Amortized Analysis

Outline for Today

- Cartesian Trees Revisited
 - Why could we construct them in time O(n)?
- Amortized Analysis
 - Analyzing data structures over the long term.
- The Two-Stack Queue
 - A simple and elegant queue implementation.
- 2-3-4 Trees
 - A better analysis of 2-3-4 tree insertions and deletions.

Cartesian Trees Revisited

Cartesian Trees

- A *Cartesian tree* is a binary tree derived from an array and defined as follows:
 - The empty array has an empty Cartesian tree.
 - For a nonempty array, the root stores the index of the minimum value. Its left and right children are Cartesian trees for the subarrays to the left and right of the minimum.

4

The Runtime Analysis

- Adding an individual node to a Cartesian tree might take time O(n).
- However, the net time spent adding new nodes across the whole tree is O(n).
- Why is this?
 - Every node pushed at most once.
 - Every node popped at most once.
 - Work done is proportional to the number of pushes and pops.
 - Total runtime is O(*n*).

The Tradeoff

- Typically, we've analyzed data structures by bounding the worst-case runtime of each operation.
- Sometimes, all we care about is the total runtime of a sequence of *m* operations, not the cost of each individual operation.
- Trade worst-case runtime per operation for worst-case runtime overall.
- This is a fundamental technique in data structure design.

The Goal

- Suppose we have a data structure and perform a series of operations *op*₁, *op*₂, ..., *op*_m.
 - These operations might be the same operation, or they might be different.
- Let *t*(*op*_{*k*}) denote the time required to perform operation *op*_{*k*}.
- **Goal:** Bound the expression

$$T = \sum_{i=1}^{m} t(op_i)$$

• There are many ways to do this. We'll see three recurring techniques.

Amortized Analysis

- An *amortized analysis* is a different way of bounding the runtime of a sequence of operations.
- Each operation *op*^{*i*} really takes time *t*(*op*^{*i*}).
- *Idea:* Assign to each operation *op_i* a new cost *a(op_i)*, called the *amortized cost*, such that

$$\sum_{i=1}^m t(op_i) \leq \sum_{i=1}^m a(op_i)$$

 If the values of *a(op_i)* are chosen wisely, the second sum can be much easier to evaluate than the first.

The Aggregate Method

• In the *aggregate method*, we directly evaluate

$$T = \sum_{i=1}^{m} t(op_i)$$

and then set $a(op_i) = T / m$.

- Assigns each operation the average of all the operation costs.
- The aggregate method says that the cost of a Cartesian tree insertion is amortized O(1).

Amortized Analysis

- We will see two types of amortized analysis today:
 - The *banker's method* (also called the *accounting method*) works by placing "credits" on the data structure redeemable for units of work.
 - The *potential method* (also called the *physicist's method*) works by assigning a potential function to the data structure and factoring in changes to that potential to the overall runtime.
- All three techniques are useful at different times, so we'll see how to use all three today.

- In the *banker's method*, operations can place *credits* on the data structure or spend credits that have already been placed.
- Placing a credit somewhere takes time O(1).
- Credits may be removed from the data structure to pay for O(1) units of work.
- *Note:* the credits don't actually show up in the data structure. It's just an accounting trick.
- The amortized cost of an operation is

 $a(op_i) = t(op_i) + O(1) \cdot (added_i - removed_i)$

• If we never spend credits we don't have:

 $\sum_{i=1}^{m} a(op_i) = \sum_{i=1}^{m} (t(op_i) + O(1) \cdot (added_i - removed_i))$

$$= \sum_{i=1}^{m} t(op_i) + O(1) \sum_{i=1}^{m} (added_i - removed_i)$$

$$\sum_{i=1}^{n} t(op_i) + O(1) \cdot netCredits$$

$$\geq \sum_{i=1}^{m} t(op_i)$$

m

• The sum of the amortized costs upperbounds the sum of the true costs.

Work done: 1 push Credits Added: \$1

Amortized Cost: 2

271

Work done: 1 push, 1 pop Credits Removed: \$1 Credits Added: \$1

Amortized Cost: 2

Work done: 1 push Credits Added: \$1

Amortized Cost: 2

• Using the banker's method, the cost of an insertion is

 $t(op) + O(1) \cdot (added_i - removed_i)$ = 1 + k + O(1) \cdot (1 - k) = 1 + k + 1 - k = 2 = O(1)

- Each insertion has amortized cost O(1).
- Any *n* insertions will take time O(n).

Intuiting the Banker's Method

Intuiting the Banker's Method

Each credit placed can be used to "move" a unit of work from one operation to another.

\$

An Observation

 We defined the amortized cost of an operation to be

 $a(op_i) = t(op_i) + O(1) \cdot (added_i - removed_i)$

• Equivalently, this is

$$a(op_i) = t(op_i) + O(1) \cdot \Delta credits_i$$

- Some observations:
 - It doesn't matter where these credits are placed or removed from.
 - The total number of credits added and removed doesn't matter; all that matters is the *difference* between these two.

The Potential Method

- In the *potential method*, we define a *potential* function Φ that maps a data structure to a non-negative real value.
- Each operation on the data structure might change this potential.
- If we denote by Φ_i the potential of the data structure just before operation *i*, then we can define *a*(*op*_i) as

$$a(op_i) = t(op_i) + O(1) \cdot (\Phi_{i+1} - \Phi_i)$$

- Intuitively:
 - Operations that increase the potential have amortized cost greater than their true cost.
 - Operations that decrease the potential have amortized cost less than their true cost.

The Potential Method

$$\begin{split} \sum_{i=1}^{m} a(op_i) &= \sum_{i=1}^{m} \left(t(op_i) + O(1) \cdot (\Phi_{i+1} - \Phi i) \right) \\ &= \sum_{i=1}^{m} t(op_i) + O(1) \cdot \sum_{i=1}^{m} (\Phi_{i+1} - \Phi i) \\ &= \sum_{i=1}^{m} t(op_i) + O(1) \cdot (\Phi_{m+1} - \Phi_1) \end{split}$$

- Assuming that $\Phi_{i+1} \Phi_1 \ge 0$, this means that the sum of the amortized costs upper-bounds the sum of the real costs.
- Typically, $\Phi_1 = 0$, so $\Phi_{i+1} \Phi_1 \ge 0$ holds.

 $\Phi = \mathbf{1}$

Constructing Cartesian Trees $\Phi = 1$ 137

Notice that Φ went

 $1 \rightarrow 0 \rightarrow 1$

All that matters is the *net* change.

$$\Phi = 2$$
 137 159

Constructing Cartesian Trees

$$\Phi = 3$$
 137 159 314

Constructing Cartesian Trees $\Phi = \mathbf{1}$ Work done: 1 push, 3 pops $\Delta \Phi$: -2 Amortized Cost: 2

The Potential Method

 Using the potential method, the cost of an insertion into a Cartesian tree can be computed as

 $t(op) + \Delta \Phi$

- $= 1 + k + O(1) \cdot (1 k)$
- = 1 + k + 1 k
- = 2

= 0(1)

- So the amortized cost of an insertion is O(1).
- Therefore, n total insertions takes time O(n).

Another Example: *Two-Stack Queues*

The Two-Stack Queue

- Maintain two stacks, an *In* stack and an *Out* stack.
- To enqueue an element, push it onto the In stack.
- To dequeue an element:
 - If the *Out* stack is empty, pop everything off the *In* stack and push it onto the *Out* stack.
 - Pop the *Out* stack and return its value.

An Aggregate Analysis

- **Claim:** Cost of a sequence of *n* intermixed enqueues and dequeues is O(*n*).
- Proof:
 - Every value is pushed onto a stack at most twice: once for *in*, once for *out*.
 - Every value is popped off of a stack at most twice: once for *in*, once for *out*.
 - Each push/pop takes time O(1).
 - Net runtime: **O(***n***)**.

- Let's analyze this data structure using the banker's method.
- Some observations:
- All enqueues take worst-case time O(1).
- Each dequeue can be split into a "light" or "heavy" dequeue.
 - In a "light" dequeue, the *out* stack is nonempty. Worst-case time is O(1).
 - In a "heavy" dequeue, the *out* stack is empty. Worst-case time is O(n).

The Two-Stack Queue

Out

The Two-Stack Queue

Out

In
The Banker's Method

- Enqueue:
 - O(1) work, plus one credit added.
 - Amortized cost: **O(1)**.
- "Light" dequeue:
 - O(1) work, plus no change in credits.
 - Amortized cost: **O(1)**.
- "Heavy" dequeue:
 - $\Theta(k)$ work, where k is the number of entries that started in the "in" stack.
 - k credits spent.
 - By choosing the amount of work in a credit appropriately, amortized cost is O(1).

The Potential Method

- Define $\Phi(D)$ to be the height of the *in* stack.
- Enqueue:
 - Does O(1) work and increases Φ by one.
 - Amortized cost: **O(1)**.
- "Light" dequeue:
 - Does O(1) work and leaves Φ unchanged.
 - Amortized cost: **O(1)**.
- "Heavy" dequeue:
 - Does $\Theta(k)$ work, where k is the number of entries moved from the "in" stack.
 - $\Delta \Phi = -k$.
 - By choosing the amount of work stored in each unit of potential correctly, amortized cost becomes **O(1)**.

Time-Out for Announcements!

Problem Set Two

- Problem Set Two solutions are now available. If you didn't pick them up in class, you can grab them from the Gates building.
- We're working on grading PS2 right now. We're aiming to have them returned by Tuesday of next week.

Problem Set Mixer

- Looking for a partner for the problem sets? Stick around after class today for our problem set mixer event.
- Free snacks!

Back to CS166!

Another Example: **2-3-4 Trees**

2-3-4 Trees

- Inserting or deleting values from a 2-3-4 trees takes time O(log *n*).
- Why is that?
 - We do some amount of work finding the insertion or deletion point, which is $\Theta(\log n)$.
 - We also do some amount of work "fixing up" the tree by doing insertions or deletions.
- What is the cost of that second amount of work?

- Most insertions into 2-3-4 trees require no fixup – we just insert an extra key into a leaf.
- Some insertions require some fixup to split nodes and propagate upward.

- Most insertions into 2-3-4 trees require no fixup – we just insert an extra key into a leaf.
- Some insertions require some fixup to split nodes and propagate upward.

- Most insertions into 2-3-4 trees require no fixup – we just insert an extra key into a leaf.
- Some insertions require some fixup to split nodes and propagate upward.

- Most insertions into 2-3-4 trees require no fixup – we just insert an extra key into a leaf.
- Some insertions require some fixup to split nodes and propagate upward.

- Most deletions from a 2-3-4 tree require no fixup; we just delete a key from a leaf.
- Some deletions require fixup work to propagate the deletion upward in the tree.

2-3-4 Tree Fixup

- *Claim:* The fixup work on 2-3-4 trees is amortized O(1).
- We'll prove this in three steps:
 - First, we'll prove that in any sequence of m insertions, the amortized fixup work is O(1).
 - Next, we'll prove that in any sequence of m deletions, the amortized fixup work is O(1).
 - Finally, we'll show that in any sequence of insertions and deletions, the amortized fixup work is O(1).

- Suppose we only insert and never delete.
- The fixup work for an insertion is proportional to the number of 4-nodes that get split.
- **Idea:** Place a credit on each 4-node to pay for future splits.

- Suppose we only insert and never delete.
- The fixup work for an insertion is proportional to the number of 4-nodes that get split.
- **Idea:** Place a credit on each 4-node to pay for future splits.

- Suppose we only insert and never delete.
- The fixup work for an insertion is proportional to the number of 4-nodes that get split.
- **Idea:** Place a credit on each 4-node to pay for future splits.

- Suppose we only insert and never delete.
- The fixup work for an insertion is proportional to the number of 4-nodes that get split.
- **Idea:** Place a credit on each 4-node to pay for future splits.

- Suppose we only insert and never delete.
- The fixup work for an insertion is proportional to the number of 4-nodes that get split.
- **Idea:** Place a credit on each 4-node to pay for future splits.

- Using the banker's method, we get that pure insertions have O(1) amortized fixup work.
- Could also do this using the potential method.
 - Define Φ to be the number of 4-nodes.
 - Each "light" insertion might introduce a new 4node, requiring amortized O(1) work.
 - Each "heavy" insertion splits k 4-nodes and decreases the potential by k for O(1) amortized work.

- Suppose we only delete and never insert.
- The fixup work per layer is O(1) and only propagates if we combine three 2-nodes together into a 4-node.
- **Idea:** Place a credit on each 2-node whose children are 2-nodes (call them "tiny triangles.")

- Suppose we only delete and never insert.
- The fixup work per layer is O(1) and only propagates if we combine three 2-nodes together into a 4-node.
- **Idea:** Place a credit on each 2-node whose children are 2-nodes (call them "tiny triangles.")

- Suppose we only delete and never insert.
- The fixup work per layer is O(1) and only propagates if we combine three 2-nodes together into a 4-node.
- **Idea:** Place a credit on each 2-node whose children are 2-nodes (call them "tiny triangles.")

- Suppose we only delete and never insert.
- The fixup work per layer is O(1) and only propagates if we combine three 2-nodes together into a 4-node.
- **Idea:** Place a credit on each 2-node whose children are 2-nodes (call them "tiny triangles.")

- Using the banker's method, we get that pure deletions have O(1) amortized fixup work.
- Could also do this using the potential method.
 - Define Φ to be the number of 2-nodes with two 2-node children (call these "tiny triangles.")
 - Each "light" deletion might introduce two tiny triangles: one at the node where the deletion ended and one right above it. Amortized time is O(1).
 - Each "heavy" deletion combines k tiny triangles and decreases the potential by at least k. Amortized time is O(1).

Combining the Two

- We've shown that pure insertions and pure deletions require O(1) amortized fixup time.
- What about interleaved insertions and deletions?
- **Initial idea:** Use a potential function that's the sum of the two previous potential functions.
- Φ is the number of 4-nodes plus the number of tiny triangles.

$$\Phi = \#(\Box) + \#(\Box)$$

A Problem) + #($\Phi = \#(|$ = 6 41 56 76 11 21 31

A Problem $\Phi = \#(\Box \Box) + \#(\Box \Box)$

A Problem

- When doing a "heavy" insertion that splits multiple 4nodes, the resulting nodes might produce new "tiny triangles."
- Symptom: Our potential doesn't drop nearly as much as it should, so we can't pay for future operations. Amortized cost of the operation works out to $\Theta(\log n)$, not O(1) as we hoped.
- **Root Cause:** Splitting a 4-node into a 2-node and a 3-node might introduce new "tiny triangles," which in turn might cause future deletes to become more expensive.

The Solution

- 4-nodes are troublesome for two separate reasons:
 - They cause chained splits in an insertion.
 - After an insertion, they might split and produce a tiny triangle.
- **Idea:** Charge each 4-node for two different costs: the cost of an expensive insertion, plus the (possible) future cost of doing an expensive deletion.

The Solution

- This new potential function ensures that if an insertion chains up *k* levels, the potential drop is at least *k* (and possibly up to 2*k*).
- Therefore, the amortized fixup work for an insertion is O(1).
- Using the same argument as before, deletions require amortized O(1) fixups.

Why This Matters

- Via the isometry, red/black trees have O(1) amortized fixup per insertion or deletion.
- In practice, this makes red/black trees much faster than other balanced trees on insertions and deletions, even though other balanced trees can be better balanced.
More to Explore

- A *finger tree* is a variation on a B-tree in which certain nodes are pointed at by "fingers." Insertions and deletions are then done only around the fingers.
- Because the only cost of doing an insertion or deletion is the fixup cost, these trees have amortized O(1) insertions and deletions.
- They're often used in purely functional settings to implement queues and deques with excellent runtimes.
- Liked the previous analysis? Consider looking into this for your final project!

Next Time

- Binomial Heaps
 - A simple and versatile heap data structure based on binary arithmetic.
- Lazy Binomial Heaps
 - Rejiggering binomial heaps for fun and profit.