
  

Balanced Trees
Part Two



  

Outline for Today

● Recap from Last Time
● Review of B-trees, 2-3-4 trees, and red/black trees.

● Order Statistic Trees
● BSTs with indexing.

● Augmented Binary Search Trees
● Building new data structures out of old ones.

● Dynamic 1D Closest Points
● Applications to hierarchical clustering.

● Join and Split Operations
● Two powerful BST primitives.



  

Review from Last Time



  

B-Trees

B-tree of order 2
(2-3-4 Tree)

B-tree of order 2
(2-3-4 Tree)
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● A B-tree of order b is a multiway search tree with the following 
properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root has at most 2b – 1 keys.

● All root-null paths pass through the same number of nodes.



  

Red/Black Trees

● A red/black tree is a 
BST with the 
following properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
through the same 
number of black nodes.
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Red/Black Trees ≡ 2-3-4 Trees

● Red/black trees are an isometry of 2-3-4 
trees; they represent the structure of 2-3-
4 trees in a different way.

● Accordingly, red/black trees have height 
O(log n).

● After inserting or deleting an element 
from a red/black tree, the tree invariants 
can be fixed up in time O(log n) by 
applying rotations and color flips that 
simulate a 2-3-4 tree.



  

Tree Rotations
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Dynamic Order Statistics



  

Order Statistics

● In a set S of totally ordered values, the kth order 
statistic is the kth smallest value in the set.

● The 0th order statistic is the minimum value.
● The 1st order statistic is the second-smallest value.
● The (n – 1)st order statistic is the maximum value.

● In CS161, you (probably) saw quickselect or the 
median-of-medians algorithm for computing order 
statistics of a fixed array.

● Goal: Solve this problem efficiently when the data 
set is changing – that is, the underlying set of 
elements can have insertions and deletions 
intermixed with queries.



  

Finding Order Statistics
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Finding Order Statistics
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Finding Order Statistics
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Problem: After inserting a 
new value, we may have to 
update Θ(n) values.

Problem: After inserting a 
new value, we may have to 
update Θ(n) values.



  

An Observation

● The exact index of each number is a 
global property of the tree.
● Depends on all other nodes and their 

positions.

● Could we find a local property that lets 
us find order statistics?
● That is, something that depends purely on 

nearby nodes.



  

Finding Order Statistics
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If new nodes are added to the 
left subtree, these numbers 
don't need to be updated.

If new nodes are added to the 
left subtree, these numbers 
don't need to be updated.



  

Finding Order Statistics
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Each node is annotated 
with the number of 

children in its left subtree.

Each node is annotated 
with the number of 

children in its left subtree.



  

Finding Order Statistics
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Since the number just holds the number 
of nodes in its left subtree, we only need 

to increment the value for nodes that 
have the new node in its left subtree.

Since the number just holds the number 
of nodes in its left subtree, we only need 

to increment the value for nodes that 
have the new node in its left subtree.



  

Finding Order Statistics
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160How do we update the 
numbers after the rotation?

How do we update the 
numbers after the rotation?



  

Rotations and Order Statistics
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Rotations and Order Statistics
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Order Statistic Trees

● The tree we just saw is called an order 
statistic tree.

● Structurally, it's a red/black tree where each 
node a count of the nodes in the left subtree.

● Only O(log n) values must be updated on an 
insertion or deletion and each can be 
updated in time O(1).

● Supports all BST operations plus select 
(find kth order statistic) and rank (tell index 
of value) in time O(log n).



  

Generalizing our Idea



  

The General Pattern

● This data structure works in the appropriate 
time bounds because values only change on 
an insertion or deletion
● along the root-leaf access path, and
● during rotations.

● Red/black trees have height O(log n) and 
require only O(log n) rotations per insertion 
or deletion.

● We can augment red/black trees with any 
attributes we'd like as long as they obey 
these properties.



  

Augmented Red/Black Trees

● Let f(node) be a function with the following properties:

● f can be computed in time O(1).
● f can be computed at a node based purely on that 

node's key and the values of f computed at node's 
children.

● Theorem: The values of f can be cached in the nodes 
of a red/black tree without changing the asymptotic 
runtime of insertions or deletions.

● Proof sketch: After inserting or deleting a node, the 
only values that need to change are along the root-leaf 
access path, plus values at nodes that were rotated. 
There are only O(log n) of these.



  

Augmented Red/Black Trees

f can be computed at a node based purely on the key in that node 
and the values of f in it that node's children.



  

Order Statistics

● Note: The approach we took for building order 
statistic trees does not fall into this framework.

● Example: The values below denote the number 
of nodes in the indicated nodes' left subtrees. 
What is the correct value of x?

137 42

x



  

Order Statistics via Augmentation

● Have each node store three quantities:

● numLeft, the number of nodes in the left subtree.

● numRight, the number of nodes in the right subtree.

● numTotal, the total number of nodes in the subtree.

● Can compute this information at a node in time O(1) 
based on subtree values:

● node.numLeft = node.left.numTotal

● node.numRight = node.right.numTotal

● node.numTotal = 1 + node.numLeft + node.numRight

● Therefore, using the augmented BST framework, can 
compute subtree sizes.

● No need to reason about tree rotations!



  

Example: Dynamic 1D Closest Points



  

1D Hierarchical Clustering

42 44 60 66 71 86 92 100

60 66 71 86 92 100
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1D Hierarchical Clustering

42 44 60 66 71 86 92 10020

This tree is called 
a dendrogram.

This tree is called 
a dendrogram.



  

Analyzing the Runtime

● How efficient is this algorithm?
● Number of rounds: Θ(n).
● Work to find closest pair: O(n).
● Total runtime: Θ(n2).

● Can we do better?



  

Dynamic 1D Closest Points

● The dynamic 1D closest points 
problem is the following:

Maintain a set of elements undergoing 
insertion and deletion while efficiently 
supporting queries of the form “what is 

the closest pair of points?” 
● Can we build a better data structure for 

this?



  

Dynamic 1D Closest Points
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A Tree Augmentation

● Augment each node to store the following:
● The maximum value in the tree.
● The minimum value in the tree.
● The closest pair of points in the tree.

● Claim: Each of these properties can be 
computed in time O(1) from the left and right 
subtrees.

● These properties can be augmented into a 
red/black tree so that insertions and deletions 
take time O(log n) and “what is the closest pair 
of points?” can be answered in time O(1).



  

Dynamic 1D Closest Points
137

        Min: -17

        Max: 415

Closest: 137, 142
42

        Min: -17

        Max: 67

  Closest: 15, 21

271
        Min: 142

        Max: 415

Closest: 300, 310



  

A Helpful Intuition



  

Divide-and-Conquer

● Initially, it can be tricky to come up with the 
right tree augmentations.

● Useful intuition: Imagine you're writing a 
divide-and-conquer algorithm over the 
elements and have O(1) time per “conquer” 
step.

< k > k

k



  

Time-Out for Announcements!



  

Problem Set Three

● Problem Set Two was due today at 3:00PM.
● Problem Set Three goes out now. It's due next 

Thursday, April 28th, at the start of lecture.
● Explore advanced tree operations, augmented search 

trees, and data structure isometries!
● As always, feel free to ask questions on Piazza or to 

stop by office hours.

● Start this one early; Q3 has a couple of tricky 
parts and Q4 will require you to do a bit of 
independent reading.



  

Apply to Section Lead!

● Section leading applications are now 
open for Autumn quarter.

● Apply online at
https://cs198.stanford.edu/cs106/Apply.aspx

by Thursday, April 28 at 11:59PM.
● Highly recommended – this is one of the 

best programs the CS department offers.

https://cs198.stanford.edu/cs106/Apply.aspx


  



  

Richard Tapia Conference

● Stanford will be sponsoring a number of 
students to attend the ACM Richard 
Tapia Celebration of Diversity in 
Computing.

● The conference is September 14 – 17 in 
Austin, Texas.

● Interested? Apply for sponsorship using 
this link.

http://goo.gl/forms/6k8KWIqYu7


  

Back to CS166!



  

Join and Split



  

Joining Trees

● join(T₁, k, T₂) takes in two BSTs T₁ and T₂ and a key k. 
The assumption is that all keys in T₁ are less than k 
and all keys in T₂ are greater than k.

● join(T₁, k, T₂) destructively modifies T₁ and T₂ to 
produce a new BST containing all keys in T₁ and T₂ and 
the key k.

T₁ T₂
k



  

Joining Trees

● join(T₁, k, T₂) takes in two BSTs T₁ and T₂ and a key k. 
The assumption is that all keys in T₁ are less than k 
and all keys in T₂ are greater than k.

● join(T₁, k, T₂) destructively modifies T₁ and T₂ to 
produce a new BST containing all keys in T₁ and T₂ and 
the key k.

T



  

Splitting Trees

● split(T, k) destructively modifies BST T by 
producing two new BSTs T₁ and T₂ such that all 
keys in T₁ are less than or equal to k and all 
keys in T₂ are greater than k.

T

k



  

Splitting Trees

● split(T, k) destructively modifies BST T by 
producing two new BSTs T₁ and T₂ such that all 
keys in T₁ are less than or equal to k and all 
keys in T₂ are greater than k.

T₁

k

T₂



  

The Runtimes

● Both of these operations can be 
implemented in time O(n) by completely 
rebuilding the trees from scratch.
● Good exercise: determine how to do this.

● Amazingly, with the right augmentations:
● join(T₁, k, T₂) can be made to run in time 

Θ(1 + |h₁ – h₂|), where h₁ and h₂ are the heights 
of T₁ and T₂, respectively. 

● split(T, k) can be made to run in time O(log n).

● How is this possible?



  

Joining 2-3-4 Trees

● The isometry between 2-3-4 trees and 
red/black trees is very useful here.

● Let's see how to join two 2-3-4 trees and 
a key together.

● Based on what we find, we'll develop an 
efficient algorithm for joining red/black 
trees.



  

Joining 2-3-4 Trees
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Joining 2-3-4 Trees
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Joining 2-3-4 Trees

● To join(T₁, k, T₂):
● Assume that T₁ is the taller of the two trees; 

if not, do the following, but mirrored.
● Walk down the right spine of T₁ until a node 
v is found whose height is the height of T₂.

● Add k as a final key of v's parent with T₂ as a 
right child.

● Continue as if you were inserting k into v's 
parent – possibly split the node and 
propagate upward, etc.



  

Analyzing the Runtime

● Assume all 2-3-4 tree nodes are annotated with 
their heights.

● What is the runtime of join(T₁, k, T₂)?

● Runtime is Θ(1 + |h₁ – h₂|).

T₁
T₂

h₁
h₂

h₁ – h₂



  

Joining 2-3-4 Trees

● Define the black height of a node to 
be the number of black nodes on any 
root-null path starting at that node.

● To join(T₁, k, T₂):

● Assume that T₁ is the tree with larger 
black height; if not, do the following, 
but mirrored.

● Walk down the right spine of T₁ until a 
black node v is found whose black 
height is the black height of T₂.

● Insert a new node with key k, left child 
v, and right child T₂ 

● Make this new node the right child of 
v's old parent.

● Continue as if you had just inserted k.

T₂

v

k

Keep applying 
fixup rules to k.

Keep applying 
fixup rules to k.



  

Runtime Analysis

● Need to augment the red/black tree to store the black 
height of each node.

● This fits into our augmentation framework – can be 
computed from the black heights of the left and right 
children and from the node's own color.

● Via the isometry with 2-3-4 trees, the runtime is 
O(1 + |bh₁ – bh₂|).

● Since the black heights of the trees are at most twice 
the heights of the trees, this runtime is equivalently 
O(1 + |h₁ – h₂|).

● This is O(log n₁ + log n₂) in the worst-case.



  

Joining Two Trees

● What if you want to join two red/black 
trees but don't have a key to join them 
with?

● Delete the minimum value from the 
second tree in time O(log n), then use 
that to join the two trees.



  

Implementing split Efficiently



  

Splitting Trees is Hard

● Challenge 1: The 
split procedure 
might cut the 
existing tree into 
lots of smaller 
pieces.

● Challenge 2: 
Cutting a 
red/black tree into 
two pieces doesn't 
necessarily give 
you two red/black 
trees.



  

An Observation

● Suppose we want 
to perform a split 
on some key k.

● Begin by 
searching for k. If 
we find it, search 
for its inorder 
successor.

● Cut all links 
found along the 
way.



  

An Observation

● Notice that 
we're left with a 
collection of 
pennants, trees 
whose roots 
have just one 
child.



  

An Observation

● Let's imagine 
uncoloring all of 
these pennant 
roots.

● The trees below 
them are almost 
red/black trees, 
but their roots 
might be red.

● Let's recolor all 
the roots black.



  

An Observation

● We now have a 
bunch of 
red/black trees 
hanging off of 
pennants.

● Key idea: Find 
a way to join 
these trees back 
together to form 
the two trees 
we want.



  

Fleshing Out the Algorithm
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃ 

R₂p₆

● Do a search for the inorder 
successor of k, cutting each 
link followed.

● For each pennant, color its 
child black. We now have a 
collection of red/black trees 
hanging off of random nodes.

● Categorize each hanging tree 
as of type L or type R 
depending on whether it's a 
left or right child of its 
pennant.



  

Fleshing Out the Algorithm
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃ 

R₂p₆

● Observation 1: Look at any 
two consecutive L trees or R 
trees and the root of the 
pennant of the first tree. 
Then the key in the pennant 
root is strictly between all the 
values of those two trees.

● Observation 2: There are at 
most two trees of each black 
height hanging off of the 
pennants.



  

Fleshing Out the Algorithm

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

All keys here are less 
than or equal to k.

All keys here are 
greater than k.



  

Fleshing Out the Algorithm

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

Key idea: Join all the L trees back 
together and all the R trees back 

together, using the nodes at the root of 
the pennants as the joining key. 

Because the height differences are low, 
the runtime works out to O(log n).

Key idea: Join all the L trees back 
together and all the R trees back 

together, using the nodes at the root of 
the pennants as the joining key. 

Because the height differences are low, 
the runtime works out to O(log n).



  

Analyzing the Runtime

● Suppose there is one tree of each black height in L.

● What is the runtime of concatenating the trees in 
reverse order of heights?

● Each join takes time O(1 + |bh₁ – bh₂|) = O(1).

● At most O(log n) joins (access path has length O(log n))

● Runtime is O(log n).



  

Analyzing the Runtime

● Suppose there are trees of some, but not all, heights.

● What is the runtime of concatenating the trees in 
reverse order of heights?

● Each join takes time O(1 + bhₛ₊₁ – bhₛ)

● Summing across all joins:

  
 

● The number of trees (k) is O(log n) and the maximum 
black height is O(log n). Runtime: O(log n).

∑
i=1

k−1

O(1+bhi+1−bhi) = O(∑
i=1

k−1

(1+bhi+1−bhi))

= O(k+∑
i=1

k−1

(bhi+1−bhi))

= O(k+bhk−bh1)



  

The Split Algorithm

● Split the tree into L pennants and R 
pennants, as before.

● Iterate across the pennants in ascending 
order of heights, joining each of the 
corresponding trees together using the 
pennant node as the join key. This takes time 
O(log n).

● There will be O(1) leftover pennant nodes. 
Insert them in time O(log n) into the proper 
trees.

● Net runtime: O(log n).



  

An Application: Flexible Sequences



  

Sequence Data Structures

● The two major data structures you're probably used to 
seeing for sequences are dynamic arrays and linked lists.

● In a dynamic array:
● Lookups take time O(1).
● Insertions and deletions take time O(n).
● Concatenations take time O(n).

● In a linked list:
● Lookups take time O(n).
● Insertions and deletions take time O(1) if you know where to 

insert and O(n) otherwise.
● Concatenations take time O(1).



  

Flexible Sequences

● Imagine we store a sequence as a modified order 
statistic tree.

● We ignore the relative order of the elements and 
instead use the indices to guide BST lookups.

● Now, insertions, lookups, and deletions all take 
time O(log n).

● Armed with split and join, we can also concatenate 
and split sequences in time O(log n) each.

● After filling in the details, you can now manage a 
sequence of elements with O(log n) insertions, 
deletions, lookups, concatenations, and splits!



  

Next Time

● Amortized Analysis
● Lying about runtime costs in an honest 

manner.

● Frameworks for Amortization
● How can we think about assigning costs?

● Revisiting Earlier Structures
● Queues, Cartesian trees, and 2-3-4 trees. 


