

Suffix Arrays

Outline for Today

● Review from Last Time
● Quick review of suffix trees.

● Suffix Arrays
● A space-efficient data structure for substring searching.

● LCP Arrays
● A surprisingly helpful auxiliary structure.

● Constructing Suffix Trees
● Converting from suffix arrays to suffix trees.

● Constructing Suffix Arrays
● An extremely clever algorithm for building suffix

arrays.

Review from Last Time

Suffix Trees

n

8

7

4

0

5

2

1
3

6

nonsense$
012345678

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● A suffix tree for
a string T is an
Patricia trie of T$
where each leaf is
labeled with the
index where the
corresponding
suffix starts in T$.

Suffix Trees

● If |T| = m, the
suffix tree has
exactly m + 1
leaf nodes.

● For any T ≠ ε, all
internal nodes in
the suffix tree
have at least two
children.

● Number of nodes
in a suffix tree is
Θ(m).

n

8

7

4

0

5

2

1
3

6

nonsense$
012345678

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

Space Usage

● Suffix trees are memory hogs.
● Suppose Σ = {A, C, G, T, $}.
● Each internal node needs 15 machine

words: for each character, we need three
words for the start/end index of the label
and for a child pointer.

● This is still O(m), but it's a huge hidden
constant.

Suffix Arrays

Suffix Arrays

● A suffix array for
a string T is an
array of the
suffixes of T$,
stored in sorted
order.

● By convention, $
precedes all other
characters.

nonsense$

$
e$
ense$

nse$
nsense$
onsense$
se$
sense$

8
7
4
0
5
2
1
6
3

Representing Suffix Arrays

● Suffix arrays are
typically represented
implicitly by just
storing the indices of
the suffixes in sorted
order rather than the
suffixes themselves.

● Space required: Θ(m).
● More precisely, space

for T$, plus one extra
word for each
character. nonsense$

8
7
4
0
5
2
1
6
3

Searching a Suffix Array

● Recall: P is a
substring of T iff it's a
prefix of a suffix of T.

● All matches of P in T
have a common
prefix, so they'll be
stored consecutively.

● Can find all matches
of P in T by doing a
binary search over
the suffix array.

nonsense$

$
e$
ense$

nse$
nsense$
onsense$
se$
sense$

8
7
4
0
5
2
1
6
3

Analyzing the Runtime

● The binary search will require O(log m)
probes into the suffix array.

● Each comparison takes time O(n): have to
compare P against the current suffix.

● Time for binary searching: O(n log m).
● Time to report all matches after that point:

O(z).
● Total time: O(n log m + z).

Why the Slowdown?

A Loss of Structure

● Many algorithms on suffix trees involve
looking for internal nodes with various
properties:
● Longest repeated substring: internal node

with largest string depth.
● Longest common extension: lowest common

ancestor of two nodes.

● Because suffix arrays do not store the
tree structure, we lose access to this
information.

Suffix Trees and Suffix Arrays

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

nonsense$

$
e$
ense$

nse$
nsense$
onsense$
se$
sense$

8
7
4
0
5
2
1
6
3

Nifty Fact: The suffix array can
be constructed from an ordered

DFS over a suffix tree!

Nifty Fact: The suffix array can
be constructed from an ordered

DFS over a suffix tree!

Suffix Trees and Suffix Arrays

n

8

7

4

1
3

6

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

nonsense$

$
e$
ense$

nse$
nsense$
onsense$
se$
sense$

8
7
4
0
5
2
1
6
30

5

2

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

Suffix Trees and Suffix Arrays

n

8

7

4

0

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

nonsense$

$
e$
ense$

nse$
nsense$
onsense$
se$
sense$

8
7
4
0
5
2
1
6
3

5

2

n
s
e
$

$

Nifty Fact: Adjacent strings with
a common prefix correspond to

subtrees in the suffix tree.

Nifty Fact: Adjacent strings with
a common prefix correspond to

subtrees in the suffix tree.

Longest Common Prefixes

● Given two strings x and y, the longest
common prefix or (LCP) of x and y is
the longest prefix of x that is also a prefix
of y.

● The LCP of x and y is denoted lcp(x, y).
● LCP information is fundamentally

important for suffix arrays. With it, we
can implicitly recover much of the
structure present in suffix trees.

Suffix Trees and Suffix Arrays

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

nonsense$

$
e$
ense$

nse$
nsense$
onsense$
se$
sense$

8
7
4
0
5
2
1
6
3

Nifty Fact: The lowest common
ancestor of suffixes x and y has
string label given by lcp(x, y).

Nifty Fact: The lowest common
ancestor of suffixes x and y has
string label given by lcp(x, y).

Computing LCP Information

● Claim: There is an O(m)-time algorithm
for computing LCP information on a
suffix array.

● Let's see how it works.

Pairwise LCP

● Fact: There is an
algorithm (due to Kasai
et al.) that constructs,
in time O(m), an array
of the LCPs of adjacent
suffix array entries.

● The algorithm isn't that
complex, but the
correctness argument
is a bit nontrivial.

nonsense$

$
e$
ense$

nse$
nsense$
onsense$
se$
sense$

8
7
4
0
5
2
1
6
3

0
1
0
1
3
0
0
2

Pairwise LCP

● Some notation:
● SA[i] is the ith suffix

in the suffix array.
● H[i] is the value of

lcp(SA[i], SA[i + 1])
nonsense$

$
e$
ense$

nse$
nsense$
onsense$
se$
sense$

8
7
4
0
5
2
1
6
3

0
1
0
1
3
0
0
2

Claim: For any 0 < i < j < m:

lcp(SA[i], SA[j]) = RMQH(i, j – 1)

Claim: For any 0 < i < j < m:

lcp(SA[i], SA[j]) = RMQH(i, j – 1)

Computing LCPs

● To preprocess a suffix array to support O(1)
LCP queries:
● Use Kasai's O(m)-time algorithm to build the LCP

array.
● Build an RMQ structure over that array in time

O(m) using Fischer-Heun.
● Use the precomputed RMQ structure to answer LCP

queries over ranges.

● Requires O(m) preprocessing time and only
O(1) query time.

Searching a Suffix Array

● Recall: Can search a suffix array of T for all
matches of a pattern P in time O(n log m + z).

● If we've done O(m) preprocessing to build the
LCP information, we can speed this up.

Searching a Suffix Array

● Intuitively, simulate doing a binary search of the
leaves of a suffix tree, remembering the deepest
subtree you've matched so far.

● At each point, if the binary search probes a leaf
outside of the current subtree, skip it and
continue the binary search in the direction of the
current subtree.

● To implement this on an actual suffix array, we
use LCP information to implicitly keep track of
where the bounds on the current subtree are.

Searching a Suffix Array

● Claim: The algorithm we just sketched
runs in time O(n + log m + z).

● Proof idea: The O(log m) term comes
from the binary search over the leaves of
the suffix tree. The O(n) term
corresponds to descending deeper into
the suffix tree one character at a time.
Finally, we have to spend O(z) time
reporting matches.

Longest Common Extensions

Another Application: LCE

● Recall: The longest common extension of two
strings T₁ and T₂ at positions i and j, denoted
LCET₁, T₂ (i, j), is the length of the longest
substring of T₁ and of T₂ that begins at position
i in T₁ and position j in T₂.

● Using generalized suffix trees and LCA, we
have an ⟨O(m), O(1)⟩-time solution to LCE.

● Claim: There's a much easier solution using
LCP.

a p p e n d

p e n p a l

Suffix Arrays and LCE
● Recall: LCET₁, T₂(i, j) is the length

of the longest common prefix of
the suffix of T₁ starting at
position i and the suffix of T₂
starting at position j.

● Suppose we construct a
generalized suffix array for T₁
and T₂ augmented with LCP
information. We can then use
LCP to answer LCE queries in
time O(1).

● We'll need a table mapping
suffixes to their indices in the
table to do this, but that's not
that hard to set up.

nonsense$₁

$₁

e$₁

ense$₁

nse$₁

nsense$₁
onsense$₁
se$₁

sense$₁

8

7

4

0
5

2
1
6

3

ense$₂

tense$₂

nse$₂

se$₂

0

1

2

3

$₂5

e$₂4

1

1

1

1
1

1
1
1

1
2

2

2

2

2

2

0
0
1
1
4
0
1
3
3
0
0
2
2
0

tense$₂
nonsense$₂1

2

Using LCP: Constructing Suffix Trees

Constructing Suffix Trees

● Last time, I claimed it was possible to
construct suffix trees in time O(m).

● We'll do this by showing the following:
● A suffix array for T can be built in time O(m).
● An LCP array for T can be built in time O(m).

– Check Kasai's paper for details.
● A suffix tree can be built from a suffix array

and LCP array in time O(m).

From Suffix Arrays to Suffix Trees

Using LCP

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

nonsense$

$
e$
ense$

nse$
nsense$
onsense$
se$
sense$

8
7
4
0
5
2
1
6
3

0
1
0
1
3
0
0
2

Claim: Any 0's in the suffix array
represent demarcation points
between subtrees of the root node.

Claim: Any 0's in the suffix array
represent demarcation points
between subtrees of the root node.

Using LCP

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

n
s
e
$

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

nonsense$

$

e$
ense$

nse$
nsense$

onsense$

se$
sense$

8

7
4

0
5
2

1

6
3

1

1
3

2The same property
holds for these

subarrays, except
using the subarray
min instead of 0.

The same property
holds for these

subarrays, except
using the subarray
min instead of 0.

$
a$
aaaba$
aaabbabaaaba$
aaba$
aabaaabbabaaaba$
aabbabaaaba$
aba$
abaaaba$
abaaabbabaaaba$
abbabaaaba$
ba$

baaabbabaaaba$
bababaaaba$
bbabaaaba$

baaaba$

0

1

4

2

4

3

1

3

6

2

0

2

5

2

1

$
a$
aaaba$
aaabbabaaaba$
aaba$
aabaaabbabaaaba$
aabbabaaaba$
aba$
abaaaba$
abaaabbabaaaba$
abbabaaaba$
ba$

baaabbabaaaba$
bababaaaba$
bbabaaaba$

baaaba$

0

1

4

2

4

3
1

3

6

2

0

2
52

1

This is a slightly
modified

Cartesian tree!

This is a slightly
modified

Cartesian tree!

$
a$
aaaba$
aaabbabaaaba$
aaba$
aabaaabbabaaaba$
aabbabaaaba$
aba$
abaaaba$
abaaabbabaaaba$
abbabaaaba$
ba$

baaabbabaaaba$
bababaaaba$
bbabaaaba$

baaaba$

0

1

4

2

4

3
1

3

6

2

0

2
52

1

A Linear-Time Algorithm

● Construct a Cartesian tree from the LCP
array, fusing together nodes with the same
values if one becomes a parent of the other.

● Run a DFS over the tree and add missing
children in the order in which they appear
in the suffix array.

● Assign labels to the edges based on the
LCP values.

● Total time: O(m).

Time-Out For Announcements!

Problem Set Two

● Problem Set Two goes out today. It's due next Tuesday
(April 19th) at the start of class.
● Play around with tries, Aho-Corasick, suffix trees, and suffix

arrays!

● Problem Set One has been graded. Grades are available
on GradeScope.

● Solutions are available in hardcopy in lecture. They'll
be in the filing cabinets in the Gates B wing (near
Keith's office) if you weren't able to pick them up.

● Luna made some excellent graphs showing the actual
performance of the RMQ data structures in practice,
including charts for how common errors break the
runtime bounds. Highly recommended!

Office Hours Location

● Looks like we're no longer allowed to
hold office hours in the Huang Basement.

● We've moved our Monday / Tuesday
office hours into Gates B26.

● Keith's office hours will still be in Gates
178.

WiCS Casual CS Dinner

● Stanford WiCS is holding the first of their
biquarterly CS Casual Dinners next
Monday, April 18 from 6:30PM –
7:30PM at the WCC.

● Highly recommended! Your perspective
at this point in your CS career would be
really valuable to people who are just
starting out.

HackOverflow

● HackOverflow is this Saturday, April 16,
from 10:00AM – 10:00PM in the Huang
Basement.

● It's a great hackathon for first-timers.
Highly recommended!

DiversityBase: Interested?

● DiversityBase is a joint effort by SOLE, SBSE,
AISES, and FLIP with a focus on computer
science.

● They're looking for people to take on
leadership positions. This is a phenomenal
organization and it would be a great place to
make a huge impact.

● Interested? Apply here:

http://goo.gl/forms/50ObFGs5KS

http://goo.gl/forms/50ObFGs5KS

Back to CS166!

The Hard Part: Building Suffix Arrays

A Naïve Algorithm

● Here's a simple algorithm for building a
suffix array:
● Construct all the suffixes of the string in

time Θ(m2).
● Sort those suffixes using heapsort or

mergesort.
– Makes O(m log m) comparisons, but each

comparison takes O(m) time.
– Time required: O(m2 log m).

● Total time: O(m2 log m).
● Can we do better?

Radix Sort

● Radix sort is a fast sorting algorithm for
strings and integers.

● It's a powerful primitive for building other
algorithms and data structures – and
comes up all the time in job interviews.

● In case you haven't seen it before (it's only
intermittently taught in CS161), let's start
with a quick radix sort review.

Analyzing Radix Sort

● Suppose there are t total strings with
maximum length k, drawn from alphabet Σ.

● Time to set up initial buckets: Θ(|Σ|).
● Time to distribute strings elements each

round: O(t).
● Time to collect strings each round:

O(t + |Σ|).
● Number of rounds: O(k)
● Runtime: O(k(t + |Σ|)).

Speeding Up with Radix Sort

● What happens if we use radix sort
instead of heapsort in our original suffix
array algorithm?
● Number of strings: Θ(m).
● String length: Θ(m).
● Number of characters: |Σ|.

● Runtime is therefore Θ(m2 + m|Σ|)
● Assuming |Σ| = O(m), the runtime is

Θ(m2), a log factor faster than before.
● Can we do better?

Radix Sort

● Useful observation: it's possible to sort
t strings in time O(t) if
● the strings all have a constant length, and
● the alphabet size is O(t).

● We're going to use this observation in a
little bit, but make a note of it for now.

The DC3 Algorithm

DC3

● One of the simplest and fastest algorithms for
building suffix arrays is called DC3
(Difference Cover, size 3).

● It's a masterpiece of an algorithm – it's clever,
brilliant, and not that hard to code up.

● It's also quite nuanced and tricky.
● We're going to spend the rest of today

working through the details. You'll then play
around with it on the problem set.

Some Assumptions

● Assume the initial input alphabet consists
of a set of integers 0, 1, 2, …, |Σ| - 1.

● If this isn't the case, we can always sort
the letters and replace each with its
rank.

● Assuming that |Σ| = O(1), this doesn't
affect the runtime.

Some Terminology

● Define Tₖ to be the positions in T whose
indices are equal to k mod 3.
● T₀ is the set of positions that are multiples of

three.
● T₁ is the set of positions that follow the

positions in T₀.
● T₂ is the set of positions that follow the

positions in T₁.

m o n s o o n n o m n o m s $

DC3, Intuitively

● At a high-level, DC3 works as follows:
● Recursively get the sorted order of all

suffixes in T₁ and T₂.
● Using this information, efficiently sort the

suffixes in T₀.
● Merge the two lists of sorted suffixes (the

suffixes in T₀ and the suffixes in T₁/T₂)
together to form the full suffix array.

● The details are beautiful, but tricky.

DC3, Intuitively

At a high-level, DC3 works as follows:
● Recursively get the sorted order of all

suffixes in T₁ and T₂.

Using this information, efficiently sort the
suffixes in T₀.

Merge the two lists of sorted suffixes (the
suffixes in T₀ and the suffixes in T₁/T₂)
together to form the full suffix array.

The details are beautiful, but tricky.

The First Step

● Our objective is to get the relative
rankings of the suffixes at positions T₁
and T₂.

● High-level idea:
● Construct a new string based on suffixes

starting at positions in T₁ and T₂.
● Compute the suffix array of that string,

recursively.
● Use the resulting suffix array to deduce the

orderings of the suffixes from T₁ and T₂.

Embiggening Our String

● Form two new strings from T$ by
dropping off the first character and first
two characters and padding with extra $
markers.

● Then, concatenate those strings together.

n s o o n n o m n o m s $n o m
$

$ $

m o n s o o n n o m n o m s $n o m

o n s o o n n o m n o m s $n o m

Embiggening Our String

● Form two new strings from T$ by
dropping off the first character and first
two characters and padding with extra $
markers.

● Then, concatenate those strings together.

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n o m $ $

Um, Why?

● Claim: The relative order of the suffixes in
the first half of the string starting at
positions in T₁ and the suffixes in the
second half of the string at positions in T₂
is the same as the relative order of those
suffixes in T.

● Intuition: Strings within the same half are
relatively ordered. Strings across the two
halves are “protected” by the endmarkers.

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n o m $ $

So, Um...

… we just doubled the size of our input
string. You're not supposed to do that in
a divide-and-conquer algorithm.

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n o m $ $

Playing with Blocks

● Key Insight: Break the resulting string apart
into blocks of size three.

● Think about what happens if we compare two
suffixes starting at the beginning of a block:
● Since the suffixes are distinct, there's a mismatch at

some point.
● All blocks prior to that point must be the same.
● The differing block of three is the tiebreaker.

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n o m $ $

 o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n $ $

o o n n o m s $ $ n s o o n n o m nn o m so m

The Recursive Step

● The Trick: Treat each block of three characters as its own
character.

● Determine the relative ordering of those characters by an
O(m)-time radix sort.

● Replace each block of three characters with the rank of its
“metacharacter.”

● Recursively compute the suffix array of the resulting string.

6 7 1 81 2 5 3 4 0

o n s o o n s $ $n s o o n no m nn o m so mo n sn o m
1 2 3 4 5 6 7 8

$ $ $$ $ $
0

 o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n $ $

The Recursive Step

● The Trick: Treat each block of three characters as its own
character.

● Determine the relative ordering of those characters by an
O(m)-time radix sort.

● Replace each block of three characters with the rank of its
“metacharacter.”

● Recursively compute the suffix array of the resulting string.

6 7 1 81 2 5 3 4 0
7 8 1 92 3 6 4 5 0

The Recursive Step

● Once we have this suffix array, we can
use it to get the suffixes from T₁ and T₂
into sorted order.

6 7 1 81 2 5 3 4 0

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n $ $

7 8 1 92 3 6 4 5 0

7 18 2 9 3 6 4 5 0

The Recursive Step

● Once we have this suffix array, we can
use it to get the suffixes from T₁ and T₂
into sorted order.

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n $ $
7 18 2 9 3 6 4 5 0

m o n s o o n n o m n o m s $n o m
1 27 8 9

The Recursive Step

● Once we have this suffix array, we can
use it to get the suffixes from T₁ and T₂
into sorted order.

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n $ $
7 18 2 9 3 6 4 5 0

m o n s o o n n o m n o m s $n o m
1 023 46 57 8 9

Ranking T₁ and T₂

● We spend a total of O(m) work in this
step doubling the array, grouping it into
blocks of size 3, radix sorting it, and
converting the result of the call into
meaningful data.

● We also make a recursive call on an array
of size 2m / 3.

● Total work: O(m), plus a recursive call on
an array of size 2m / 3.

DC3, Intuitively

At a high-level, DC3 works as follows:

Recursively get the sorted order of all
suffixes in T₁ and T₂.

● Using this information, efficiently sort the
suffixes in T₀.

Merge the two lists of sorted suffixes (the
suffixes in T₀ and the suffixes in T₁/T₂)
together to form the full suffix array.

The details are beautiful, but tricky.

A Beautiful Insight

● Claim: If we know the relative ordering of
suffixes at positions T₁ and T₂, we can
determine the relative order of suffixes in
positions T₀.

● Idea: Use a modified radix sort!

m o n s o o n n o m n o m s $
0 1 2 3 4 5 6 7 8 9 A B C D E

1 023 46 57 8 9

m o n s o o n n o m n o m s $

A Beautiful Insight

● Claim: If we know the relative ordering of
suffixes at positions T₁ and T₂, we can
determine the relative order of suffixes in
positions T₀.

● Idea: Use a modified radix sort!

m o n s o o n n o m n o m s $
0 1 2 3 4 5 6 7 8 9 A B C D E

1 023 46 57 8 9

m 7

A Beautiful Insight

● Claim: If we know the relative ordering of
suffixes at positions T₁ and T₂, we can
determine the relative order of suffixes in
positions T₀.

● Idea: Use a modified radix sort!

m o n s o o n n o m n o m s $
0 1 2 3 4 5 6 7 8 9 A B C D E

1 023 46 57 8 9

m 7

s o o n n o m n o m s $

A Beautiful Insight

● Claim: If we know the relative ordering of
suffixes at positions T₁ and T₂, we can
determine the relative order of suffixes in
positions T₀.

● Idea: Use a modified radix sort!

m o n s o o n n o m n o m s $
0 1 2 3 4 5 6 7 8 9 A B C D E

1 023 46 57 8 9

m 7

s 8

A Beautiful Insight

● Claim: If we know the relative ordering of
suffixes at positions T₁ and T₂, we can
determine the relative order of suffixes in
positions T₀.

● Idea: Use a modified radix sort!

m o n s o o n n o m n o m s $
0 1 2 3 4 5 6 7 8 9 A B C D E

1 023 46 57 8 9
n

m

m

1

2

9

m 7

s 8

1 0 234

Sorting T₀

● To sort T₀, we do the following:
● For each position in T₀, form a pair of the

letter at that position and the index of the
suffix right after it (which is in T₁).

● These pairs are effectively strings drawn
from an alphabet of size Σ + m.

● Radix sort them in time O(m).

DC3, Intuitively

At a high-level, DC3 works as follows:

Recursively get the sorted order of all
suffixes in T₁ and T₂.

Using this information, efficiently sort the
suffixes in T₀.

● Merge the two lists of sorted suffixes (the
suffixes in T₀ and the suffixes in T₁/T₂)
together to form the full suffix array.

The details are beautiful, but tricky.

Merging the Lists

● At this point, we have two sorted lists:
● A sorted list of all the suffixes in T₀.
● A sorted list of all the suffixes in T₁ and T₂.

● We also know the relative order of any
two suffixes in T₁ and T₂.

● How can we merge these lists together?

The Merging

m o n s o o n n o m n o m s $
0 1 2 3 4 5 6 7 8 9 A B C D E

1 023 46 57 8 91 0 234

0 C

6 3

E

7 A 2 8 B 5 1 4 D

9
n n o m n o m s $

n o m n o m s $

The Merging

m o n s o o n n o m n o m s $
0 1 2 3 4 5 6 7 8 9 A B C D E

1 023 46 57 8 91 0 234

0 C

6 3

E

7 A 2 8 B 5 1 4 D

9
n

n o m n o m s $

1

Key idea: We know the
relative ordering of the
suffixes at positions that are
congruent to 1 or 2 mod 3.

Key idea: We know the
relative ordering of the
suffixes at positions that are
congruent to 1 or 2 mod 3.

The Merging

m o n s o o n n o m n o m s $
0 1 2 3 4 5 6 7 8 9 A B C D E

1 023 46 57 8 91 0 234

0 C

6 3

E

7 A 2 8 B 5 1 4 D

9
n

n

1

4

The Merging

m o n s o o n n o m n o m s $
0 1 2 3 4 5 6 7 8 9 A B C D E

1 023 46 57 8 91 0 234

7 A

2 8 B 5 1 4 D

0 C

3

E 69 s

n

8

4

In this case it doesn't matter,
but what would happen if the
first letters were the same?
We don't know the relative

ordering of the suffixes.

In this case it doesn't matter,
but what would happen if the
first letters were the same?
We don't know the relative

ordering of the suffixes.

The Merging

m o n s o o n n o m n o m s $
0 1 2 3 4 5 6 7 8 9 A B C D E

1 023 46 57 8 91 0 234

7 A

2 8 B 5 1 4 D

0 C

3

E 69 s

n

o 6

s 8

These can be ranked
regardless of whether the first
two characters are the same.

These can be ranked
regardless of whether the first
two characters are the same.

The Merging

m o n s o o n n o m n o m s $
0 1 2 3 4 5 6 7 8 9 A B C D E

0

7 A 2 8 B 5 1 4 30 C DE 69

12 34 5 67 8 9AB C DE

The Merging

● Comparing any two suffixes requires at
most O(1) work because we can use the
existing ranking of the suffixes in T₁ and
T₂ to “truncate” long suffixes.

● There are a total of m suffixes to merge.
● Total runtime: O(m).

The Overall Runtime

● The recursive step to sort T₁ and T₂ takes
time Θ(m) plus the cost of a recursive call
on an input of size 2m / 3.

● Using T₁ and T₂ to sort T₀ takes time Θ(m).
● Merging T₀, T₁, and T₂ takes time Θ(m).
● Recurrence relation:

R(m) = R(2m / 3) + O(m)
● Via the Master Theorem, we see that the

overall runtime is Θ(m).

The Overall Algorithm

● Although this algorithm has a lot of
tricky details, it's actually not that tough
to code it up.

● The original paper gives a two-page C++
implementation of the entire algorithm.

● And because we're Decent Human
Beings, we're not going to ask you to
write it up on your own. ☺

Questions to Ponder

● This algorithm is extremely clever and
has lots of interlocking moving parts.
● Why is the number 3 so significant?
● Why did we have to double the length of the

string before grouping into blocks?

● You'll explore some of these questions in
the problem set.

How Did Anyone Invent This?

● This algorithm can seem totally magical and confusing
the first time you see it.

● As with most algorithms, this one was based on a lot of
prior work.

● In 1997, Martin Farach published an algorithm (now
called Farach's algorithm) for directly building a
suffix tree in time O(m). It involved many of the same
techniques (just sort suffixes at some specific positions,
use that to fill in the missing suffixes, then merge the
results), but has a lot more details because it works
directly on suffix trees rather than arrays.

● The algorithm itself is a bit tricky but is totally
beautiful. It would make for a really fun final project!

More to Explore

● There are a number of other data structures in the
family of suffix trees and suffix arrays.
● The suffix automaton or DAWG is a minimal-state DFA for

all the suffixes of a string T. It always has size O(|T|), and
this is not obvious!

● A factor oracle is a relaxed automaton that matches all the
substrings of some string T, plus possibly some spurious
matches.

● The Burrows-Wheeler transform is a technique related to
suffix arrays that was originally developed for data
compression.

● Any of these would be make for great final project
topics.

Summary

● Suffix trees are a compact, flexible, powerful
structure for answering questions on strings.

● Suffix arrays give a space-efficient alternative to
suffix trees that have a slight time tradeoff.

● LCP arrays link suffix trees and suffix arrays
and can be built in time O(m).

● Suffix arrays can be constructed in time O(m).
● Suffix trees can be constructed in time O(m)

from a suffix array and LCP array.

Next Time

● Balanced Trees
● B-trees, 2-3-4 trees, and red/black trees.

● Where the heck did red/black trees
come from?
● There's an amazing answer to this question.

Trust me.

