

Suffix Trees

Outline for Today

● Review from Last Time
● A quick refresher on tries.

● Suffix Tries
● A simple data structure for string searching.

● Suffix Trees
● A compact, powerful, and flexible data

structure for string algorithms.

● Generalized Suffix Trees
● An even more flexible data structure.

Review from Last Time

Tries

● A trie is a tree that stores
a collection of strings over
some alphabet Σ.

● Each node corresponds to
a prefix of some string in
the set.

● Tries are sometimes called
prefix trees, since each
node in a trie corresponds
to a prefix of one of the
words in the trie.

a

b

o

u

t

t

e

b

e

d

 e

 d

 g

 e

g

 e

 t

Aho-Corasick String Matching

● The Aho-Corasick string matching algorithm
is an algorithm for finding all occurrences of a
set of strings P₁, …, Pₖ inside a string T.

● Runtime is ⟨O(n), O(m + z)⟩, where
● m = |T|,
● n = |P₁| + … + |Pₖ|, and
● z is the number of matches.

● Great for the case where the patterns are fixed
and the text to search changes.

Genomics Databases

● Many string algorithms these days are
developed for or used extensively in
computational genomics.

● Typically, we have a huge database with many
very large strings (genomes) that we'll
preprocess to speed up future operations.

● Common problem: given a fixed string T to
search and changing patterns P₁, …, Pₖ, find all
matches of those patterns in T.

● Question: Can we instead preprocess T to
make it easy to search for variable patterns?

Suffix Tries

Substrings, Prefixes, and Suffixes

● Useful Fact 1: Given a trie storing a set of
strings S₁, S₂, …, Sₖ, it's possible to
determine, in time O(|Q|), whether a query
string Q is a prefix of any Sᵢ.

● Useful Fact 2: A string P is a substring of
a string T if and only if T is a prefix of
some suffix of P.
● Specifically, write T = αPω; then T is a prefix

of the suffix Pω of T.

a

o a r s

tr

s o a r

Substrings, Prefixes, and Suffixes

● Useful Fact 1: Given a trie storing a set of
strings S₁, S₂, …, Sₖ, it's possible to
determine, in time O(|Q|), whether a query
string Q is a prefix of any Sᵢ.

● Useful Fact 2: A string P is a substring of
a string T if and only if P is a prefix of
some suffix of T.
● Specifically, write T = αPω; then T is a prefix

of the suffix Pω of T.

α P ω

T

Suffix Tries

● A suffix trie of T is a trie
of all the suffixes of T.

● Given any pattern string
P, we can check in time
O(|P|) whether P is a
substring of T by seeing
whether P is a prefix in
T's suffix trie.

● (Because that means
that P is a prefix of a
suffix of T.)

e

n

s

e

 n

e

s

n

n

o

s

e

e

n

s

e

s

o

n

e

n

s

e

s

 s

e

n

s

e

nonsense

Suffix Tries

● A suffix trie of T is a trie
of all the suffixes of T.

● More generally, given
any nonempty patterns
P₁, …, Pₖ of total length
n, we can detect how
many of those patterns
are substrings of T in
time O(n).

● (Finding all matches is a
bit trickier; more on that
later.)

e

n

s

e

 n

e

s

n

n

o

s

e

e

n

s

e

s

o

n

e

n

s

e

s

 s

e

n

s

e

nonsense

A Typical Transform

● Typically, we
append some new
character $ ∉ Σ to
the end of T, then
construct the trie
for T$.

● Leaf nodes
correspond to
suffixes.

● Internal nodes
correspond to
prefixes of those
suffixes.

 e

n

s

e

n

e

s

n

n

o

s

e

e

n

s

e

s

o

n

e

n

s

e

s

 s

e

n

s

e

$

$

$

$

$

$

$

$

$

nonsense$

Constructing Suffix Tries

● Once we build a single suffix trie for
string T, we can efficiently detect
whether patterns match in time O(n).

● Question: How long does it take to
construct a suffix trie?

● Problem: There's an Ω(m2) lower bound
on the worst-case complexity of any
algorithm for building suffix tries.

ambm$

a

a

a

…

b

…

$

b

b b

…

$

b

b

…

$

b

b

…

$

b

b

b

b

A Degenerate Case

b

…

$

b

b
 $

 $

 $

There are Θ(m)
copies of nodes

chained together as
bm$.

Space usage: Ω(m2).

There are Θ(m)
copies of nodes

chained together as
bm$.

Space usage: Ω(m2).

Patricia Tries

● A “silly” node in a
trie is a node that
has exactly one
child.

● A Patricia trie (or
radix trie) is a trie
where all “silly”
nodes are merged
with their parents.

n

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

Suffix Trees

n

8

7

4

0

5

2

1
3

6

nonsense$
012345678

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● A suffix tree for
a string T is an
Patricia trie of T$
where each leaf is
labeled with the
index where the
corresponding
suffix starts in T$.

Properties of Suffix Trees

● If |T| = m, the
suffix tree has
exactly m + 1
leaf nodes.

● For any T ≠ ε, all
internal nodes in
the suffix tree
have at least two
children.

● Number of nodes
in a suffix tree is
Θ(m).

n

8

7

4

0

5

2

1
3

6

nonsense$
012345678

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

Suffix Tree Representations

● Suffix trees may have Θ(m) nodes, but the
labels on the edges can have size ω(1).

● This means that a naïve representation of a
suffix tree may take ω(m) space.

● Useful fact: Each edge in a suffix tree is
labeled with a consecutive range of characters
from w.

● Trick: Represent each edge labeled with a
string α as a pair of integers [start, end]
representing where in the string α appears.

Suffix Tree Representations

7

4

0

5

2

3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$ $ n
s
e
$

nonsense$
012345678

n
 s
 e

$ e

8

1

 o
 n
 s
 e
 n
 s
 e
 $8

8
4
4

0
0

1
8

start

end

child

$ e n o
3
4

s

Building Suffix Trees

● Using this representation, suffix trees
can be constructed using space Θ(m).

● Claim: There are Θ(m)-time algorithms
for building suffix trees.

● These algorithms are not trivial! We'll
discuss one of them next time.

Application: Multi-String Matching

String Matching

● Suppose we
preprocess a string
T by building a
suffix tree for it.

● Given any pattern
string P of length n,
we can determine,
in time O(n),
whether n is a
substring of P by
looking it up in the
suffix tree.

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

String Matching

● Claim: After
spending O(m) time
preprocessing T$,
can find all
matches of a string
P in time O(n + z),
where z is the
number of matches.

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

Observation 1: Every
occurrence of P in T is a
prefix of some suffix of T.

Observation 1: Every
occurrence of P in T is a
prefix of some suffix of T.

String Matching

● Claim: After
spending O(m) time
preprocessing T$,
can find all
matches of a string
P in time O(n + z),
where z is the
number of matches.

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

Observation 2: Every
suffix of T$ beginning
with some pattern P

appears in the subtree
found by searching for P.

Observation 2: Every
suffix of T$ beginning
with some pattern P

appears in the subtree
found by searching for P.

String Matching

● Claim: After
spending O(m) time
preprocessing T$,
can find all
matches of a string
P in time O(n + z),
where z is the
number of matches.

n

8

7

4

0

5

2

1

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

3

6

n
s
e
$

$

String Matching

● Claim: After
spending O(m) time
preprocessing T$,
can find all
matches of a string
P in time O(n + z),
where z is the
number of matches.

n

8

7

4

1
3

6

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

0

5

2

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

String Matching

● Claim: After
spending O(m) time
preprocessing T$,
can find all
matches of a string
P in time O(n + z),
where z is the
number of matches.

n

8

7

4

0

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

2

n
s
e
$

$

5

Finding All Matches

● To find all matches of string P, start by searching
the tree for P.

● If the search falls off the tree, report no matches.
● Otherwise, let v be the node at which the search

stops, or the endpoint of the edge where it stops
if it ends in the middle of an edge.

● Do a DFS and report the numbers of all the leaves
found in this subtree. The indices reported this
way give back all positions at which P occurs.

Finding All Matches

To find all matches of string P, start by searching
the tree for P.

If the search falls off the tree, report no matches.

Otherwise, let v be the node at which the search
stops, or the endpoint of the edge where it stops
if it ends in the middle of an edge.

● Do a DFS and report the numbers of all the leaves
found in this subtree. The indices reported this
way give back all positions at which P occurs.

How fast is
this step?

How fast is
this step?

Claim: The DFS to find all leaves in the subtree
corresponding to prefix P takes time O(z),
where z is the number of matches.

Proof: If the DFS reports z matches, it must have
visited z different leaf nodes.

Since each internal node of a suffix tree has at
least two children, the total number of internal
nodes visited during the DFS is at most z – 1.

During the DFS, we don't need to actually
match the characters on the edges. We just
follow the edges, which takes time O(1).

Therefore, the DFS visits at most O(z) nodes
and edges and spends O(1) time per node or
edge, so the total runtime is O(z). ■

Reverse Aho-Corasick

● Given patterns P₁, … Pₖ of total length n,
suffix trees can find all matches of those
patterns in time O(m + n + z).
● Search for all matches of each Pᵢ; total time

across all searches is O(n + z).

● Acts as a “reverse” Aho-Corasick:
● Aho-Corasick string matching runs in time

⟨O(n), O(m+z)⟩
● Suffix tree string matching runs in time

⟨O(m), O(n+z)⟩

Another Application:
Longest Repeated Substring

Longest Repeated Substring

● Consider the following problem:

Given a string T, find the longest
substring w of T that appears in at least

two different positions.
● Applications to computational biology:

more than half of the human genome is
formed from repeated DNA sequences!

Longest Repeated Substring

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

Observation 1: If w is
a repeated substring of
T, it must be a prefix of
at least two different

suffixes.

Observation 1: If w is
a repeated substring of
T, it must be a prefix of
at least two different

suffixes.

Longest Repeated Substring

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

Observation 2: If w is
a repeated substring of
T, it must correspond
to a prefix of a path to

an internal node.

Observation 2: If w is
a repeated substring of
T, it must correspond
to a prefix of a path to

an internal node.

Longest Repeated Substring

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

Observation 3: If w is a
longest repeated

substring, it corresponds
to a full path to an

internal node.

Observation 3: If w is a
longest repeated

substring, it corresponds
to a full path to an

internal node.

Longest Repeated Substring

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

$

$ n
s
e
$

nonsense$
012345678

n

s
e

 s
 e

e

Observation 3: If w is a
longest repeated

substring, it corresponds
to a full path to an

internal node.

Observation 3: If w is a
longest repeated

substring, it corresponds
to a full path to an

internal node.

Longest Repeated Substring

● For each node v in a suffix tree, let s(v)
be the string that it corresponds to.

● The string depth of a node v is defined
as |s(v)|, the length of the string v
corresponds to.

● The longest repeated substring in T can
be found by finding the internal node in T
with the maximum string depth.

Longest Repeated Substring

● Here's an O(m)-time algorithm for solving
the longest repeated substring problem:
● Build the suffix tree for T in time O(m).
● Run a DFS over T, tracking the string depth

as you go, to find the internal node of
maximum string depth.

● Recover the string T corresponds to.

● Good exercise: How might you find the
longest substring of T that repeats at
least k times?

Challenge Problem:

Solve this problem in linear time without
using suffix trees (or suffix arrays).

Time-Out for Announcements!

Problem Set One

● Problem Set One was due today at
3:00PM.
● Want to use your late days? Submit by

Saturday at 3:00PM.

● Solutions will go out on Tuesday.
● Problem Set Two goes out on Tuesday –

have a good weekend!

Talk Today

● Jon Kleinberg (who authored Algorithm
Design along with Eva Tardos) is giving a
talk today at 4:15PM in the Mackenzie
Boardroom.

● Focus is on algorithms for solving problems
with agents who don't plan rationally.

● Sounds really fun – hopefully we'll finish
with a little buffer time. ☺

Back to CS166!

Generalized Suffix Trees

Suffix Trees for Multiple Strings

● Suffix trees store information about a
single string and exports a huge amount
of structural information about that
string.

● However, many applications require
information about the structure of
multiple different strings.

Generalized Suffix Trees

● A generalized suffix tree for T₁, …, Tₖ is a Patricia trie of
all suffixes of T₁$₁, …, Tₖ$ₖ. Each Tᵢ has a unique end marker.

● Leaves are tagged with i:j, meaning “jth suffix of string Tᵢ”

1:8

1:7

1:0

1:5

1:2 1:1

1:3

1:6

o
n
s
e
n
s
e
$₁

s
e

 n
 s
 e
 $₁

$₁

 n
 s
 e
 $₁

$₁

 o s
 e

$₁ e

$₁ n
 s
 e2:7

$₂

2:6

$₂

1:4 2:3

$₁ $₂

2:1
2:2

f
e
n
s
e
$₂

e
n
s
e
$₂

f

2:4

$₂

 n

2:0

n
s
e
n
s
e
$₁

f
f
e
n
s
e
$₂

2:5

$₂

nonsense$₁
012345678₁

nonsense$₁
012345678₁

offense$₂
01234567₂

offense$₂
01234567₂

Generalized Suffix Trees

● Claim: A generalized suffix tree for
strings T₁, …, Tₖ of total length m can be
constructed in time Θ(m).

● Use a two-phase algorithm:
● Construct a suffix tree for the single string

T₁$₁T₂$₂ … Tₖ$ₖ in time Θ(m).
– This will end up with some invalid suffixes.

● Do a DFS over the suffix tree and prune the
invalid suffixes.
– Runs in time O(m) if implemented intelligently.

Applications of Generalized Suffix Trees

Longest Common Substring

● Consider the following problem:

Given two strings T₁ and T₂, find the
longest string w that is a substring of

both T₁ and T₂.
● Can solve in time O(|T₁| · |T₂|) using

dynamic programming.
● Can we do better?

1:8

1:7

1:0

1:5

1:2 1:1

1:3

1:6

o
n
s
e
n
s
e
$₁

s
e

 n
 s
 e
 $₁

$₁

 n
 s
 e
 $₁

$₁

 o s
 e

$₁ e

$₁ n
 s
 e2:7

$₂

2:6

$₂

1:4 2:3

$₁ $₂

2:1
2:2

f
e
n
s
e
$₂

e
n
s
e
$₂

f

2:4

$₂

 n

2:0

n
s
e
n
s
e
$₁

f
f
e
n
s
e
$₂

2:5

$₂

nonsense$₁
012345678₁

nonsense$₁
012345678₁

offense$₂
01234567₂

offense$₂
01234567₂

Longest Common Substring

Observation: Any common
substring of T₁ and T₂ will be
a prefix of a suffix of T₁ and
a prefix of a suffix of T₂.

Observation: Any common
substring of T₁ and T₂ will be
a prefix of a suffix of T₁ and
a prefix of a suffix of T₂.

Longest Common Substring

● Build a generalized suffix tree for T₁ and T₂
in time O(m).

● Annotate each internal node in the tree with
whether that node has at least one leaf node
from each of T₁ and T₂.
● Takes time O(m) using DFS.

● Run a DFS over the tree to find the marked
node with the highest string depth.
● Takes time O(m) using DFS

● Overall time: O(m).

Longest Common Extensions

Longest Common Extensions

● Given two strings T₁ and T₂ and start positions i
and j, the longest common extension of T₁ and
T₂, starting at positions i and j, is the length of the
longest string w that appears at position i in T₁ and
position j in T₂.

● We'll denote this value by LCET₁, T₂(i, j).

● Typically, T₁ and T₂ are fixed and multiple (i, j)
queries are specified.

n o n s e n s e
e n s eo f f

Longest Common Extensions

● Observation: LCET₁, T₂(i, j) is the length of the
longest common prefix of the suffixes of T₁ and
T₂ starting at positions i and j.

● The generalized suffix tree of T₁ and T₂ makes
it easy to query for these suffixes and stores
information about their common prefixes.

n o n s e n s e
e n s eo f f

Longest Common Extensions

● Observation: LCET₁, T₂(i, j) is the length of the
longest common prefix of the suffixes of T₁ and
T₂ starting at positions i and j.

● The generalized suffix tree of T₁ and T₂ makes
it easy to query for these suffixes and stores
information about their common prefixes.

n s e n s e
n s e

1:6

$₁

 o n

An Observation

1:8

1:7

1:0

1:5

1:2 1:1

o
n
s
e
n
s
e
$₁

s
e

 n
 s
 e
 $₁

$₁

$₁ e

$₁ n
 s
 e2:7

$₂

2:6

$₂

1:4 2:3

$₁ $₂

2:1
2:2

f
e
n
s
e
$₂

e
n
s
e
$₂

f

2:4

$₂

2:0

n
s
e
n
s
e
$₁

f
f
e
n
s
e
$₂

nonsense$₁
012345678₁

nonsense$₁
012345678₁

offense$₂
01234567₂

offense$₂
01234567₂

1:3

 n
 s
 e
 $₁2:5

$₂

 s
 e

1:5

1:2

 n
 s
 e
 $₁

$₁

An Observation

1:8

1:7

1:1

1:3

1:6

 n
 s
 e
 $₁

$₁

 o s
 e

$₁ e

$₁ n
 s
 e2:7

$₂

2:6

$₂

1:4 2:3

$₁ $₂

2:1
2:2

f
e
n
s
e
$₂

e
n
s
e
$₂

f

2:0

n
s
e
n
s
e
$₁

f
f
e
n
s
e
$₂

2:5

$₂

nonsense$₁
012345678₁

nonsense$₁
012345678₁

offense$₂
01234567₂

offense$₂
01234567₂

1:0

o
n
s
e
n
s
e
$₁

s
e

2:4

$₂

 n

An Observation

● Notation: Let S[i:] denote the suffix of
string S starting at position i.

● Claim: LCET₁, T₂(i, j) is given by the string
label of the LCA of T₁[i:] and T₂[j:] in the
generalized suffix tree of T₁ and T₂.

● And hey... don't we have a way of
computing these in time O(1)?

Computing LCE's

● Given two strings T₁ and T₂, construct a
generalized suffix tree for T₁ and T₂ in
time O(m).

● Construct an LCA data structure for the
generalized suffix tree in time O(m).
● Use Fischer-Heun plus an Euler tour of the

nodes in the tree.

● Can now query for the node representing
the LCE in time O(1).

1:5

1:2

 n
 s
 e
 $₁

$₁

One Last Detail

1:8

1:7

1:1

1:3

1:6

 n
 s
 e
 $₁

$₁

 o s
 e

$₁ e

$₁ n
 s
 e2:7

$₂

2:6

$₂

1:4 2:3

$₁ $₂

2:1
2:2

f
e
n
s
e
$₂

e
n
s
e
$₂

f

2:0

n
s
e
n
s
e
$₁

f
f
e
n
s
e
$₂

2:5

$₂

nonsense$₁
012345678₁

nonsense$₁
012345678₁

1:0

o
n
s
e
n
s
e
$₁

s
e

2:4

$₂

 n

offense$₂
01234567₂

offense$₂
01234567₂

What string
does this node
correspond to?

What string
does this node
correspond to?

The Overall Construction

● Using an O(m)-time DFS, annotate each
node in the suffix tree with its string
depth.

● To compute LCE:
● Find the leaves corresponding to T₁[i:] and

T₂[j:].
● Find their LCA; let its string depth be d.
● Report T₁[i:i + d – 1] or T₂[j:j + d – 1].

● Overall, requires O(m) preprocessing
time to support O(1) query time.

An Application: Longest Palindromic
Substring

Palindromes

● A palindrome is a string that's the same
forwards and backwards.

● A palindromic substring of a string T is
a substring of T that's a palindrome.

● Surprisingly, of great importance in
computational biology.

A C U G

U G A C

Longest Palindromic Substring

● The longest palindromic substring
problem is the following:

Given a string T, find the longest
substring of T that is a palindrome.

● How might we solve this problem?

An Initial Idea

● To deal with the issues of strings going
forwards and backwards, start off by
forming T and TR, the reverse of T.

● Initial Idea: Find the longest common
substring of T and TR.

● Unfortunately, this doesn't work:
● T = abcdabaadbcabb
● TR = bbabcdaabadcba
● Longest common substring: abcda
● Longest palindromic substring: aa

Palindrome Centers and Radii

● For now, let's focus on even-length
palindromes.

● An even-length palindrome substring wwR of a
string T has a center and radius:
● Center: The spot between the duplicated center

character.
● Radius: The length of the string going out in

each direction.

● Idea: For each center, find the largest
corresponding radius.

Palindrome Centers and Radii

a b b a c ac b c c b

a b b aca cbccb

w

wR

An Algorithm

● In time O(m), construct TR.
● Preprocess T and TR in time O(m) to support LCE

queries.
● For each spot between two characters in T, find

the longest palindrome centered at that location
by executing LCE queries on the corresponding
locations in T and TR.
● Each query takes time O(1) if it just reports the

length.
● Total time: O(m).

● Report the longest string found this way.
● Total time: O(m).

Suffix Trees: The Catch

Space Usage

● Suffix trees are memory hogs.
● Suppose Σ = {A, C, G, T, $}.
● Each internal node needs 15 machine words: for

each character, words for the start/end index and
a child pointer.

This is still O(m), but it's a huge hidden constant!

8
8

4
4

0
0

1
8

start

end

child

A C T G
3
4

$

Combating Space Usage

● In 1990, Udi Manber and Gene Myers
introduced the suffix array as a space-
efficient alternative to suffix trees.

● Requires one word per character; typically, an
extra word is stored as well (details next
Tuesday)

● Can't support all operations permitted by
suffix trees, but has much better performance.

● Curious? Details are next time!

Summary

● Given a string, it's possible to build a suffix tree
for it in time Θ(m). Suffix trees support

efficient detection of all matching substrings,

efficient detection of duplicated substrings,

efficient detection of common substrings,

efficient detection of common extensions,

and a lot more!
● Suffix trees use space Θ(m), but with a huge

hidden constant factor.
● Building suffix trees is hard. We'll see how to do it

next time.

Next Time

● Suffix Arrays
● A space-efficient alternative to suffix trees.

● LCP Arrays
● A useful auxiliary data structure for speeding up suffix

arrays.

● Constructing Suffix Trees
● How on earth do you build suffix trees in time O(m)?

● Constructing Suffix Arrays
● Start by building suffix arrays in time O(m)...

● Constructing LCP Arrays
● … and adding in LCP arrays in time O(m).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

