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Outline for Today

● Review from Last Time
● Quick review of suffix trees.

● Suffix Arrays
● A space-efficient data structure for substring searching.

● LCP Arrays
● A surprisingly helpful auxiliary structure.

● Constructing Suffix Trees
● Converting from suffix arrays to suffix trees.

● Constructing Suffix Arrays
● An extremely clever algorithm for building suffix 

arrays.



  

Review from Last Time



  

Suffix Trees
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● A suffix tree for
a string T is an 
Patricia trie of T$ 
where each leaf is 
labeled with the 
index where the 
corresponding 
suffix starts in T$.



  

Suffix Trees

● If |T| = m, the 
suffix tree has 
exactly m + 1 
leaf nodes.

● For any T ≠ ε, all 
internal nodes in 
the suffix tree 
have at least two 
children.

● Number of nodes 
in a suffix tree is 
Θ(m).
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Space Usage

● Suffix trees are memory hogs.
● Suppose Σ = {A, C, G, T, $}.
● Each internal node needs 15 machine 

words: for each character, we need three 
words for the start/end index of the label 
and for a child pointer.

● This is still O(m), but it's a huge hidden 
constant.



  

Suffix Arrays



  

Suffix Arrays

● A suffix array for 
a string T is an 
array of the 
suffixes of T$, 
stored in sorted 
order.

● By convention, $ 
precedes all other 
characters.
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Representing Suffix Arrays

● Suffix arrays are 
typically represented 
implicitly by just 
storing the indices of 
the suffixes in sorted 
order rather than the 
suffixes themselves.

● Space required: Θ(m).
● More precisely, space 

for T$, plus one extra 
word for each 
character. nonsense$
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Searching a Suffix Array

● Recall: P is a 
substring of T iff it's a 
prefix of a suffix of T.

● All matches of P in T 
have a common 
prefix, so they'll be 
stored consecutively.

● Can find all matches 
of P in T by doing a 
binary search over 
the suffix array.

nonsense$

$
e$
ense$

nse$
nsense$
onsense$
se$
sense$

8
7
4
0
5
2
1
6
3



  

Analyzing the Runtime

● The binary search will require O(log m) 
probes into the suffix array.

● Each comparison takes time O(n): have to 
compare P against the current suffix.

● Time for binary searching: O(n log m).
● Time to report all matches after that point: 

O(z).
● Total time: O(n log m + z).



  

Why the Slowdown?



  

A Loss of Structure

● Many algorithms on suffix trees involve 
looking for internal nodes with various 
properties:
● Longest repeated substring: internal node 

with largest string depth.
● Longest common extension: lowest common 

ancestor of two nodes.

● Because suffix arrays do not store the 
tree structure, we lose access to this 
information.



  

Suffix Trees and Suffix Arrays
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Nifty Fact: The suffix array can 
be constructed from an ordered 

DFS over a suffix tree!

Nifty Fact: The suffix array can 
be constructed from an ordered 

DFS over a suffix tree!



  

Suffix Trees and Suffix Arrays
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Suffix Trees and Suffix Arrays
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Nifty Fact: Adjacent strings with 
a common prefix correspond to 

subtrees in the suffix tree.

Nifty Fact: Adjacent strings with 
a common prefix correspond to 

subtrees in the suffix tree.



  

Longest Common Prefixes

● Given two strings x and y, the longest 
common prefix or (LCP) of x and y is 
the longest prefix of x that is also a prefix 
of y.

● The LCP of x and y is denoted lcp(x, y).
● LCP information is fundamentally 

important for suffix arrays. With it, we 
can implicitly recover much of the 
structure present in suffix trees.



  

Suffix Trees and Suffix Arrays
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Nifty Fact: The lowest common 
ancestor of suffixes x and y has 
string label given by lcp(x, y).

Nifty Fact: The lowest common 
ancestor of suffixes x and y has 
string label given by lcp(x, y).



  

Computing LCP Information

● Claim: There is an O(m)-time algorithm 
for computing LCP information on a 
suffix array.

● Let's see how it works.



  

Pairwise LCP

● Fact: There is an 
algorithm (due to Kasai 
et al.) that constructs, 
in time O(m), an array 
of the LCPs of adjacent 
suffix array entries.

● The algorithm isn't that 
complex, but the 
correctness argument 
is a bit nontrivial.
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Pairwise LCP

● Some notation:
● SA[i] is the ith suffix 

in the suffix array.
● H[i] is the value of 

lcp(SA[i], SA[i + 1])
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Claim: For any 0 < i < j < m:

lcp(SA[i], SA[j]) = RMQH(i, j – 1)

Claim: For any 0 < i < j < m:

lcp(SA[i], SA[j]) = RMQH(i, j – 1)



  

Computing LCPs

● To preprocess a suffix array to support O(1) 
LCP queries:
● Use Kasai's O(m)-time algorithm to build the LCP 

array.
● Build an RMQ structure over that array in time 

O(m) using Fischer-Heun.
● Use the precomputed RMQ structure to answer LCP 

queries over ranges.

● Requires O(m) preprocessing time and only 
O(1) query time.



  

Searching a Suffix Array

● Recall: Can search a suffix array of T for all 
matches of a pattern P in time O(n log m + z).

● If we've done O(m) preprocessing to build the 
LCP information, we can speed this up.



  

Searching a Suffix Array

● Intuitively, simulate doing a binary search of the 
leaves of a suffix tree, remembering the deepest 
subtree you've matched so far.

● At each point, if the binary search probes a leaf 
outside of the current subtree, skip it and 
continue the binary search in the direction of the 
current subtree.

● To implement this on an actual suffix array, we 
use LCP information to implicitly keep track of 
where the bounds on the current subtree are.



  

Searching a Suffix Array

● Claim: The algorithm we just sketched 
runs in time O(n + log m + z).

● Proof idea: The O(log m) term comes 
from the binary search over the leaves of 
the suffix tree. The O(n) term 
corresponds to descending deeper into 
the suffix tree one character at a time. 
Finally, we have to spend O(z) time 
reporting matches.



  

Longest Common Extensions



  

Another Application: LCE

● Recall: The longest common extension of two 
strings T₁ and T₂ at positions i and j, denoted 
LCET₁, T₂ (i, j), is the length of the longest 
substring of T₁ and of T₂ that begins at position 
i in T₁ and position j in T₂.

 

● Using generalized suffix trees and LCA, we 
have an ⟨O(m), O(1)⟩-time solution to LCE.

● Claim: There's a much easier solution using 
LCP.

a p p e n d

p e n p a l



  

Suffix Arrays and LCE
● Recall: LCET₁, T₂(i, j) is the length 

of the longest common prefix of 
the suffix of T₁ starting at 
position i and the suffix of T₂ 
starting at position j.

● Suppose we construct a 
generalized suffix array for T₁ 
and T₂ augmented with LCP 
information. We can then use 
LCP to answer LCE queries in 
time O(1).

● We'll need a table mapping 
suffixes to their indices in the 
table to do this, but that's not 
that hard to set up.
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Using LCP: Constructing Suffix Trees



  

Constructing Suffix Trees

● Last time, I claimed it was possible to 
construct suffix trees in time O(m).

● We'll do this by showing the following:
● A suffix array for T can be built in time O(m).
● An LCP array for T can be built in time O(m).

– Check Kasai's paper for details.
● A suffix tree can be built from a suffix array 

and LCP array in time O(m).



  

From Suffix Arrays to Suffix Trees



  

Using LCP
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Claim: Any 0's in the suffix array 
represent demarcation points 
between subtrees of the root node.

Claim: Any 0's in the suffix array 
represent demarcation points 
between subtrees of the root node.



  

Using LCP
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subarrays, except 
using the subarray 
min instead of 0.

The same property 
holds for these 

subarrays, except 
using the subarray 
min instead of 0.
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This is a slightly 
modified 

Cartesian tree!

This is a slightly 
modified 

Cartesian tree!
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A Linear-Time Algorithm

● Construct a Cartesian tree from the LCP 
array, fusing together nodes with the same 
values if one becomes a parent of the other.

● Run a DFS over the tree and add missing 
children in the order in which they appear 
in the suffix array.

● Assign labels to the edges based on the 
LCP values.

● Total time: O(m).



  

Time-Out For Announcements!



  

Problem Set Two

● Problem Set Two goes out today. It's due next Tuesday 
(April 19th) at the start of class.
● Play around with tries, Aho-Corasick, suffix trees, and suffix 

arrays!

● Problem Set One has been graded. Grades are available 
on GradeScope.

● Solutions are available in hardcopy in lecture. They'll 
be in the filing cabinets in the Gates B wing (near 
Keith's office) if you weren't able to pick them up.

● Luna made some excellent graphs showing the actual 
performance of the RMQ data structures in practice, 
including charts for how common errors break the 
runtime bounds. Highly recommended!



  

Office Hours Location

● Looks like we're no longer allowed to 
hold office hours in the Huang Basement.

● We've moved our Monday / Tuesday 
office hours into Gates B26.

● Keith's office hours will still be in Gates 
178.



  

WiCS Casual CS Dinner

● Stanford WiCS is holding the first of their 
biquarterly CS Casual Dinners next 
Monday, April 18 from 6:30PM – 
7:30PM at the WCC.

● Highly recommended! Your perspective 
at this point in your CS career would be 
really valuable to people who are just 
starting out.



  



  

HackOverflow

● HackOverflow is this Saturday, April 16, 
from 10:00AM – 10:00PM in the Huang 
Basement.

● It's a great hackathon for first-timers. 
Highly recommended!



  

DiversityBase: Interested?

● DiversityBase is a joint effort by SOLE, SBSE, 
AISES, and FLIP with a focus on computer 
science.

● They're looking for people to take on 
leadership positions. This is a phenomenal 
organization and it would be a great place to 
make a huge impact.

● Interested? Apply here:

http://goo.gl/forms/50ObFGs5KS

http://goo.gl/forms/50ObFGs5KS


  



  

Back to CS166!



  

The Hard Part: Building Suffix Arrays



  

A Naïve Algorithm

● Here's a simple algorithm for building a 
suffix array:
● Construct all the suffixes of the string in 

time Θ(m2).
● Sort those suffixes using heapsort or 

mergesort.
– Makes O(m log m) comparisons, but each 

comparison takes O(m) time.
– Time required: O(m2 log m).

● Total time: O(m2 log m).
● Can we do better?



  

Radix Sort

● Radix sort is a fast sorting algorithm for 
strings and integers.

● It's a powerful primitive for building other 
algorithms and data structures – and 
comes up all the time in job interviews.

● In case you haven't seen it before (it's only 
intermittently taught in CS161), let's start 
with a quick radix sort review.



  

Analyzing Radix Sort

● Suppose there are t total strings with 
maximum length k, drawn from alphabet Σ.

● Time to set up initial buckets: Θ(|Σ|).
● Time to distribute strings elements each 

round: O(t).
● Time to collect strings each round:

O(t + |Σ|).
● Number of rounds: O(k)
● Runtime: O(k(t + |Σ|)).



  

Speeding Up with Radix Sort

● What happens if we use radix sort 
instead of heapsort in our original suffix 
array algorithm?
● Number of strings: Θ(m).
● String length: Θ(m).
● Number of characters: |Σ|.

● Runtime is therefore Θ(m2 + m|Σ|)
● Assuming |Σ| = O(m), the runtime is 

Θ(m2), a log factor faster than before.
● Can we do better?



  

Radix Sort

● Useful observation: it's possible to sort 
t strings in time O(t) if
● the strings all have a constant length, and
● the alphabet size is O(t).

● We're going to use this observation in a 
little bit, but make a note of it for now.



  

The DC3 Algorithm



  

DC3

● One of the simplest and fastest algorithms for 
building suffix arrays is called DC3 
(Difference Cover, size 3).

● It's a masterpiece of an algorithm – it's clever, 
brilliant, and not that hard to code up.

● It's also quite nuanced and tricky.
● We're going to spend the rest of today 

working through the details. You'll then play 
around with it on the problem set.



  

Some Assumptions

● Assume the initial input alphabet consists 
of a set of integers 0, 1, 2, …, |Σ| - 1.

● If this isn't the case, we can always sort 
the letters and replace each with its 
rank.

● Assuming that |Σ| = O(1), this doesn't 
affect the runtime.



  

Some Terminology

● Define Tₖ to be the positions in T whose 
indices are equal to k mod 3.
● T₀ is the set of positions that are multiples of 

three.
● T₁ is the set of positions that follow the 

positions in T₀.
● T₂ is the set of positions that follow the 

positions in T₁.

m o n s o o n n o m n o m s $



  

DC3, Intuitively

● At a high-level, DC3 works as follows:
● Recursively get the sorted order of all 

suffixes in T₁ and T₂.  
● Using this information, efficiently sort the 

suffixes in T₀. 
● Merge the two lists of sorted suffixes (the 

suffixes in T₀ and the suffixes in T₁/T₂) 
together to form the full suffix array.  

● The details are beautiful, but tricky.



  

DC3, Intuitively

At a high-level, DC3 works as follows:
● Recursively get the sorted order of all 

suffixes in T₁ and T₂.  

Using this information, efficiently sort the 
suffixes in T₀. 

Merge the two lists of sorted suffixes (the 
suffixes in T₀ and the suffixes in T₁/T₂) 
together to form the full suffix array.  

The details are beautiful, but tricky.



  

The First Step

● Our objective is to get the relative 
rankings of the suffixes at positions T₁ 
and T₂.

● High-level idea:
● Construct a new string based on suffixes 

starting at positions in T₁ and T₂.
● Compute the suffix array of that string, 

recursively.
● Use the resulting suffix array to deduce the 

orderings of the suffixes from T₁ and T₂.



  

Embiggening Our String

● Form two new strings from T$ by 
dropping off the first character and first 
two characters and padding with extra $ 
markers.

● Then, concatenate those strings together.

n s o o n n o m n o m s $n o m
$

$ $

m o n s o o n n o m n o m s $n o m

o n s o o n n o m n o m s $n o m



  

Embiggening Our String

● Form two new strings from T$ by 
dropping off the first character and first 
two characters and padding with extra $ 
markers.

● Then, concatenate those strings together.

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n o m $ $



  

Um, Why?

● Claim: The relative order of the suffixes in 
the first half of the string starting at 
positions in T₁ and the suffixes in the 
second half of the string at positions in T₂ 
is the same as the relative order of those 
suffixes in T.

● Intuition: Strings within the same half are 
relatively ordered. Strings across the two 
halves are “protected” by the endmarkers.

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n o m $ $



  

So, Um...

… we just doubled the size of our input 
string. You're not supposed to do that in 
a divide-and-conquer algorithm.

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n o m $ $



  

Playing with Blocks

● Key Insight: Break the resulting string apart 
into blocks of size three.

● Think about what happens if we compare two 
suffixes starting at the beginning of a block:
● Since the suffixes are distinct, there's a mismatch at 

some point.
● All blocks prior to that point must be the same.
● The differing block of three is the tiebreaker.

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n o m $ $



  o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n $ $

o o n n o m s $ $ n s o o n n o m nn o m so m

The Recursive Step

● The Trick: Treat each block of three characters as its own 
character.

● Determine the relative ordering of those characters by an 
O(m)-time radix sort.

● Replace each block of three characters with the rank of its 
“metacharacter.”

● Recursively compute the suffix array of the resulting string.

6 7 1 81 2 5 3 4 0

o n s o o n s $ $n s o o n no m nn o m so mo n sn o m
1 2 3 4 5 6 7 8

$ $ $$ $ $
0



  o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n $ $

The Recursive Step

● The Trick: Treat each block of three characters as its own 
character.

● Determine the relative ordering of those characters by an 
O(m)-time radix sort.

● Replace each block of three characters with the rank of its 
“metacharacter.”

● Recursively compute the suffix array of the resulting string.

6 7 1 81 2 5 3 4 0
7 8 1 92 3 6 4 5 0



  

The Recursive Step

● Once we have this suffix array, we can 
use it to get the suffixes from T₁ and T₂ 
into sorted order. 

6 7 1 81 2 5 3 4 0

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n $ $

7 8 1 92 3 6 4 5 0

7 18 2 9 3 6 4 5 0



  

The Recursive Step

● Once we have this suffix array, we can 
use it to get the suffixes from T₁ and T₂ 
into sorted order. 

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n $ $
7 18 2 9 3 6 4 5 0

m o n s o o n n o m n o m s $n o m
1 27 8 9



  

The Recursive Step

● Once we have this suffix array, we can 
use it to get the suffixes from T₁ and T₂ 
into sorted order. 

o n s o o n n o m n o m s $n o m $ n s o o n n o m n o m s $n $ $
7 18 2 9 3 6 4 5 0

m o n s o o n n o m n o m s $n o m
1 023 46 57 8 9



  

Ranking T₁ and T₂ 

● We spend a total of O(m) work in this 
step doubling the array, grouping it into 
blocks of size 3, radix sorting it, and 
converting the result of the call into 
meaningful data.

● We also make a recursive call on an array 
of size 2m / 3.

● Total work: O(m), plus a recursive call on 
an array of size 2m / 3.



  

DC3, Intuitively

At a high-level, DC3 works as follows:

Recursively get the sorted order of all 
suffixes in T₁ and T₂.  

● Using this information, efficiently sort the 
suffixes in T₀. 

Merge the two lists of sorted suffixes (the 
suffixes in T₀ and the suffixes in T₁/T₂) 
together to form the full suffix array.  

The details are beautiful, but tricky.



  

A Beautiful Insight

● Claim: If we know the relative ordering of 
suffixes at positions T₁ and T₂, we can 
determine the relative order of suffixes in 
positions T₀.

● Idea: Use a modified radix sort!

m o n s o o n n o m n o m s $
0 1 2 3 4 5 6 7 8 9 A B C D E

1 023 46 57 8 9
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Sorting T₀

● To sort T₀, we do the following:
● For each position in T₀, form a pair of the 

letter at that position and the index of the 
suffix right after it (which is in T₁).

● These pairs are effectively strings drawn 
from an alphabet of size Σ + m.

● Radix sort them in time O(m).



  

DC3, Intuitively

At a high-level, DC3 works as follows:

Recursively get the sorted order of all 
suffixes in T₁ and T₂.  

Using this information, efficiently sort the 
suffixes in T₀. 

● Merge the two lists of sorted suffixes (the 
suffixes in T₀ and the suffixes in T₁/T₂) 
together to form the full suffix array.  

The details are beautiful, but tricky.



  

Merging the Lists

● At this point, we have two sorted lists:
● A sorted list of all the suffixes in T₀.
● A sorted list of all the suffixes in T₁ and T₂.

● We also know the relative order of any 
two suffixes in T₁ and T₂.

● How can we merge these lists together?



  

The Merging
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In this case it doesn't matter, 
but what would happen if the 
first letters were the same? 
We don't know the relative 

ordering of the suffixes.
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The Merging
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The Merging

● Comparing any two suffixes requires at 
most O(1) work because we can use the 
existing ranking of the suffixes in T₁ and 
T₂ to “truncate” long suffixes.

● There are a total of m suffixes to merge.
● Total runtime: O(m).



  

The Overall Runtime

● The recursive step to sort T₁ and T₂ takes 
time Θ(m) plus the cost of a recursive call 
on an input of size 2m / 3.

● Using T₁ and T₂ to sort T₀ takes time Θ(m).
● Merging T₀, T₁, and T₂ takes time Θ(m).
● Recurrence relation:

R(m) = R(2m / 3) + O(m)  
● Via the Master Theorem, we see that the 

overall runtime is Θ(m).



  

The Overall Algorithm

● Although this algorithm has a lot of 
tricky details, it's actually not that tough 
to code it up.

● The original paper gives a two-page C++ 
implementation of the entire algorithm.

● And because we're Decent Human 
Beings, we're not going to ask you to 
write it up on your own. ☺



  

Questions to Ponder

● This algorithm is extremely clever and 
has lots of interlocking moving parts.
● Why is the number 3 so significant?
● Why did we have to double the length of the 

string before grouping into blocks?

● You'll explore some of these questions in 
the problem set.



  

How Did Anyone Invent This?

● This algorithm can seem totally magical and confusing 
the first time you see it.

● As with most algorithms, this one was based on a lot of 
prior work.

● In 1997, Martin Farach published an algorithm (now 
called Farach's algorithm) for directly building a 
suffix tree in time O(m). It involved many of the same 
techniques (just sort suffixes at some specific positions, 
use that to fill in the missing suffixes, then merge the 
results), but has a lot more details because it works 
directly on suffix trees rather than arrays.

● The algorithm itself is a bit tricky but is totally 
beautiful. It would make for a really fun final project!



  

More to Explore

● There are a number of other data structures in the 
family of suffix trees and suffix arrays.
● The suffix automaton or DAWG is a minimal-state DFA for 

all the suffixes of a string T. It always has size O(|T|), and 
this is not obvious!

● A factor oracle is a relaxed automaton that matches all the 
substrings of some string T, plus possibly some spurious 
matches.

● The Burrows-Wheeler transform is a technique related to 
suffix arrays that was originally developed for data 
compression.

● Any of these would be make for great final project 
topics.



  

Summary

● Suffix trees are a compact, flexible, powerful 
structure for answering questions on strings.

● Suffix arrays give a space-efficient alternative to 
suffix trees that have a slight time tradeoff.

● LCP arrays link suffix trees and suffix arrays 
and can be built in time O(m).

● Suffix arrays can be constructed in time O(m).
● Suffix trees can be constructed in time O(m) 

from a suffix array and LCP array.



  

Next Time

● Balanced Trees
● B-trees, 2-3-4 trees, and red/black trees.

● Where the heck did red/black trees 
come from?
● There's an amazing answer to this question. 

Trust me.


