

Amortized Analysis

Outline for Today

● Cartesian Trees Revisited
● Why could we construct them in time O(n)?

● Amortized Analysis
● Analyzing data structures over the long term.

● The Two-Stack Queue
● A simple and elegant queue implementation.

● 2-3-4 Trees
● A better analysis of 2-3-4 tree insertions and

deletions.

Cartesian Trees Revisited

Cartesian Trees

● A Cartesian tree is a binary tree derived from an
array and defined as follows:

● The empty array has an empty Cartesian tree.
● For a nonempty array, the root stores the index of

the minimum value. Its left and right children are
Cartesian trees for the subarrays to the left and
right of the minimum.

261 268 161 167 166 14 55 22 43 116 5 3 9 7

2

0 4

31

2

4

3

1

0

4

0

2

31

The Runtime Analysis

● Adding an individual node to a Cartesian
tree might take time O(n).

● However, the net time spent adding new
nodes across the whole tree is O(n).

● Why is this?
● Every node pushed at most once.
● Every node popped at most once.
● Work done is proportional to the number of

pushes and pops.
● Total runtime is O(n).

The Tradeof

● Typically, we've analyzed data structures by
bounding the worst-case runtime of each
operation.

● Sometimes, all we care about is the total
runtime of a sequence of m operations, not
the cost of each individual operation.

● Trade worst-case runtime per operation
for worst-case runtime overall.

● This is a fundamental technique in data
structure design.

The Goal

● Suppose we have a data structure and perform a
series of operations op₁, op₂, …, opₘ.
● These operations might be the same operation, or

they might be diferent.

● Let t(opₖ) denote the time required to perform
operation opₖ.

● Goal: Bound the expression

● There are many ways to do this. We'll see three
recurring techniques.

T=∑
i=1

m

t (opi)

Amortized Analysis

● An amortized analysis is a diferent way of
bounding the runtime of a sequence of
operations.

● Each operation opᵢ really takes time t(opᵢ).

● Idea: Assign to each operation opᵢ a new cost
a(opᵢ), called the amortized cost, such that

● If the values of a(opᵢ) are chosen wisely, the
second sum can be much easier to evaluate than
the first.

∑
i=1

m

t (opi) ≤ ∑
i=1

m

a(opi)

The Aggregate Method

● In the aggregate method, we directly
evaluate

and then set a(opᵢ) = T / m.
● Assigns each operation the average of all

the operation costs.
● The aggregate method says that the cost of

a Cartesian tree insertion is amortized O(1).

T=∑
i=1

m

t (opi)

Amortized Analysis

● We will see two types of amortized analysis
today:
● The banker's method (also called the

accounting method) works by placing “credits”
on the data structure redeemable for units of
work.

● The potential method (also called the
physicist's method) works by assigning a
potential function to the data structure and
factoring in changes to that potential to the
overall runtime.

● All three techniques are useful at diferent
times, so we'll see how to use all three today.

The Banker's Method

The Banker's Method

● In the banker's method, operations can place
credits on the data structure or spend credits that
have already been placed.

● Placing a credit somewhere takes time O(1).

● Credits may be removed from the data structure to
pay for O(1) units of work.

● Note: the credits don't actually show up in the
data structure. It's just an accounting trick.

● The amortized cost of an operation is

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

The Banker's Method

● If we never spend credits we don't have:

● The sum of the amortized costs upper-

bounds the sum of the true costs.

∑
i=1

m

a(opi) = ∑
i=1

m

(t (opi)+O(1)⋅(addedi−removedi))

= ∑
i=1

m

t (opi) + O(1)∑
i=1

m

(addedi−removedi)

= ∑
i=1

m

t (opi) + O(1)⋅netCredits

≥ ∑
i=1

m

t (opi)

Constructing Cartesian Trees

271 137 159 314 42

271

271

$

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

Work done: 1 push, 1 pop
Credits Removed: $1

Credits Added: $1

Amortized Cost: 2

Work done: 1 push, 1 pop
Credits Removed: $1

Credits Added: $1

Amortized Cost: 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314

314

$

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42

42

$

Work done: 1 push, 3 pops
Credits Removed: $3

Credits Added: $1

Amortized Cost: 2

Work done: 1 push, 3 pops
Credits Removed: $3

Credits Added: $1

Amortized Cost: 2

The Banker's Method

● Using the banker's method, the cost of an
insertion is

 = t(op) + O(1) · (addedᵢ – removedᵢ)

 = 1 + k + O(1) · (1 – k)

 = 1 + k + 1 – k

 = 2

 = O(1)
● Each insertion has amortized cost O(1).
● Any n insertions will take time O(n).

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 137

Pop 314

Pop 159

Pop 137

$
$

$ $

$

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 137

Pop 314Pop 159Pop 137

$

Each credit placed can be used to
“move” a unit of work from one

operation to another.

Each credit placed can be used to
“move” a unit of work from one

operation to another.

An Observation

● We defined the amortized cost of an operation to
be

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● Equivalently, this is

a(opᵢ) = t(opᵢ) + O(1) · Δcreditsᵢ

● Some observations:

● It doesn't matter where these credits are placed
or removed from.

● The total number of credits added and removed
doesn't matter; all that matters is the difference
between these two.

The Potential Method

● In the potential method, we define a potential
function Φ that maps a data structure to a non-
negative real value.

● Each operation on the data structure might change this
potential.

● If we denote by Φᵢ the potential of the data structure
just before operation i, then we can define a(opᵢ) as

a(opᵢ) = t(opᵢ) + O(1) · (Φᵢ₊₁ – Φᵢ)

● Intuitively:

● Operations that increase the potential have amortized
cost greater than their true cost.

● Operations that decrease the potential have amortized
cost less than their true cost.

The Potential Method

● Assuming that Φᵢ₊₁ – Φ₁ ≥ 0, this means
that the sum of the amortized costs
upper-bounds the sum of the real costs.

● Typically, Φ₁ = 0, so Φᵢ₊₁ – Φ₁ ≥ 0 holds.

∑
i=1

m

a(opi) = ∑
i=1

m

(t (opi)+O(1)⋅(Φi+1−Φi))

= ∑
i=1

m

t (opi) + O(1)⋅∑
i=1

m

(Φi+1−Φ i)

= ∑
i=1

m

t (opi) + O(1)⋅(Φm+1−Φ1)

Constructing Cartesian Trees

271 137 159 314 42

271

271

Work done: 1 push
ΔΦ: +1

Amortized Cost: 2

Work done: 1 push
ΔΦ: +1

Amortized Cost: 2

Φ = 1

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

Work done: 1 push, 1 pop
ΔΦ: 0

Amortized Cost: 2

Work done: 1 push, 1 pop
ΔΦ: 0

Amortized Cost: 2

Φ = 1

Notice that Φ went

1 → 0 → 1

All that matters is the
net change.

Notice that Φ went

1 → 0 → 1

All that matters is the
net change.

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

Work done: 1 push
ΔΦ: +1

Amortized Cost: 2

Work done: 1 push
ΔΦ: +1

Amortized Cost: 2

Φ = 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

314

314

Work done: 1 push
Credits Added: ΔΦ: +1

Amortized Cost: 2

Work done: 1 push
Credits Added: ΔΦ: +1

Amortized Cost: 2

Φ = 3

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42

42

Work done: 1 push, 3 pops
ΔΦ: -2

Amortized Cost: 2

Work done: 1 push, 3 pops
ΔΦ: -2

Amortized Cost: 2

Φ = 1

The Potential Method

● Using the potential method, the cost of an
insertion into a Cartesian tree can be
computed as

= t(op) + ΔΦ

= 1 + k + O(1) · (1 – k)

= 1 + k + 1 – k

= 2

= O(1)

● So the amortized cost of an insertion is O(1).
● Therefore, n total insertions takes time O(n).

Another Example: Two-Stack Queues

The Two-Stack Queue

● Maintain two stacks, an In stack and an
Out stack.

● To enqueue an element, push it onto the
In stack.

● To dequeue an element:
● If the Out stack is empty, pop everything of

the In stack and push it onto the Out stack.
● Pop the Out stack and return its value.

An Aggregate Analysis

● Claim: Cost of a sequence of n intermixed
enqueues and dequeues is O(n).

● Proof:
● Every value is pushed onto a stack at most

twice: once for in, once for out.
● Every value is popped of of a stack at most

twice: once for in, once for out.
● Each push/pop takes time O(1).
● Net runtime: O(n).

The Banker's Method

● Let's analyze this data structure using the
banker's method.

● Some observations:
● All enqueues take worst-case time O(1).
● Each dequeue can be split into a “light” or

“heavy” dequeue.
● In a “light” dequeue, the out stack is nonempty.

Worst-case time is O(1).
● In a “heavy” dequeue, the out stack is empty.

Worst-case time is O(n).

The Two-Stack Queue

1
Out In

2

3

4

$

$

$

$

The Two-Stack Queue

1

In

2

3

4
Out

The Banker's Method

● Enqueue:
● O(1) work, plus one credit added.
● Amortized cost: O(1).

● “Light” dequeue:
● O(1) work, plus no change in credits.
● Amortized cost: O(1).

● “Heavy” dequeue:
● Θ(k) work, where k is the number of entries that started

in the “in” stack.
● k credits spent.
● By choosing the amount of work in a credit appropriately,

amortized cost is O(1).

The Potential Method

● Define Φ(D) to be the height of the in stack.
● Enqueue:

● Does O(1) work and increases Φ by one.
● Amortized cost: O(1).

● “Light” dequeue:
● Does O(1) work and leaves Φ unchanged.
● Amortized cost: O(1).

● “Heavy” dequeue:
● Does Θ(k) work, where k is the number of entries moved from

the “in” stack.
● ΔΦ = -k.
● By choosing the amount of work stored in each unit of potential

correctly, amortized cost becomes O(1).

Time-Out for Announcements!

Problem Set Two

● Problem Set Two solutions are now
available. If you didn't pick them up in
class, you can grab them from the Gates
building.

● We're working on grading PS2 right now.
We're aiming to have them returned by
Tuesday of next week.

Problem Set Mixer

● Looking for a partner for the problem
sets? Stick around after class today for
our problem set mixer event.

● Free snacks!

Back to CS166!

Another Example: 2-3-4 Trees

2-3-4 Trees

● Inserting or deleting values from a 2-3-4
trees takes time O(log n).

● Why is that?
● We do some amount of work finding the

insertion or deletion point, which is Θ(log n).
● We also do some amount of work “fixing up” the

tree by doing insertions or deletions.

● What is the cost of that second amount of
work?

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fixup – we just insert an extra key into a leaf.

● Some insertions require some fixup to split
nodes and propagate upward.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fixup – we just insert an extra key into a leaf.

● Some insertions require some fixup to split
nodes and propagate upward.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fixup – we just insert an extra key into a leaf.

● Some insertions require some fixup to split
nodes and propagate upward.

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fixup – we just insert an extra key into a leaf.

● Some insertions require some fixup to split
nodes and propagate upward.

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

41

Observation: The only case
where an insertion propagates
upward is when there are four
keys in a node.

Observation: The only case
where an insertion propagates
upward is when there are four
keys in a node.

2-3-4 Tree Deletions

41 61

56

51

● Most deletions from a 2-3-4 tree require no
fixup; we just delete a key from a leaf.

● Some deletions require fixup work to
propagate the deletion upward in the tree.

36

46

Observation: The only case
where a deletion propagates
upward is when there are
two sibling nodes that each
have one key.

Observation: The only case
where a deletion propagates
upward is when there are
two sibling nodes that each
have one key.

2-3-4 Tree Fixup

● Claim: The fixup work on 2-3-4 trees is
amortized O(1).

● We'll prove this in three steps:
● First, we'll prove that in any sequence of m

insertions, the amortized fixup work is O(1).
● Next, we'll prove that in any sequence of m

deletions, the amortized fixup work is O(1).
● Finally, we'll show that in any sequence of

insertions and deletions, the amortized fixup
work is O(1).

2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future
splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

$

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future
splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

$

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future
splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future
splits.

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future
splits.

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

41

2-3-4 Tree Insertions

● Using the banker's method, we get that pure
insertions have O(1) amortized fixup work.

● Could also do this using the potential
method.
● Define Φ to be the number of 4-nodes.
● Each “light” insertion might introduce a new 4-

node, requiring amortized O(1) work.
● Each “heavy” insertion splits k 4-nodes and

decreases the potential by k for O(1) amortized
work.

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children
are 2-nodes (call them “tiny triangles.”)

$$

$

2-3-4 Tree Deletions

36

46

? 41 61

56

51

● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children
are 2-nodes (call them “tiny triangles.”)

$$

$

2-3-4 Tree Deletions

?

46

41 61

56

51

● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children
are 2-nodes (call them “tiny triangles.”)

36

$$

$

2-3-4 Tree Deletions

41 61

56

51

● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children
are 2-nodes (call them “tiny triangles.”)

36

46

2-3-4 Tree Deletions

● Using the banker's method, we get that pure
deletions have O(1) amortized fixup work.

● Could also do this using the potential method.
● Define Φ to be the number of 2-nodes with two

2-node children (call these “tiny triangles.”)
● Each “light” deletion might introduce two tiny

triangles: one at the node where the deletion
ended and one right above it. Amortized time is
O(1).

● Each “heavy” deletion combines k tiny triangles
and decreases the potential by at least k.
Amortized time is O(1).

Combining the Two

● We've shown that pure insertions and pure
deletions require O(1) amortized fixup time.

● What about interleaved insertions and
deletions?

● Initial idea: Use a potential function that's the
sum of the two previous potential functions.

● Φ is the number of 4-nodes plus the number of
tiny triangles.

() ()# + #Φ =

A Problem

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

= 6

() ()# + #Φ =

A Problem

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

() ()# + #Φ =

A Problem

1 6

11

16 91

86

81

56

76

71

66

612

3

21 41

() ()# + #Φ =

= 5

31

26 36 53

51

46

These two “tiny
triangles” are new!

These two “tiny
triangles” are new!

A Problem

● When doing a “heavy” insertion that splits multiple 4-
nodes, the resulting nodes might produce new “tiny
triangles.”

● Symptom: Our potential doesn't drop nearly as
much as it should, so we can't pay for future
operations. Amortized cost of the operation works
out to Θ(log n), not O(1) as we hoped.

● Root Cause: Splitting a 4-node into a 2-node and a
3-node might introduce new “tiny triangles,” which in
turn might cause future deletes to become more
expensive.

The Solution

● 4-nodes are troublesome for two separate reasons:
● They cause chained splits in an insertion.
● After an insertion, they might split and produce a

tiny triangle.

● Idea: Charge each 4-node for two different costs:
the cost of an expensive insertion, plus the
(possible) future cost of doing an expensive
deletion.

() ()2# + #Φ =

Unlocking our Potential

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

() ()2# + #Φ =

= 9

Unlocking our Potential

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

() ()2# + #Φ =

Unlocking our Potential

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

= 5

() ()2# + #Φ =

The Solution

● This new potential function ensures that
if an insertion chains up k levels, the
potential drop is at least k (and possibly
up to 2k).

● Therefore, the amortized fixup work for
an insertion is O(1).

● Using the same argument as before,
deletions require amortized O(1) fixups.

Why This Matters

● Via the isometry, red/black trees have
O(1) amortized fixup per insertion or
deletion.

● In practice, this makes red/black trees
much faster than other balanced trees on
insertions and deletions, even though
other balanced trees can be better
balanced.

More to Explore

● A finger tree is a variation on a B-tree in which
certain nodes are pointed at by “fingers.”
Insertions and deletions are then done only around
the fingers.

● Because the only cost of doing an insertion or
deletion is the fixup cost, these trees have
amortized O(1) insertions and deletions.

● They're often used in purely functional settings to
implement queues and deques with excellent
runtimes.

● Liked the previous analysis? Consider looking into
this for your final project!

Next Time

● Binomial Heaps
● A simple and versatile heap data structure

based on binary arithmetic.

● Lazy Binomial Heaps
● Rejiggering binomial heaps for fun and

profit.

