Binomial Heaps

Outline for this Week

« Binomial Heaps (Today)

« A simple, flexible, and versatile priority
queue.

« Lazy Binomial Heaps (Today)

« A powertul building block for designing
advanced data structures.

 Fibonacci Heaps (Thursday)

A heavyweight and theoretically excellent
priority queue.

Review: Priority Queues

Priority Queues

« A priority queue is a data structure that
stores a set of elements annotated with
totally-ordered keys and allows efficient
extraction of the element with the least key.

« More concretely, supports these operations:

 pg.enqueue(v, k), which enqueues element v with
key K;

* pq.find-min(), which returns the element with the
least key; and

* pq.extract-min(), which removes and returns the
element with the least key,

Binary Heaps

« Priority queues are frequently implemented as
binary heaps.

 enqueue and extract-min run in time O(log n);
find-min runs in time O(1).

 We're not going to cover binary heaps this quarter;
I assume you've seen them before.

Priority Queues in Practice

 Many graph algorithms directly rely priority queues
supporting extra operations:

« meld(pqi, pqz): Destroy pq: and pgz and combine their
elements into a single priority queue.

 pqg.decrease-key(v, k'): Given a pointer to element v
already in the queue, lower its key to have new value k'.

 pq.add-to-all(Ak): Add Ak to the keys of each element in
the priority queue (typically used with meld).

* In lecture, we'll cover binomial heaps to efficiently
support meld and Fibonacci heaps to efficiently
support meld and decrease-key,.

* You'll design a priority queue supporting efficient meld
and add-to-all on the problem set.

Meldable Priority Queues

» A priority queue supporting the meld operation is
called a meldable priority queue.

« meld(pq:, pqz) destructively modifies pg: and pg-

and produces a new priority queue containing all
elements of pg: and pq-.

19 18

72

Meldable Priority Queues

» A priority queue supporting the meld operation is
called a meldable priority queue.

« meld(pq:, pqz) destructively modifies pg: and pg-

and produces a new priority queue containing all
elements of pg: and pq-.

Efficiently Meldable Queues

« Standard binary heaps do not efficiently
support meld.

« Intuition: Binary heaps are complete binary
trees, and two complete binary trees cannot
easily be linked to one another.

....... 6 % 5

Binomial Heaps

« The binomial heap is an priority queue data
structure that supports efficient melding.

« We'll study binomial heaps for several
reasons:

« Implementation and intuition is totally different
than binary heaps.

« Used as a building block in other data structures
(Fibonacci heaps, soft heaps, etc.)

« Has a beautiful intuition; similar ideas can be
used to produce other data structures.

The Intuition: Binary Arithmetic

Adding Binary Numbers

» Given the binary representations of two
numbers n and m, we can add those
numbers in time G(max{log m, log n}).

1

1
1

T [T N

1
0
1
0

Ol = =
—= = O

+
1 O

A Different Intuition

 Represent n and m as a collection of “packets” whose
sizes are powers of two.

 Adding together n and m can then be thought of as
combining the packets together, eliminating duplicates

A Different Intuition

 Represent n and m as a collection of “packets” whose
sizes are powers of two.

 Adding together n and m can then be thought of as
combining the packets together, eliminating duplicates

- B2

Why This Works

« In order for this arithmetic procedure to

work etficiently, the packets must obey
the following properties:

 The packets must be stored in
ascending/descending order of size.

 The packets must be stored such that there
are no two packets of the same size.

« Two packets of the same size must be
efficiently “fusable” into a single packet.

Building a Priority Queue

o Idea: Adapt this approach to build a
priority queue.

« Store elements in the priority queue in
“packets” whose sizes are powers of two.

« Store packets in ascending size order.

« We'll choose a representation of a packet
so that two packets of the same size can
easily be fused together.

) &

CI=)

@@@@}

©60606/66
© 6
6 0

-4

Building a Priority Queue

« What properties must our packets have?

* Sizes must be powers of two.
« Can efficiently fuse packets of the same size.
« Can efficiently find the minimum element of

each packet.
0 00|00

QO0QO) O

o)

Inserting into the Queue

« If we can efficiently meld two priority queues, we
can efficiently enqueue elements to the queue.

o Idea: Meld together the queue and a new queue
with a single packet.

@ : 09000
QO00O) D

Time required:
O(log n) fuses.

Deleting the Minimum

 Our analogy with arithmetic breaks down when we try
to remove the minimum element.

« After losing an element, the packet will not necessarily
hold a number of elements that is a power of two.

QOO O

o)

Fracturing Packets

« If we have a packet with 2% elements in it
and remove a single element, we are left
with 2% - 1 remaining elements.

e Fun fact: 2"-1=1+2+4 + ... + 2K,

e Idea: “Fracture” the packet into k - 1
smaller packets, then add them back in.

Fracturing Packets

 We can extract-min by fracturing the packet
containing the minimum and adding the fragments

back in.

QOO O

o)

Fracturing Packets

 We can extract-min by fracturing the packet
containing the minimum and adding the fragments

back in.
84 JEE)! (64 o7
62)(59) (@Y 53,

o)
o)

Fracturing Packets

 We can extract-min by fracturing the packet

containing the minimum and adding the fragments
back in.

 Runtime is O(log n) fuses in meld, plus fragment cost.

) o3

O -
+ 06

O JO:)

Building a Priority Queue

 What properties must our packets have?

« Size must be a power of two.
« Can efficiently fuse packets of the same size.

« Can efficiently find the minimum element of
each packet.

« Can efficiently “fracture” a packet of 2% nodes
into packets of 1, 2, 4, 8, ..., 2¥! nodes.

« What representation of packets will give us these
properties?

Binomial Trees

A binomial tree of order Kk is a type of tree
recursively defined as follows:

A binomial tree of order k is a single node whose
children are binomial trees of order O, 1, 2, ..., k - 1.

e Here are the first few binomial trees:

@

Binomial Trees

e« Theorem: A binomial tree of order k has
exactly 2% nodes.

 Proof: Induction on k. Assuming that
binomial trees of orders O, 1, 2, ..., k-1
have 29, 21, 22 ..., 2Kl nodes, then then
number of nodes in an order-k binomial
tree 1s

204 21 4+ 42K 4 1 =2k] + 1 = 2k
So the claim holds for k as well. B

Binomial Trees

A heap-ordered binomial tree is a binomial
tree whose nodes obey the heap property: all
nodes are less than or equal to their
descendants.

 We will use heap-ordered binomial trees to
implement our “packets.”

@

Binomial Trees

 What properties must our packets have?

« Size must be a power of two. v
« Can efficiently fuse packets of the same size. v
« Can efficiently find the minimum element of each packet.

« Can efficiently “fracture” a packet of 2% nodes into packets
of 1, 2, 4, 8, ..., 2¥! nodes.

1
9 6 a Make the binomial tree with

the larger root the first child
of the tree with the smaller

6 @ 6 root.

3

Binomial Trees

 What properties must our packets have?

« Size must be a power of two. v
« Can efficiently fuse packets of the same size. v
« Can efficiently find the minimum element of each packet. v

« Can efficiently “fracture” a packet of 2% nodes into packets
of 1, 2, 4,8, ..., 2¥! nodes. v

‘o6

8

The Binomial Heap

A binomial heap is a collection of heap-ordered
binomial trees stored in ascending order of size.

 Operations defined as follows:

« meld(pqi, pqgz): Use addition to combine all the trees.
- Fuses O(log n) trees. Total time: O(log n).

« pg.enqueue(v, k): Meld pg and a singleton heap of (v, k).
- Total time: O(log n).

* pq.find-min(): Find the minimum of all tree roots.
- Total time: O(log n).

 pqg.extract-min(): Find the min, delete the tree root,
then meld together the queue and the exposed children.

- Total time: O(log n).

Time-Out for Announcements!

Problem Sets

 Problem Set Two has been graded. Check
GradeScope for details!

 Problem Set Three is due on Thursday of
this week.

 Have questions? Stop by office hours or ask
on Piazza!

COMBATTING INEQUITY IN EDUCATION
APRIL 27, 7PM

PLEASE RSVP HERE: BIT.LY/INEQUITYEDU

—
mame

WHY IS THE ACHIEVEMENT GAP STILL SO DEEP? WHAT ROLES DO POVERTY AND RACE PLAY IN CREATING AND
SUSTAINING THAT GAP? AND HOWY DO WE ADDRESS THE ROOT CAUSES OF INEQUITY? JOIN STANFORD PRESIDENT
JOHN HENNESSY AS HE MODERATES AN URGENT DISCUSSION ABOUT PERVASIVE INEQUITY IN THE AMERICAN
EDUCATION SYSTEM WITH THREE OF THE NATION'S MOST FORWARD-LOOKING EDUCATION THOUGHT LEADERS.

MODERATOR PANELIST PANELIST PANELIST

JOHN L. LINDA SALMAN SEAN F.

HENNESSY PARLING- KHAN REARDON
HAMMOND

WITH SPECIAL THANKS TO OUR EVENT CAMPUS CO-SPONSORS:

Back to CS1606!

Analyzing Insertions

« Each enqueue into a binomial heap
takes time O(log n), since we have to
meld the new node into the rest of the
trees.

« However, it turns out that the amortized
cost of an insertion is lower in the case
where we do a series of n insertions.

Adding One

 Suppose we want to execute n++ on the binary
representation of n.

« Do the following:

 Find the longest span of 1's at the right side of n.
« Flip those 1's to O's.
« Set the preceding bit to 1.

« Runtime: ©(b), where b is the number of bits flipped.

An Amortized Analysis

o Claim: Starting at zero, the amortized
cost of adding one to the total is O(1).

« Idea: Use as a potential function the
number of 1's in the number.

=1:0 0 1 0 O

Properties of Binomial Heaps

« Starting with an empty binomial heap, the
amortized cost of each insertion into the heap
is O(1), assuming there are no deletions.

 Rationale: Binomial heap operations are
isomorphic to integer arithmetic.

* Since the amortized cost of incrementing a
binary counter starting at zero is O(1), the
amortized cost of enqueuing into an initially
empty binomial heap is O(1).

Binomial vs Binary Heaps

» Interesting comparison:

 The cost of inserting n elements into a
binary heap, one after the other, is ©(n log n)
in the worst-case.

« If nis known in advance, a binary heap can

be constructed out of n elements in time
O(n).

 The cost of inserting n elements into a
binomial heap, one after the other, is G(n),
even if n is not known in advance!

A Catch

« This amortized time bound does not hold if
enqueue and extract-min are intermixed.

« Intuition: Can force expensive insertions to
happen repeatedly.

3 7 5
6 4 8
8

Question: Can we make insertions
amortized O(1), regardless of whether we
do deletions?

Where's the Cost?

« Why does enqueue take time O(log n)?

« Answer: May have to combine together
O(log n) ditferent binomial trees together
into a single tree.

« New Question: What happens if we
don't combine trees together?

« That is, what if we just add a new
singleton tree to the list?

Lazy Melding

 More generally, consider the following lazy
melding approach:

To meld together two binomial heaps, just combine
the two sets of trees together.

« If we assume the trees are stored in doubly-linked
lists, this can be done in time O(1).

3 @@@@
6 4 8 9
8

The Catch: Part One

« When we use eager melding, the number of trees
is O(log n).

 Therefore, find-min runs in time O(log n).

 Problem: find-min no longer runs in time
O(log n) because there can be ®(n) trees.

3 @@@@
6 4 8 9
8

« Have the binomial heap store a pointer to the

A Solution

minimum element.

 Can be updated in time O(1) after doing a meld by

min

comparing the minima of the two heaps.

@@@@

min

A Solution

« Have the binomial heap store a pointer to the
minimum element.

 Can be updated in time O(1) after doing a meld by
comparing the minima of the two heaps.

min

s, 00¢0e

The Catch: Part Two

 Even with a pointer to the minimum, deletions
might now run in time ©(n).

 Rationale: Need to update the pointer to the
minimum.

min

@é@@

The Catch: Part Two

 Even with a pointer to the minimum, deletions
might now run in time ©(n).

 Rationale: Need to update the pointer to the
minimum.

min

3 @ 2 3 4
6 4 8 9
8

Resolving the Issue

e Idea: When doing an extract-min,
coalesce all of the trees so that there's at
most one tree of each order.

 Intuitively:

 The number of trees in a heap grows slowly
(only during an insert or meld).

 The number of trees in a heap drops rapidly
after coalescing (down to O(log n)).

« Can backcharge the work done during an
extract-min to enqueue or meld.

Coalescing Trees

 Our eager melding algorithm assumes that
» there is either zero or one tree of each order, and that
« the trees are stored in ascending order.

 Challenge: When coalescing trees in this case, neither
of these properties necessarily hold.

min

3,000

8

Wonky Arithmetic

 Compute the number of bits necessary to hold
the sum.

 Only O(log n) bits are needed.
 Create an array of that size, initially empty.

« For each packet:

« If there is no packet of that size, place the
packet in the array at that spot.

« If there is a packet of that size:

- Fuse the two packets together.

- Recursively add the new packet back into the
array.

Now With Trees!

 Compute the number of trees necessary to hold
the nodes.

 Only O(log n) trees are needed.
 Create an array of that size, initially empty.

e For each tree:

« If there is no tree of that size, place the tree in
the array at that spot.

e If there is a tree of that size:

- Fuse the two trees together.

- Recursively add the new tree back into the
array.

Analyzing Coalesce

 Suppose there are T trees.

« We spend O(T) work iterating across the main
list of trees twice:

« Pass one: Count up number of nodes (if each tree
stores its order, this takes time O(T)).

« Pass two: Place each node into the array.
« Each merge takes time O(1).

 The number of merges is O(T).

« Total work done: O(T).
 In the worst case, this is O(n).

The Story So Far

« A binomial heap with lazy melding has
these worst-case time bounds:

« enqueue: O(1)
meld: O(1)

e find-min: O(1)

o extract-min: O(n).

« These are worst-case time bounds. What
about an amortized time bounds?

An Observation

 The expensive step here is extract-min,
which runs in time proportional to the
number of trees.

« Each tree can be traced back to one of three
sources:

« An enqueue.
A meld with another heap.
* A tree exposed by an extract-min.

« Let's use an amortized analysis to shift the
blame for the extract-min performance to
other operations.

The Potential Method

 We will use the potential method in this
analysis.

« When analyzing insertions with eager
merges, we set ®(D) to be the number of
trees in D.

* Let's see what happens if we use this ©
here.

Analyzing an Insertion

To enqueue a key, we add a new binomial tree
to the forest and possibly update the min
pointer.

Actual time: O(1). AD: +1
Amortized time: O(1).

min

@@

Analyzing a Meld

 Suppose that we meld two lazy binomial heaps B:1 and Bz. Actual
cost: O(1).

- Let ®, and @, be the initial potentials of B: and B..

- The new heap B has potential ®, + ®, and B: and B2 have
potential O.

e A®D is zero.

« Amortized cost: O(1).

min

TEIEEXL

Analyzing a Find-Min

 Each find-min does O(1) work and does not
add or remove trees.

« Amortized cost: O(1).

min

TEIEEXL

Analyzing Extract-Min

Initially, we expose the children of the minimum
element. This takes time O(log n).

Suppose that at this point there are T trees. As we
saw earlier, the runtime for the coalesce is O(T).

When we're done merging, there will be O(log n)
trees remaining, so A® = -T + O(log n).

Amortized cost is
O(logn) + ©(T) + O(1) - (-T + O(log n))
= O(logn) +O6(T)-0(1) - T+ O(1) - O(log n)
= O(log n).

The Overall Analysis

« The amortized costs of the operations on
a lazy binomial heap are as follows:

« enqueue: O(1)

meld: O(1)

e find-min: O(1)

« extract-min: O(log n)

* Any series of e enqueues mixed with d
extract-mins will take time
O(e + d log e).

Why This Matters

 Lazy binomial heaps are a powertul
building block used in many other data
structures.

« We'll see one of them, the Fibonacci
heap, when we come back on Thursday.

* You'll see another (supporting add-to-
all) on the problem set.

Next Time

« The Need for decrease-key

A powertul and versatile operation on
priority queues.

« Fibonacci Heaps

« A variation on lazy binomial heaps with
efficient decrease-key.

« Implementing Fibonacci Heaps

e ... 1s harder than it looks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

