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Outline for Today

● Cartesian Trees Revisited
● Why could we construct them in time O(n)?

● Amortized Analysis
● Analyzing data structures over the long term.

● The Two-Stack Queue
● A simple and elegant queue implementation.

● 2-3-4 Trees
● A better analysis of 2-3-4 tree insertions and 

deletions.



  

Cartesian Trees Revisited



  

Cartesian Trees

● A Cartesian tree is a binary tree derived from an 
array and defined as follows:

● The empty array has an empty Cartesian tree.
● For a nonempty array, the root stores the index of 

the minimum value. Its left and right children are 
Cartesian trees for the subarrays to the left and 
right of the minimum.
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The Runtime Analysis

● Adding an individual node to a Cartesian 
tree might take time O(n).

● However, the net time spent adding new 
nodes across the whole tree is O(n).

● Why is this?
● Every node pushed at most once.
● Every node popped at most once.
● Work done is proportional to the number of 

pushes and pops.
● Total runtime is O(n).



  

The Tradeof

● Typically, we've analyzed data structures by 
bounding the worst-case runtime of each 
operation.

● Sometimes, all we care about is the total 
runtime of a sequence of m operations, not 
the cost of each individual operation.

● Trade worst-case runtime per operation 
for worst-case runtime overall.

● This is a fundamental technique in data 
structure design.



  

The Goal

● Suppose we have a data structure and perform a 
series of operations op₁, op₂, …, opₘ.
● These operations might be the same operation, or 

they might be diferent.

● Let t(opₖ) denote the time required to perform 
operation opₖ.

● Goal: Bound the expression

● There are many ways to do this. We'll see three 
recurring techniques.

T=∑
i=1

m

t (opi)



  

Amortized Analysis

● An amortized analysis is a diferent way of 
bounding the runtime of a sequence of 
operations.

● Each operation opᵢ really takes time t(opᵢ).

● Idea: Assign to each operation opᵢ a new cost 
a(opᵢ), called the amortized cost, such that

 

 

● If the values of a(opᵢ) are chosen wisely, the 
second sum can be much easier to evaluate than 
the first.

∑
i=1

m

t (opi) ≤ ∑
i=1

m

a(opi)



  

The Aggregate Method

● In the aggregate method, we directly 
evaluate

 

 

and then set a(opᵢ) = T / m.
● Assigns each operation the average of all 

the operation costs.
● The aggregate method says that the cost of 

a Cartesian tree insertion is amortized O(1).

T=∑
i=1

m

t (opi)



  

Amortized Analysis

● We will see two types of amortized analysis 
today:
● The banker's method (also called the 

accounting method) works by placing “credits” 
on the data structure redeemable for units of 
work.

● The potential method (also called the 
physicist's method) works by assigning a 
potential function to the data structure and 
factoring in changes to that potential to the 
overall runtime.

● All three techniques are useful at diferent 
times, so we'll see how to use all three today.



  

The Banker's Method



  

The Banker's Method

● In the banker's method, operations can place 
credits on the data structure or spend credits that 
have already been placed.

● Placing a credit somewhere takes time O(1).

● Credits may be removed from the data structure to 
pay for O(1) units of work.

● Note: the credits don't actually show up in the 
data structure. It's just an accounting trick.

● The amortized cost of an operation is

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)



  

The Banker's Method

● If we never spend credits we don't have: 

 
● The sum of the amortized costs upper-

bounds the sum of the true costs.

∑
i=1

m

a(opi) = ∑
i=1

m

(t (opi)+O(1)⋅(addedi−removedi))     

= ∑
i=1

m

t (opi) + O(1)∑
i=1

m

(addedi−removedi)

= ∑
i=1

m

t (opi) + O(1)⋅netCredits                 

≥ ∑
i=1

m

t (opi)                                               



  

Constructing Cartesian Trees

271 137 159 314 42
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$

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Work done: 1 push
Credits Added: $1

Amortized Cost: 2



  

Constructing Cartesian Trees
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Credits Added: $1

Amortized Cost: 2
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Credits Added: $1

Amortized Cost: 2



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Work done: 1 push
Credits Added: $1

Amortized Cost: 2



  

Constructing Cartesian Trees
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Work done: 1 push
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Work done: 1 push
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Constructing Cartesian Trees
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Work done: 1 push, 3 pops
Credits Removed: $3

Credits Added: $1

Amortized Cost: 2

Work done: 1 push, 3 pops
Credits Removed: $3

Credits Added: $1

Amortized Cost: 2



  

The Banker's Method

● Using the banker's method, the cost of an 
insertion is

   = t(op) + O(1) · (addedᵢ – removedᵢ)

   = 1 + k + O(1) · (1 – k)

   = 1 + k + 1 – k

   = 2

   = O(1)
● Each insertion has amortized cost O(1).
● Any n insertions will take time O(n).



  

Intuiting the Banker's Method
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Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 137

Pop 314Pop 159Pop 137

$

Each credit placed can be used to 
“move” a unit of work from one 

operation to another.

Each credit placed can be used to 
“move” a unit of work from one 

operation to another.



  

An Observation

● We defined the amortized cost of an operation to 
be

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● Equivalently, this is

a(opᵢ) = t(opᵢ) + O(1) · Δcreditsᵢ  

● Some observations:

● It doesn't matter where these credits are placed 
or removed from.

● The total number of credits added and removed 
doesn't matter; all that matters is the difference 
between these two.



  

The Potential Method

● In the potential method, we define a potential 
function Φ that maps a data structure to a non-
negative real value.

● Each operation on the data structure might change this 
potential.

● If we denote by Φᵢ the potential of the data structure 
just before operation i, then we can define a(opᵢ) as

a(opᵢ) = t(opᵢ) + O(1) · (Φᵢ₊₁ – Φᵢ)

● Intuitively:

● Operations that increase the potential have amortized 
cost greater than their true cost.

● Operations that decrease the potential have amortized 
cost less than their true cost.



  

The Potential Method

● Assuming that Φᵢ₊₁ – Φ₁ ≥ 0, this means 
that the sum of the amortized costs 
upper-bounds the sum of the real costs.

● Typically, Φ₁ = 0, so Φᵢ₊₁ – Φ₁ ≥ 0 holds.

∑
i=1

m

a(opi) = ∑
i=1

m

(t (opi)+O(1)⋅(Φi+1−Φi))       

= ∑
i=1

m

t (opi) + O(1)⋅∑
i=1

m

(Φi+1−Φ i)  

= ∑
i=1

m

t (opi) + O(1)⋅(Φm+1−Φ1)      



  

Constructing Cartesian Trees

271 137 159 314 42

271

271

Work done: 1 push
ΔΦ: +1

Amortized Cost: 2

Work done: 1 push
ΔΦ: +1

Amortized Cost: 2

Φ = 1



  

Constructing Cartesian Trees

271 137 159 314 42

271
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Work done: 1 push, 1 pop
ΔΦ: 0

Amortized Cost: 2

Work done: 1 push, 1 pop
ΔΦ: 0

Amortized Cost: 2

Φ = 1

Notice that Φ went
 

1 → 0 → 1
 

All that matters is the 
net change.

Notice that Φ went
 

1 → 0 → 1
 

All that matters is the 
net change.



  

Constructing Cartesian Trees
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Constructing Cartesian Trees
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Work done: 1 push
Credits Added: ΔΦ: +1

Amortized Cost: 2

Work done: 1 push
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Amortized Cost: 2

Φ = 3



  

Constructing Cartesian Trees

271 137 159 314 42
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137
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Work done: 1 push, 3 pops
ΔΦ: -2

Amortized Cost: 2

Work done: 1 push, 3 pops
ΔΦ: -2

Amortized Cost: 2

Φ = 1



  

The Potential Method

● Using the potential method, the cost of an 
insertion into a Cartesian tree can be 
computed as

= t(op) + ΔΦ

= 1 + k + O(1) · (1 – k)

= 1 + k + 1 – k

= 2

= O(1)

● So the amortized cost of an insertion is O(1).
● Therefore, n total insertions takes time O(n).



  

Another Example: Two-Stack Queues



  

The Two-Stack Queue

● Maintain two stacks, an In stack and an 
Out stack.

● To enqueue an element, push it onto the 
In stack.

● To dequeue an element:
● If the Out stack is empty, pop everything of 

the In stack and push it onto the Out stack.
● Pop the Out stack and return its value.



  

An Aggregate Analysis

● Claim: Cost of a sequence of n intermixed 
enqueues and dequeues is O(n).

● Proof:
● Every value is pushed onto a stack at most 

twice: once for in, once for out.
● Every value is popped of of a stack at most 

twice: once for in, once for out.
● Each push/pop takes time O(1).
● Net runtime: O(n).



  

The Banker's Method

● Let's analyze this data structure using the 
banker's method.

● Some observations:
● All enqueues take worst-case time O(1).
● Each dequeue can be split into a “light” or 

“heavy” dequeue.
● In a “light” dequeue, the out stack is nonempty. 

Worst-case time is O(1).
● In a “heavy” dequeue, the out stack is empty. 

Worst-case time is O(n).



  

The Two-Stack Queue
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The Two-Stack Queue
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The Banker's Method

● Enqueue:
● O(1) work, plus one credit added.
● Amortized cost: O(1).

● “Light” dequeue:
● O(1) work, plus no change in credits.
● Amortized cost: O(1).

● “Heavy” dequeue:
● Θ(k) work, where k is the number of entries that started 

in the “in” stack.
● k credits spent.
● By choosing the amount of work in a credit appropriately, 

amortized cost is O(1).



  

The Potential Method

● Define Φ(D) to be the height of the in stack.
● Enqueue:

● Does O(1) work and increases Φ by one.
● Amortized cost: O(1).

● “Light” dequeue:
● Does O(1) work and leaves Φ unchanged.
● Amortized cost: O(1).

● “Heavy” dequeue:
● Does Θ(k) work, where k is the number of entries moved from 

the “in” stack.
● ΔΦ = -k.
● By choosing the amount of work stored in each unit of potential 

correctly, amortized cost becomes O(1).



  

Time-Out for Announcements!



  

Problem Set Two

● Problem Set Two solutions are now 
available. If you didn't pick them up in 
class, you can grab them from the Gates 
building.

● We're working on grading PS2 right now. 
We're aiming to have them returned by 
Tuesday of next week.



  

Problem Set Mixer

● Looking for a partner for the problem 
sets? Stick around after class today for 
our problem set mixer event.

● Free snacks!



  

Back to CS166!



  

Another Example: 2-3-4 Trees



  

2-3-4 Trees

● Inserting or deleting values from a 2-3-4 
trees takes time O(log n).

● Why is that?
● We do some amount of work finding the 

insertion or deletion point, which is Θ(log n).
● We also do some amount of work “fixing up” the 

tree by doing insertions or deletions.

● What is the cost of that second amount of 
work?



  

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no 
fixup – we just insert an extra key into a leaf.

● Some insertions require some fixup to split 
nodes and propagate upward.
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2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no 
fixup – we just insert an extra key into a leaf.

● Some insertions require some fixup to split 
nodes and propagate upward.
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2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no 
fixup – we just insert an extra key into a leaf.

● Some insertions require some fixup to split 
nodes and propagate upward.
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Observation: The only case 
where an insertion propagates 
upward is when there are four 
keys in a node.

Observation: The only case 
where an insertion propagates 
upward is when there are four 
keys in a node.



  

2-3-4 Tree Deletions

41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fixup; we just delete a key from a leaf.

● Some deletions require fixup work to 
propagate the deletion upward in the tree.

36

46

Observation: The only case 
where a deletion propagates 
upward is when there are 
two sibling nodes that each 
have one key.

Observation: The only case 
where a deletion propagates 
upward is when there are 
two sibling nodes that each 
have one key.



  

2-3-4 Tree Fixup

● Claim: The fixup work on 2-3-4 trees is 
amortized O(1).

● We'll prove this in three steps:
● First, we'll prove that in any sequence of m 

insertions, the amortized fixup work is O(1).
● Next, we'll prove that in any sequence of m 

deletions, the amortized fixup work is O(1).
● Finally, we'll show that in any sequence of 

insertions and deletions, the amortized fixup 
work is O(1).



  

2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the 
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future 
splits.
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2-3-4 Tree Insertions
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2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the 
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future 
splits.
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2-3-4 Tree Insertions

● Using the banker's method, we get that pure 
insertions have O(1) amortized fixup work.

● Could also do this using the potential 
method.
● Define Φ to be the number of 4-nodes.
● Each “light” insertion might introduce a new 4-

node, requiring amortized O(1) work.
● Each “heavy” insertion splits k 4-nodes and 

decreases the potential by k for O(1) amortized 
work.



  

2-3-4 Tree Deletions
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● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates 
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children 
are 2-nodes (call them “tiny triangles.”)
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2-3-4 Tree Deletions
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2-3-4 Tree Deletions
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● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates 
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children 
are 2-nodes (call them “tiny triangles.”)
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2-3-4 Tree Deletions

● Using the banker's method, we get that pure 
deletions have O(1) amortized fixup work.

● Could also do this using the potential method.
● Define Φ to be the number of 2-nodes with two 

2-node children (call these “tiny triangles.”)
● Each “light” deletion might introduce two tiny 

triangles: one at the node where the deletion 
ended and one right above it. Amortized time is 
O(1).

● Each “heavy” deletion combines k tiny triangles 
and decreases the potential by at least k. 
Amortized time is O(1).



  

Combining the Two

● We've shown that pure insertions and pure 
deletions require O(1) amortized fixup time.

● What about interleaved insertions and 
deletions?

● Initial idea: Use a potential function that's the 
sum of the two previous potential functions.

● Φ is the number of 4-nodes plus the number of 
tiny triangles.

(       ) (       )#  + #Φ =



  

A Problem
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A Problem
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These two “tiny 
triangles” are new!

These two “tiny 
triangles” are new!



  

A Problem

● When doing a “heavy” insertion that splits multiple 4-
nodes, the resulting nodes might produce new “tiny 
triangles.”

● Symptom: Our potential doesn't drop nearly as 
much as it should, so we can't pay for future 
operations. Amortized cost of the operation works 
out to Θ(log n), not O(1) as we hoped.

● Root Cause: Splitting a 4-node into a 2-node and a 
3-node might introduce new “tiny triangles,” which in 
turn might cause future deletes to become more 
expensive.



  

The Solution

● 4-nodes are troublesome for two separate reasons:
● They cause chained splits in an insertion.
● After an insertion, they might split and produce a 

tiny triangle.

● Idea: Charge each 4-node for two different costs: 
the cost of an expensive insertion, plus the 
(possible) future cost of doing an expensive 
deletion.

(       ) (       )2#  + #Φ =



  

Unlocking our Potential
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Unlocking our Potential
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The Solution

● This new potential function ensures that 
if an insertion chains up k levels, the 
potential drop is at least k (and possibly 
up to 2k).

● Therefore, the amortized fixup work for 
an insertion is O(1).

● Using the same argument as before, 
deletions require amortized O(1) fixups.



  

Why This Matters

● Via the isometry, red/black trees have 
O(1) amortized fixup per insertion or 
deletion.

● In practice, this makes red/black trees 
much faster than other balanced trees on 
insertions and deletions, even though 
other balanced trees can be better 
balanced.



  

More to Explore

● A finger tree is a variation on a B-tree in which 
certain nodes are pointed at by “fingers.” 
Insertions and deletions are then done only around 
the fingers.

● Because the only cost of doing an insertion or 
deletion is the fixup cost, these trees have 
amortized O(1) insertions and deletions.

● They're often used in purely functional settings to 
implement queues and deques with excellent 
runtimes.

● Liked the previous analysis? Consider looking into 
this for your final project!



  

Next Time

● Binomial Heaps
● A simple and versatile heap data structure 

based on binary arithmetic.

● Lazy Binomial Heaps
● Rejiggering binomial heaps for fun and 

profit.


