two strings T_{1} and T_{2}, find the longest string w that is a substring of both T_{1} and T_{2}.

- Can solve in time $O\left(\left|T_{1}\right| \cdot\left|T_{2}\right|\right)$ using dynamic programming.
- Can we do better?

Longest Common Substring

Longest Common Substring

Observation: Any common substring of T_{1} and T_{2} will be a prefix of a suffix of T_{1} and a prefix of a suffix of T_{2}.
se\$ 2 567

Longest Common Substring

nonsense\$1 012345678
offense\$2 01234567

Longest Common Substring

- Build a generalized suffix tree for T_{1} and T_{2} in time $\mathrm{O}(m)$.
- Annotate each internal node in the tree with whether that node has at least one leaf node from each of T_{1} and T_{2}.
- Takes time O(m) using DFS.
- Run a DFS over the tree to find the marked node with the highest string depth.
- Takes time O(m) using DFS
- Overall time: O(m).

Longest Common Extensions

Longest Common Extensions

- Given two strings T_{1} and T_{2} and start positions i and j, the longest common extension of T_{1} and T_{2}, starting at positions i and j, is the length of the longest string w that appears at position i in T_{1} and position j in T_{2}.
- We'll denote this value by $\operatorname{LCE}_{T_{1}, T_{2}}(i, j)$.
- Typically, T_{1} and T_{2} are fixed and multiple (i, j) queries are specified.

$$
\begin{array}{l|l|l|l|l|l}
n & 0 & n & s & e & n \\
\hline
\end{array}
$$

Longest Common Extensions

- Given two strings T_{1} and T_{2} and start positions i and j, the longest common extension of T_{1} and T_{2}, starting at positions i and j, is the length of the longest string w that appears at position i in T_{1} and position j in T_{2}.
- We'll denote this value by $\operatorname{LCE}_{T_{1}, T_{2}}(i, j)$.
- Typically, T_{1} and T_{2} are fixed and multiple (i, j) queries are specified.

Longest Common Extensions

- Given two strings T_{1} and T_{2} and start positions i and j, the longest common extension of T_{1} and T_{2}, starting at positions i and j, is the length of the longest string w that appears at position i in T_{1} and position j in T_{2}.
- We'll denote this value by $\operatorname{LCE}_{T_{1}, T_{2}}(i, j)$.
- Typically, T_{1} and T_{2} are fixed and multiple (i, j) queries are specified.

Longest Common Extensions

- Given two strings T_{1} and T_{2} and start positions i and j, the longest common extension of T_{1} and T_{2}, starting at positions i and j, is the length of the longest string w that appears at position i in T_{1} and position j in T_{2}.
- We'll denote this value by $\operatorname{LCE}_{T_{1}, T_{2}}(i, j)$.
- Typically, T_{1} and T_{2} are fixed and multiple (i, j) queries are specified.

Longest Common Extensions

- Given two strings T_{1} and T_{2} and start positions i and j, the longest common extension of T_{1} and T_{2}, starting at positions i and j, is the length of the longest string w that appears at position i in T_{1} and position j in T_{2}.
- We'll denote this value by $\operatorname{LCE}_{T_{1}, T_{2}}(i, j)$.
- Typically, T_{1} and T_{2} are fixed and multiple (i, j) queries are specified.

Longest Common Extensions

- Given two strings T_{1} and T_{2} and start positions i and j, the longest common extension of T_{1} and T_{2}, starting at positions i and j, is the length of the longest string w that appears at position i in T_{1} and position j in T_{2}.
- We'll denote this value by $\operatorname{LCE}_{T_{1}, T_{2}}(i, j)$.
- Typically, T_{1} and T_{2} are fixed and multiple (i, j) queries are specified.

Longest Common Extensions

- Observation: $\operatorname{LCE}_{T_{1}, T_{2}}(i, j)$ is the length of the longest common prefix of the suffixes of T_{1} and T_{2} starting at positions i and j.

$$
\begin{array}{l|l|l|l|l|l}
\hline n & 0 & n & s & e & n \\
\hline
\end{array}
$$

- The generalized suffix tree of T_{1} and T_{2} makes it easy to query for these suffixes and stores information about their common prefixes.

Longest Common Extensions

- Observation: $\operatorname{LCE}_{T_{1}, T_{2}}(i, j)$ is the length of the longest common prefix of the suffixes of T_{1} and T_{2} starting at positions i and j.

n s	e	n	e
	n	s	e

- The generalized suffix tree of T_{1} and T_{2} makes it easy to query for these suffixes and stores information about their common prefixes.

Longest Common Extensions

- Observation: $\operatorname{LCE}_{T_{1}, T_{2}}(i, j)$ is the length of the longest common prefix of the suffixes of T_{1} and T_{2} starting at positions i and j.

> | n | s | n |
| :--- | :--- | :--- |
| n | s | e |

- The generalized suffix tree of T_{1} and T_{2} makes it easy to query for these suffixes and stores information about their common prefixes.

Longest Common Extensions

- Observation: $\operatorname{LCE}_{T_{1}, T_{2}}(i, j)$ is the length of the longest common prefix of the suffixes of T_{1} and T_{2} starting at positions i and j.

nsense
 n Se

- The generalized suffix tree of T_{1} and T_{2} makes it easy to query for these suffixes and stores information about their common prefixes.

An Observation

nonsense\$1 012345678
offense\$2 01234567

An Observation

An Observation

nonsense\$1

 012345678offense\$2 01234567

An Observation

nonsense\$1

 012345678offense\$2 01234567

An Observation

nonsense\$1 012345678
offense\$2 01234567

An Observation

An Observation

nonsense\$1 012345678
offense\$2 01234567

An Observation

nonsense\$1 012345678
offense\$2 01234567

An Observation

- Notation: Let $S[i:]$ denote the suffix of string S starting at position i.
- Claim: $\operatorname{LCE}_{T_{1}, T_{2}}(i, j)$ is given by the string label of the LCA of $T_{1}[i:]$ and $T_{2}[j:]$ in the generalized suffix tree of T_{1} and T_{2}.
- And hey... don't we have a way of computing these in time $O(1)$?

Computing LCE's

- Given two strings T_{1} and T_{2}, construct a generalized suffix tree for T_{1} and T_{2} in time $O(m)$.
- Construct an LCA data structure for the generalized suffix tree in time $O(m)$.
- Use Fischer-Heun plus an Euler tour of the nodes in the tree.
- Can now query for the node representing the LCE in time $O(1)$.

One Last Detail

nonsense\$1 012345678
offense\$2 01234567

One Last Detail

nonsense\$1 012345678

One Last Detail

nonsense\$1 012345678
offense\$2
01234567

One Last Detail

nonsense\$1 012345678
offense\$2
01234567

One Last Detail

The Overall Construction

- Using an $O(m)$-time DFS, annotate each node in the suffix tree with its string depth.
- To compute LCE:
- Find the leaves corresponding to $T_{1}[i:]$ and $T_{2}[j ;]$.
- Find their LCA; let its string depth be d.
- Report $T_{1}[i: i+d-1]$ or $T_{2}[j ; j+d-1]$.
- Overall, requires $\mathrm{O}(\mathrm{m})$ preprocessing time to support $O(1)$ query time.

An Application: Longest Palindromic Substring

Palindromes

- A palindrome is a string that's the same forwards and backwards.
- A palindromic substring of a string T is a substring of T that's a palindrome.
- Surprisingly, of great importance in computational biology.
(A) C U - (C) C (A)

Palindromes

- A palindrome is a string that's the same forwards and backwards.
- A palindromic substring of a string T is a substring of T that's a palindrome.
- Surprisingly, of great importance in computational biology.

Palindromes

- A palindrome is a string that's the same forwards and backwards.
- A palindromic substring of a string T is a substring of T that's a palindrome.
- Surprisingly, of great importance in computational biology.

Palindromes

- A palindrome is a string that's the same forwards and backwards.
- A palindromic substring of a string T is a substring of T that's a palindrome.
- Surprisingly, of great importance in computational biology.

Longest Palindromic Substring

- The longest palindromic substring problem is the following:

Given a string T, find the longest substring of T that is a palindrome.

- How might we solve this problem?

An Initial Idea

- To deal with the issues of strings going forwards and backwards, start off by forming T and T^{R}, the reverse of T.
- Initial Idea: Find the longest common substring of T and T^{R}.
- Unfortunately, this doesn't work:
- $T=$ abcdabaadbcabb
- $T^{\mathrm{R}}=$ bbabcdaabadcba
- Longest common substring: abcda
- Longest palindromic substring: aa

Palindrome Centers and Radii

- For now, let's focus on even-length palindromes.
- An even-length palindrome substring $w w^{R}$ of a string T has a center and radius:
- Center: The spot between the duplicated center character.
- Radius: The length of the string going out in each direction.
- Idea: For each center, find the largest corresponding radius.

Palindrome Centers and Radii

abbaccabccb

Palindrome Centers and Radii

$a b b a c c a b c c b$

Palindrome Centers and Radii

$$
a b b a c c a b c c b
$$

Palindrome Centers and Radii

$a b b a c c a b c c b$

Palindrome Centers and Radii

abbaccabcb

Palindrome Centers and Radii

Palindrome Centers and Radii

Palindrome Centers and Radii

Palindrome Centers and Radii

w abbaccabcb
$w^{R} \quad$ b c c baccablablal

Palindrome Centers and Radii

Palindrome Centers and Radii

Palindrome Centers and Radii

w

abbaccabcb

$w^{R} \quad$ b c c baccabla

Palindrome Centers and Radii

An Algorithm

- In time $O(m)$, construct T^{R}.
- Preprocess T and T^{R} in time $O(m)$ to support LCE queries.
- For each spot between two characters in T, find the longest palindrome centered at that location by executing LCE queries on the corresponding locations in T and T^{R}.
- Each query takes time O(1) if it just reports the length.
- Total time: $\mathrm{O}(\mathrm{m})$.
- Report the longest string found this way.
- Total time: O(m).

Suffix Trees: The Catch

Space Usage

- Suffix trees are memory hogs.
- Suppose $\Sigma=\{A, C, G, T, \$\}$.
- Each internal node needs 15 machine words: for each character, words for the start/end index and a child pointer.

This is still $\mathrm{O}(m)$, but it's a huge hidden constant!

Combating Space Usage

- In 1990, Udi Manber and Gene Myers introduced the suffix array as a spaceefficient alternative to suffix trees.
- Requires one word per character; typically, an extra word is stored as well (details next Tuesday)
- Can't support all operations permitted by suffix trees, but has much better performance.
- Curious? Details are next time!

Summary

- Given a string, it's possible to build a suffix tree for it in time $\Theta(m)$. Suffix trees support
efficient detection of all matching substrings,
efficient detection of duplicated substrings,
efficient detection of common substrings,
efficient detection of common extensions, and a lot more!
- Suffix trees use space $\Theta(m)$, but with a huge hidden constant factor.
- Building suffix trees is hard. We'll see how to do it next time.

Next Time

- Suffix Arrays
- A space-efficient alternative to suffix trees.
- LCP Arrays
- A useful auxiliary data structure for speeding up suffix arrays.
- Constructing Suffix Trees
- How on earth do you build suffix trees in time $\mathrm{O}(\mathrm{m})$?
- Constructing Suffix Arrays
- Start by building suffix arrays in time $\mathrm{O}(m)$...
- Constructing LCP Arrays
- ... and adding in LCP arrays in time $\mathrm{O}(m)$.

