

Balanced Trees
Part Two

Outline for Today

● Recap from Last Time
● Review of B-trees, 2-3-4 trees, and red/black trees.

● Order Statistic Trees
● BSTs with indexing.

● Augmented Binary Search Trees
● Building new data structures out of old ones.

● Dynamic 1D Closest Points
● Applications to hierarchical clustering.

● Join and Split Operations
● Two powerful BST primitives.

Review from Last Time

B-Trees

B-tree of order 2
(2-3-4 Tree)

B-tree of order 2
(2-3-4 Tree)

1 2 4 6 7 8 10 12 14 15 17 18 19 21 22 24 26

3 9 11 16 20 25

5 13 23

● A B-tree of order b is a multiway search tree with the following
properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root has at most 2b – 1 keys.

● All root-null paths pass through the same number of nodes.

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

19

3

11

23 37

7 31

17

13

Red/Black Trees ≡ 2-3-4 Trees

● Red/black trees are an isometry of 2-3-4
trees; they represent the structure of 2-3-
4 trees in a different way.

● Accordingly, red/black trees have height
O(log n).

● After inserting or deleting an element
from a red/black tree, the tree invariants
can be fixed up in time O(log n) by
applying rotations and color flips that
simulate a 2-3-4 tree.

Tree Rotations

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

Rotate Left

Dynamic Order Statistics

Order Statistics

● In a set S of totally ordered values, the kth order
statistic is the kth smallest value in the set.

● The 0th order statistic is the minimum value.
● The 1st order statistic is the second-smallest value.
● The (n – 1)st order statistic is the maximum value.

● In CS161, you (probably) saw quickselect or the
median-of-medians algorithm for computing order
statistics of a fixed array.

● Goal: Solve this problem efficiently when the data
set is changing – that is, the underlying set of
elements can have insertions and deletions
intermixed with queries.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

6

7

8

10

9

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

6

7

8

10

994

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

5

6

7

8

9

11

1094

Problem: After inserting a
new value, we may have to
update Θ(n) values.

Problem: After inserting a
new value, we may have to
update Θ(n) values.

An Observation

● The exact index of each number is a
global property of the tree.
● Depends on all other nodes and their

positions.

● Could we find a local property that lets
us find order statistics?
● That is, something that depends purely on

nearby nodes.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

0

1

2

4

3

If new nodes are added to the
left subtree, these numbers
don't need to be updated.

If new nodes are added to the
left subtree, these numbers
don't need to be updated.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

Each node is annotated
with the number of

children in its left subtree.

Each node is annotated
with the number of

children in its left subtree.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

090

Since the number just holds the number
of nodes in its left subtree, we only need

to increment the value for nodes that
have the new node in its left subtree.

Since the number just holds the number
of nodes in its left subtree, we only need

to increment the value for nodes that
have the new node in its left subtree.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

0

3

1

6

0

2

3

1

090

160How do we update the
numbers after the rotation?

How do we update the
numbers after the rotation?

Rotations and Order Statistics

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

na

nb na

nb – na – 1

Rotations and Order Statistics

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Left

nb

na

na

nb + na + 1

Order Statistic Trees

● The tree we just saw is called an order
statistic tree.

● Structurally, it's a red/black tree where each
node a count of the nodes in the left subtree.

● Only O(log n) values must be updated on an
insertion or deletion and each can be
updated in time O(1).

● Supports all BST operations plus select
(find kth order statistic) and rank (tell index
of value) in time O(log n).

Generalizing our Idea

The General Pattern

● This data structure works in the appropriate
time bounds because values only change on
an insertion or deletion
● along the root-leaf access path, and
● during rotations.

● Red/black trees have height O(log n) and
require only O(log n) rotations per insertion
or deletion.

● We can augment red/black trees with any
attributes we'd like as long as they obey
these properties.

Augmented Red/Black Trees

● Let f(node) be a function with the following properties:

● f can be computed in time O(1).
● f can be computed at a node based purely on that

node's key and the values of f computed at node's
children.

● Theorem: The values of f can be cached in the nodes
of a red/black tree without changing the asymptotic
runtime of insertions or deletions.

● Proof sketch: After inserting or deleting a node, the
only values that need to change are along the root-leaf
access path, plus values at nodes that were rotated.
There are only O(log n) of these.

Augmented Red/Black Trees

f can be computed at a node based purely on the key in that node
and the values of f in it that node's children.

Order Statistics

● Note: The approach we took for building order
statistic trees does not fall into this framework.

● Example: The values below denote the number
of nodes in the indicated nodes' left subtrees.
What is the correct value of x?

137 42

x

Order Statistics via Augmentation

● Have each node store three quantities:

● numLeft, the number of nodes in the left subtree.

● numRight, the number of nodes in the right subtree.

● numTotal, the total number of nodes in the subtree.

● Can compute this information at a node in time O(1)
based on subtree values:

● node.numLeft = node.left.numTotal

● node.numRight = node.right.numTotal

● node.numTotal = 1 + node.numLeft + node.numRight

● Therefore, using the augmented BST framework, can
compute subtree sizes.

● No need to reason about tree rotations!

Example: Dynamic 1D Closest Points

1D Hierarchical Clustering

42 44 60 66 71 86 92 100

60 66 71 86 92 100

20

20 42 44

64.56

1D Hierarchical Clustering

42 44 60 66 71 86 92 10020

This tree is called
a dendrogram.

This tree is called
a dendrogram.

Analyzing the Runtime

● How efficient is this algorithm?
● Number of rounds: Θ(n).
● Work to find closest pair: O(n).
● Total runtime: Θ(n2).

● Can we do better?

Dynamic 1D Closest Points

● The dynamic 1D closest points
problem is the following:

Maintain a set of elements undergoing
insertion and deletion while efficiently
supporting queries of the form “what is

the closest pair of points?”
● Can we build a better data structure for

this?

Dynamic 1D Closest Points

k

max min

A Tree Augmentation

● Augment each node to store the following:
● The maximum value in the tree.
● The minimum value in the tree.
● The closest pair of points in the tree.

● Claim: Each of these properties can be
computed in time O(1) from the left and right
subtrees.

● These properties can be augmented into a
red/black tree so that insertions and deletions
take time O(log n) and “what is the closest pair
of points?” can be answered in time O(1).

Dynamic 1D Closest Points
137

 Min: -17

 Max: 415

Closest: 137, 142
42

 Min: -17

 Max: 67

 Closest: 15, 21

271
 Min: 142

 Max: 415

Closest: 300, 310

A Helpful Intuition

Divide-and-Conquer

● Initially, it can be tricky to come up with the
right tree augmentations.

● Useful intuition: Imagine you're writing a
divide-and-conquer algorithm over the
elements and have O(1) time per “conquer”
step.

< k > k

k

Time-Out for Announcements!

Problem Set Three

● Problem Set Two was due today at 3:00PM.
● Problem Set Three goes out now. It's due next

Thursday, April 28th, at the start of lecture.
● Explore advanced tree operations, augmented search

trees, and data structure isometries!
● As always, feel free to ask questions on Piazza or to

stop by office hours.

● Start this one early; Q3 has a couple of tricky
parts and Q4 will require you to do a bit of
independent reading.

Apply to Section Lead!

● Section leading applications are now
open for Autumn quarter.

● Apply online at
https://cs198.stanford.edu/cs106/Apply.aspx

by Thursday, April 28 at 11:59PM.
● Highly recommended – this is one of the

best programs the CS department offers.

https://cs198.stanford.edu/cs106/Apply.aspx

Richard Tapia Conference

● Stanford will be sponsoring a number of
students to attend the ACM Richard
Tapia Celebration of Diversity in
Computing.

● The conference is September 14 – 17 in
Austin, Texas.

● Interested? Apply for sponsorship using
this link.

http://goo.gl/forms/6k8KWIqYu7

Back to CS166!

Join and Split

Joining Trees

● join(T₁, k, T₂) takes in two BSTs T₁ and T₂ and a key k.
The assumption is that all keys in T₁ are less than k
and all keys in T₂ are greater than k.

● join(T₁, k, T₂) destructively modifies T₁ and T₂ to
produce a new BST containing all keys in T₁ and T₂ and
the key k.

T₁ T₂
k

Joining Trees

● join(T₁, k, T₂) takes in two BSTs T₁ and T₂ and a key k.
The assumption is that all keys in T₁ are less than k
and all keys in T₂ are greater than k.

● join(T₁, k, T₂) destructively modifies T₁ and T₂ to
produce a new BST containing all keys in T₁ and T₂ and
the key k.

T

Splitting Trees

● split(T, k) destructively modifies BST T by
producing two new BSTs T₁ and T₂ such that all
keys in T₁ are less than or equal to k and all
keys in T₂ are greater than k.

T

k

Splitting Trees

● split(T, k) destructively modifies BST T by
producing two new BSTs T₁ and T₂ such that all
keys in T₁ are less than or equal to k and all
keys in T₂ are greater than k.

T₁

k

T₂

The Runtimes

● Both of these operations can be
implemented in time O(n) by completely
rebuilding the trees from scratch.
● Good exercise: determine how to do this.

● Amazingly, with the right augmentations:
● join(T₁, k, T₂) can be made to run in time

Θ(1 + |h₁ – h₂|), where h₁ and h₂ are the heights
of T₁ and T₂, respectively.

● split(T, k) can be made to run in time O(log n).

● How is this possible?

Joining 2-3-4 Trees

● The isometry between 2-3-4 trees and
red/black trees is very useful here.

● Let's see how to join two 2-3-4 trees and
a key together.

● Based on what we find, we'll develop an
efficient algorithm for joining red/black
trees.

Joining 2-3-4 Trees

21 31

41

16 91

86

26 36 8156

51

46 71

66

61

76

58

166

161

110107

106

103

109

Joining 2-3-4 Trees

21 31

41

16 91

86

26 36 8156

51

46 71

66

61

76

58

166

161

110107

106

103

109

99

Joining 2-3-4 Trees

7 9

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

6181 32

Joining 2-3-4 Trees

7 9

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

6181 32

5

Joining 2-3-4 Trees

7 9

11

21

31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

6181 32

5

Joining 2-3-4 Trees

● To join(T₁, k, T₂):
● Assume that T₁ is the taller of the two trees;

if not, do the following, but mirrored.
● Walk down the right spine of T₁ until a node
v is found whose height is the height of T₂.

● Add k as a final key of v's parent with T₂ as a
right child.

● Continue as if you were inserting k into v's
parent – possibly split the node and
propagate upward, etc.

Analyzing the Runtime

● Assume all 2-3-4 tree nodes are annotated with
their heights.

● What is the runtime of join(T₁, k, T₂)?

● Runtime is Θ(1 + |h₁ – h₂|).

T₁
T₂

h₁
h₂

h₁ – h₂

Joining 2-3-4 Trees

● Define the black height of a node to
be the number of black nodes on any
root-null path starting at that node.

● To join(T₁, k, T₂):

● Assume that T₁ is the tree with larger
black height; if not, do the following,
but mirrored.

● Walk down the right spine of T₁ until a
black node v is found whose black
height is the black height of T₂.

● Insert a new node with key k, left child
v, and right child T₂

● Make this new node the right child of
v's old parent.

● Continue as if you had just inserted k.

T₂

v

k

Keep applying
fixup rules to k.

Keep applying
fixup rules to k.

Runtime Analysis

● Need to augment the red/black tree to store the black
height of each node.

● This fits into our augmentation framework – can be
computed from the black heights of the left and right
children and from the node's own color.

● Via the isometry with 2-3-4 trees, the runtime is
O(1 + |bh₁ – bh₂|).

● Since the black heights of the trees are at most twice
the heights of the trees, this runtime is equivalently
O(1 + |h₁ – h₂|).

● This is O(log n₁ + log n₂) in the worst-case.

Joining Two Trees

● What if you want to join two red/black
trees but don't have a key to join them
with?

● Delete the minimum value from the
second tree in time O(log n), then use
that to join the two trees.

Implementing split Efficiently

Splitting Trees is Hard

● Challenge 1: The
split procedure
might cut the
existing tree into
lots of smaller
pieces.

● Challenge 2:
Cutting a
red/black tree into
two pieces doesn't
necessarily give
you two red/black
trees.

An Observation

● Suppose we want
to perform a split
on some key k.

● Begin by
searching for k. If
we find it, search
for its inorder
successor.

● Cut all links
found along the
way.

An Observation

● Notice that
we're left with a
collection of
pennants, trees
whose roots
have just one
child.

An Observation

● Let's imagine
uncoloring all of
these pennant
roots.

● The trees below
them are almost
red/black trees,
but their roots
might be red.

● Let's recolor all
the roots black.

An Observation

● We now have a
bunch of
red/black trees
hanging off of
pennants.

● Key idea: Find
a way to join
these trees back
together to form
the two trees
we want.

Fleshing Out the Algorithm
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃

R₂p₆

● Do a search for the inorder
successor of k, cutting each
link followed.

● For each pennant, color its
child black. We now have a
collection of red/black trees
hanging off of random nodes.

● Categorize each hanging tree
as of type L or type R
depending on whether it's a
left or right child of its
pennant.

Fleshing Out the Algorithm
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃

R₂p₆

● Observation 1: Look at any
two consecutive L trees or R
trees and the root of the
pennant of the first tree.
Then the key in the pennant
root is strictly between all the
values of those two trees.

● Observation 2: There are at
most two trees of each black
height hanging off of the
pennants.

Fleshing Out the Algorithm

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

All keys here are less
than or equal to k.

All keys here are
greater than k.

Fleshing Out the Algorithm

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

Key idea: Join all the L trees back
together and all the R trees back

together, using the nodes at the root of
the pennants as the joining key.

Because the height differences are low,
the runtime works out to O(log n).

Key idea: Join all the L trees back
together and all the R trees back

together, using the nodes at the root of
the pennants as the joining key.

Because the height differences are low,
the runtime works out to O(log n).

Analyzing the Runtime

● Suppose there is one tree of each black height in L.

● What is the runtime of concatenating the trees in
reverse order of heights?

● Each join takes time O(1 + |bh₁ – bh₂|) = O(1).

● At most O(log n) joins (access path has length O(log n))

● Runtime is O(log n).

Analyzing the Runtime

● Suppose there are trees of some, but not all, heights.

● What is the runtime of concatenating the trees in
reverse order of heights?

● Each join takes time O(1 + bhₛ₊₁ – bhₛ)

● Summing across all joins:

● The number of trees (k) is O(log n) and the maximum
black height is O(log n). Runtime: O(log n).

∑
i=1

k−1

O(1+bhi+1−bhi) = O(∑
i=1

k−1

(1+bhi+1−bhi))

= O(k+∑
i=1

k−1

(bhi+1−bhi))

= O(k+bhk−bh1)

The Split Algorithm

● Split the tree into L pennants and R
pennants, as before.

● Iterate across the pennants in ascending
order of heights, joining each of the
corresponding trees together using the
pennant node as the join key. This takes time
O(log n).

● There will be O(1) leftover pennant nodes.
Insert them in time O(log n) into the proper
trees.

● Net runtime: O(log n).

An Application: Flexible Sequences

Sequence Data Structures

● The two major data structures you're probably used to
seeing for sequences are dynamic arrays and linked lists.

● In a dynamic array:
● Lookups take time O(1).
● Insertions and deletions take time O(n).
● Concatenations take time O(n).

● In a linked list:
● Lookups take time O(n).
● Insertions and deletions take time O(1) if you know where to

insert and O(n) otherwise.
● Concatenations take time O(1).

Flexible Sequences

● Imagine we store a sequence as a modified order
statistic tree.

● We ignore the relative order of the elements and
instead use the indices to guide BST lookups.

● Now, insertions, lookups, and deletions all take
time O(log n).

● Armed with split and join, we can also concatenate
and split sequences in time O(log n) each.

● After filling in the details, you can now manage a
sequence of elements with O(log n) insertions,
deletions, lookups, concatenations, and splits!

Next Time

● Amortized Analysis
● Lying about runtime costs in an honest

manner.

● Frameworks for Amortization
● How can we think about assigning costs?

● Revisiting Earlier Structures
● Queues, Cartesian trees, and 2-3-4 trees.

