
  

Splay Trees



  

Outline for Today

● Static Optimality
● Balanced BSTs aren't necessarily optimal!

● Splay Trees
● A self-adjusting binary search tree.

● Properties of Splay Trees
● Why is splaying worthwhile?

● Dynamic Optimality (ITA)
● An open problem in data structures.



  

Static Optimality



  

Balanced BSTs

● We've explored balanced BSTs this quarter because 
they guarantee worst-case O(log n) operations.

● Claim: If the elements in the tree aren't accessed 
uniformly, then a balanced BST might not actually be 
the ideal BST.

1

2

3

4

5

6

7



  

Balanced BSTs

● We've explored balanced BSTs this quarter because 
they guarantee worst-case O(log n) operations.

● Claim: If the elements in the tree aren't accessed 
uniformly, then a balanced BST might not actually be 
the ideal BST.

2

5

4

3

6

7

1



  

Balanced BSTs

● We've explored balanced BSTs this quarter because 
they guarantee worst-case O(log n) operations.

● Claim: If the elements in the tree aren't accessed 
uniformly, then a balanced BST might not actually be 
the ideal BST.

7

1

4

4

2

5

6

3



  

Static Optimality

● Let S = { x₁, x₂, …, xₙ } be a set with access 
probabilities p₁, p₂, …, pₙ.

● If T is a BST whose keys are the keys in S, then let XT 
be a random variable equal to the number of nodes in 
T that are touched when performing a lookup, 
assuming the key to look up is sampled from the above 
probability distribution.

● Goal: Construct a binary search tree T* such that 
E[XT*] is minimal.

● T* is called a statically optimal binary search tree.



  

Static Optimality

● Theorem: There is an O(n2)-time dynamic 
programming algorithm for constructing statically 
optimal binary search trees.

● Knuth, 1971. (See CLRS)

● Theorem: Weight-balanced trees whose weights 
are the element access probabilities have an 
expected lookup cost with a factor of 1.5 of a 
statically-optimal tree.

● Mehlhorn, 1975.

● You can build a weight-balanced tree for a set of 
keys in time O(n log n) using a clever divide-and-
conquer algorithm. You'll see this in PS4.



  

Lower Bounds

● We know that, for worst-case efficiency, any 
BST for a set of keys will have a worst-case 
lookup time of Ω(log n).

● This means that if we find a BST whose 
worst-case lookup time is O(log n), it must 
be optimal.

● Can we derive a similar sort of lower bound 
for the expected cost of a lookup in a BST if 
the access probabilities are known?



  

Static Optimality

Intuition: Try to 
place nodes with 

higher access 
probabilities higher 

up in the tree.

Intuition: Try to 
place nodes with 

higher access 
probabilities higher 

up in the tree.



  

Static Optimality

Idea: If a key has access 
probability between 2-l 

and 2-l-1, place it at level l 
in the tree if possible.

Idea: If a key has access 
probability between 2-l 

and 2-l-1, place it at level l 
in the tree if possible.

A key with access 
probability pᵢ ends 
up roughly at level 
-lg pᵢ in the tree.

A key with access 
probability pᵢ ends 
up roughly at level 
-lg pᵢ in the tree.



  

Static Optimality

The cost of looking up 
some key xᵢ is roughly 
equal to the depth of 

the key xᵢ: -lg pᵢ.
  

So it's reasonable to 
suspect that the 

expected lookup cost to 
roughly work out to

The cost of looking up 
some key xᵢ is roughly 
equal to the depth of 

the key xᵢ: -lg pᵢ.
  

So it's reasonable to 
suspect that the 

expected lookup cost to 
roughly work out to

∑
i=1

n

−pi lgpi .



  

Shannon Entropy

● Consider a discrete probability distribution with elements 
x₁, …, xₙ, where element xᵢ has access probability pᵢ.

● The Shannon entropy of this probability distribution, 
denoted Hp (or just H, where p is implicit) is the quantity

● Notice that H = lg n if all elements have equal access 
probability (pᵢ = 1/n).

● Notice that H = 0 if a single element has the entire 
probability mass.

Hp = ∑
i=1

n

−pi lgpi .



  

Static Optimality

● Consider a discrete probability distribution with elements 
x₁, …, xₙ, where element xᵢ has access probability pᵢ.

● The Shannon entropy of this probability distribution, 
denoted Hp (or just H, where p is implicit) is the quantity

● Theorem: The expected lookup cost in any binary search 
tree for keys x₁, …, xₙ with access probabilities p₁, …, pₙ 
is Ω(1 + H).

● Theorem: For any set of keys xᵢ with access probabilities 
pᵢ, there is a BST that whose expected lookup time is 
Θ(1 + H).

Hp = ∑
i=1

n

−pi lgpi .



  

Weaknesses of Static Optimality

● Statically optimal BSTs are fantastic if the 
lookups are sampled randomly from a fixed 
distribution.

● However, what if you don't know anything 
about the particular access pattern you're 
going to have?

● Question 1: Is it possible to build a BST with 
O(1 + H) expected lookup time if the 
probability distribution isn't known in advance?



  

Weaknesses of Static Optimality

● Just knowing the access probabilities doesn't guarantee 
that you can build a good BST.

● Example: Suppose you want to build a BST where all 
elements are repeatedly looked up sequentially.

● All elements are visited the same number of times, so a 
statically-optimal BST would be a perfectly balanced BST. 
This means that the lookups take time Θ(n log n).

● There's a simple O(n)-time algorithm for visiting all the 
nodes of a BST sequentially. If we knew in advance that 
we'd visit everything in this order, it makes more sense to 
use this algorithm than to just do a bunch of lookups.

● Question 2: Can we build a BST that adapts to access 
patterns beyond just the resulting access probabilities?



  

Challenge: Can we build a type of BST 
that meets the static optimality 

requirements, but is also sensitive to 
access patterns?



  

The Intuition

● If we don't know the access probabilities 
in advance, we can't build a fixed BST 
and then “hope” it works correctly.

● Instead, we'll have to restructure the 
BST as operations are performed.

● For now, let's focus on lookups; we'll 
handle insertions and deletions later on.



  

Refresher: Tree Rotations

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

Rotate Left



  

An Initial Approach

D

B

A C

F

E G



  

An Initial Approach

D

B

A C

F

E

G



  

An Initial Approach

D

B

A C

F

E

G



  

An Initial Approach

D

B

A

C

F

E

G



  

An Initial Idea

● Begin with an arbitrary BST.
● After looking up an element, repeatedly 

rotate that element with its parent until it 
becomes the root.

● Intuition: 
● Recently-accessed elements will be up near 

the root of the tree, lowering access time.
● Unused elements stay low in the tree.



  

The Problem

A

B

C

D

E



  

The Problem

A

B

C

D

E

Rotations 
Needed: 5

Rotations 
Needed: 5



  

The Problem

A

B

C

D

E



  

The Problem

A

B

C

D

E

Rotations 
Needed: 4

Rotations 
Needed: 4



  

The Problem

A

B

C

D

E



  

The Problem

A

B

C

D

E
Rotations 
Needed: 3

Rotations 
Needed: 3



  

The Problem

A

B

C

D

E



  

The Problem

A

B

C

D

E

Rotations 
Needed: 2

Rotations 
Needed: 2



  

The Problem

A

B

C

D

E



  

The Problem

A

B

C

D

E

Rotations 
Needed: 1

Rotations 
Needed: 1



  

The Problem

A

B

C

D

E

We're right 
back where we 

started!

We're right 
back where we 

started!



  

The Problem

● The “rotate to root” method might result 
in n accesses taking time Θ(n2).

● Why?
● Rotating an element x to the root 

significantly “helps” x, but “hurts” the 
rest of the tree.

● Most of the nodes on the access path to x 
have depth that increases or is 
unchanged.



  

A More Balanced Approach

● In 1983, Daniel Sleator and Robert 
Tarjan invented an operation called 
splaying.

● Splaying rotates an element to the root 
of the tree, but does so in a way that's 
more “fair” to other nodes in the tree.

● Each splay works by applying one of 
three templates to determine which 
rotations to apply.



  

Case 1: Zig-Zag

x

p

g

>p

>g
<x

>x
<p

<g

x

g p

<g
>g
<x

>x
<p >p

First, rotate x with p.
Then, rotate x with g.

Continue moving x up the tree.

First, rotate x with p.
Then, rotate x with g.

Continue moving x up the tree.



  

Case 2: Zig-Zig

x

p

g

>p
<g

<x
>x
<p

>g

x

p

g

>g
>p
<g

>x
<p

<x

First, rotate p with g.
Then, rotate x with p.

Continue moving x up the tree.

First, rotate p with g.
Then, rotate x with p.

Continue moving x up the tree.



  

Case 3: Zig

x

r

>p

<x
>x
<p

x

r

<x

>x
<p >p

Rotate x with r
x is now the root.

Rotate x with r
x is now the root.

(Assume r is the 
tree root)

(Assume r is the 
tree root)



  

A

B

C

D

E

F

G



  

A

B

C

D

E

F

G



  

A

B

C

D

E

F

G



  

A

B

E

F

G

C

D



  

FC

D

A

B

E

G



  

A

B

C

G

D

E

F



  

A

B

C

G

D

E

F



  

A

C

D F

B

G

E



  

A

B

C

D

E

F

G



  

Splaying, Empirically

● After a few splays, we went from a totally 
degenerate tree to a reasonably-balanced 
tree.

● Splaying nodes that are deep in the tree 
tends to correct the tree shape.

● Why is this?
● Is this a coincidence?



  

Why Splaying Works

● Claim: After doing a splay at x, the 
average depth of any nodes on the access 
path to x is halved.

● Intuitively, splaying x benefits nodes near 
x, not just x itself.

● This “altruism” will ensure that splays 
are efficient.



  

x

p

g

>p
<g

<x
>x
<p

>g

x

p

g

>g
>p
<g

>x
<p

<x

The average depth of x, 
p, and g is unchanged.

The average depth of x, 
p, and g is unchanged.

These subtrees decrease 
in height by one or two.

These subtrees decrease 
in height by one or two.



  

x

p

g

>p

>g
<x

>x
<p

<g

x

g p

<g
>g
<x

>x
<p >p

The average height of x, p, 
and g decreases by 1/3.

The average height of x, p, 
and g decreases by 1/3.

These subtrees have their 
height decreased by one.

These subtrees have their 
height decreased by one.



  

x

r

>p

<x
>x
<p

x

r

<x

>x
<p >p

There is no net 
change in the 

height of x or r.

There is no net 
change in the 

height of x or r.

The nodes in this subtree have 
their height decreased by one.

The nodes in this subtree have 
their height decreased by one.



  

An Intuition for Splaying

● Each rotation done only slightly penalizes each 
other part of the tree (say, adding +1 or +2 
depth).

● Each splay rapidly cuts down the height of each 
node on the access path.

● Slow growth in height, combined with rapid drop 
in height, is a hallmark of amortized efficiency.

● Claim: The original “rotate-to-root” idea from 
before doesn't do this, which partially explains 
why it's not a good strategy.



  

x

p

g

>p
<g

<x
>x
<p

>g

x

p

>p
<g

<x

>x
<p

g

>g

Rotate-to-Root



  

Some Claims

● Claim 1: The amortized cost of splaying 
a node up to the root is O(log n).

● Claim 2: The amortized cost of splaying 
a node up to the root can be o(log n) if 
the access pattern is non-uniform.

● We'll prove these results later today.



  

Making Things Easy

● Splay trees provide make it extremely 
easy to perform the following operations:
● lookup
● insert
● delete
● predecessor / successor
● join
● split

● Let's see why.



  

Lookups

● To do a lookup in a 
splay tree:
● Search for that 

item as usual.
● If it's found, splay 

it up to the root.
● Otherwise, splay 

the last-visited 
node to the root.



  

Insertions

● To insert a node 
into a splay tree:
● Insert the node as 

usual.
● Splay it up to the 

root.



  

Join

● To join two trees T₁ and T₂, where all 
keys in T₁ are less than the keys in T₂:
● Splay the max element of T₁ to the root.
● Make T₂ a right child of T₁.

T₁ T₂



  

Split

● To split T at a key k:
● Splay the successor of k up to the root.
● Cut the link from the root to its left child.

T₁ T₂



  

Delete

● To delete a key k from the tree:
● Splay k to the root.
● Delete k.
● Join the two resulting subtrees.

T'



  

The Runtime

● Claim: All of these operations require 
amortized time O(log n).

● Rationale: Each has runtime bounded 
by the cost of O(1) splays, which takes 
total amortized time O(log n).

● Contrast this with red/black trees:
● No need to store any kind of balance 

information.
● Only three rules to memorize.



  

So... just how fast are splay trees?



  

Time-Out for Announcements!



  

Problem Set Four

● Problem Set Four goes out today. It's due 
next Thursday at 3:00PM.
● Play around with amortized analyses, binomial 

heaps, Fibonacci heaps, and splay trees!

● Problem Set Three solutions are available in 
hardcopy. Grab them from Gates if you 
missed lecture today.

● Have questions? Feel free to stop by office 
hours or to ask on Piazza!



  

Final Project Logistics

● For the final project, you'll work in teams of 
two or three to research a data structure and 
then do something “interesting” with it.

● You will then
● write a paper explaining the data structure, 

proving key results, and describing your 
“interesting” component; then

● give a 10-15 minute presentation on your data 
structure and your “interesting” component.

● The “interesting” component is entirely up to 
you. Be creative! Have fun with this!



  

Final Project Logistics

● To ensure that we don't have too many teams presenting 
on the same topics, your first step is to submit a list of 
project topics you'd like to work on.

● By next Tuesday (May 10), form a team and submit to us a 
list of seven project topics you'd be interested in. For 
each topic, find a research paper on the subject and at 
least one supplementary source.

● We'll then run a matchmaking algorithm and get back to 
everyone with project topics by next Thursday.

● We've put together a list of recommended project topics 
on the course website, but you're not required to choose 
one of those topics. Be creative! Go exploring! If you find 
an interesting topic not on the list, you're encouraged to 
propose it!



  

WiCS Board

Interested in playing a larger role in the WiCS community? 
Passionate about encouraging and supporting women in CS? 

Apply to be on WiCS Board 16-17!

From HackOverflow to the industry mentorship program, WiCS 
is constantly growing and improving the community for women 
in tech. As a board member, you’ll be able to meet engineers and 
leaders from companies like Google and Pinterest, organize 
HackOverflow, meet women in STEM from all across the nation, 
and develop lasting relationships with your WiCS family. Learn 
more about the available teams and initiatives here.

Applications are due Wednesday, May 4th, at 11:59 pm! We 
look forward to reading your application, and please don’t 
hesitate to reach out if you have questions. 

Learn more about the events and programs we organize at 
wics.stanford.edu.

https://docs.google.com/a/stanford.edu/forms/d/1j5A7jf5UFvoikEOK7keSve1Suqv0Z1wXA6-Rzo1r-c8/viewform


  

Latin@ Coder Summit

Next Saturday, May 14th, SOLE is hosting 
the Latin@ Coder Summit! We already have 
~200 attendees signed up, but we need 
more volunteers to help run the event!

We have volunteer slots that only go until 
1:00pm. We'd really appreciate your help, 
even if it's only for that time slot!

Please sign up here!

https://goo.gl/Lt9LQE


  

Back to CS166!



  

The Tricky Part: Formalizing This



  

Analyzing BSTs

● Let's assume that every element xᵢ in our BST 
has some associated weight wᵢ.

● We'll assume that access probabilities are 
proportional to weights, though we won't 
assume the weights sum to 1. (This is just for 
mathematical simplicity.)

● Let W denote the sum w₁ + w₂ + … + wₙ.
● Imagine we have some fixed BST T containing 

the keys x₁, …, xₙ. Let sᵢ denote the sum of all the 
weights of the keys in the subtree rooted at xᵢ. 



  

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

snew > ½sold

snew ≤ ½sold

Cost of looking up xᵢ:
 

O(#blue-used + #red-used)



  

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

snew > ½sold

snew ≤ ½sold

Cost of looking up xᵢ:
 

O(log (W / wᵢ) + #red-used)

 

Every blue edge throws away half of 
the total weight remaining.

 

We begin with W total weight. If we're 
searching for xᵢ, the total weight at 

node xᵢ must be at least wᵢ.
 

You can only throw away half the total 
weight log (W / wᵢ) times before the 

total weight drops to wᵢ. 
 

 

Every blue edge throws away half of 
the total weight remaining.

 

We begin with W total weight. If we're 
searching for xᵢ, the total weight at 

node xᵢ must be at least wᵢ.
 

You can only throw away half the total 
weight log (W / wᵢ) times before the 

total weight drops to wᵢ. 
 



  

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

snew > ½sold

snew ≤ ½sold

Cost of looking up xᵢ:
 

O(log (W / wᵢ) + #red-used)

 

This technique of splitting edges into 
“good” edges and “bad” edges is a 

technique called a heavy/light 
decomposition and is used 

extensively in the design and analysis 
of data structures.

 

 

This technique of splitting edges into 
“good” edges and “bad” edges is a 

technique called a heavy/light 
decomposition and is used 

extensively in the design and analysis 
of data structures.

 



  

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

lg(sold) - lg(snew) < 1

lg(sold) - lg(snew) ≥ 1

We need a potential function Φ 
that looks at lg sᵢ for each key xᵢ.

Reasonable guess:

We need a potential function Φ 
that looks at lg sᵢ for each key xᵢ.

Reasonable guess: Φ = ∑
i=1

n

lg si .

Cost of looking up xᵢ:
 

O(log (W / wᵢ) + #red-used)



  

The Net Result

● Theorem: Using the potential function from 
before, the amortized cost of splaying key xᵢ is

1 + 3 lg (W / wᵢ),

where W = w₁ + w₂ + … + wₙ.
● The math behind this theorem is nontrivial and not 

at all interesting. It's just hard math gymnastics. 
Check Sleator and Tarjan's paper for details!

● This theorem holds for any choice of weights wᵢ 
assigned to the nodes, so it's useful for proving a 
number of nice results about splay trees.

● There's a subtle catch, though...



  

An Important Detail

● Recall: When using the potential method, the 
sum of the amortized costs relates to the sum 
of the real costs as follows:

 

 

● Therefore:

● The actual cost is bounded by the sum of the 
amortized costs, plus the drop in potential.

∑
i=1

m

a(opi) = ∑
i=1

m

t (opi) + O(1)⋅(Φm+1−Φ1)

∑
i=1

m

a(opi) + O(1)⋅(Φ1−Φm+1) = ∑
i=1

m

t (opi)



  

An Important Detail

● Previously, when we've analyzed amortized-
efficient data structures, our potential function 
started at 0 and ended nonnegative.

● With our current choice of

 
if we're given a tree and then start splaying, 
our initial potential is nonzero, and our final 
potential might be lower than initial.

● This means that if we perform m operations on 
an n-element splay tree, we need to factor 
Φ₁ - Φₘ₊₁ into the total cost. 

Φ = ∑
i=1

n

lg si



  

Analyzing Splay Trees

● To analyze the cost of splay tree 
operations, we'll proceed in three steps:
● First, assign the weights to the nodes in a way 

that correlates weights and access patterns.
● Second, use the amortized cost from before to 

determine the cost of each splay.
● Finally, factor in the potential drop to account 

for the “startup cost.”

● The net result can be used to bound the 
cost of splaying.



  

Theorem (Balance Theorem): The cost of performing m
operations on an n-node splay tree is O(m log n + n log n).

Proof: The runtime of each operation is bounded by the cost of
O(1) splays, so we'll bound the overall runtime by bounding
the costs of the splays involved.

Assign each key xᵢ weight wᵢ = 1. The amortized cost of 
performing a splay at a key xᵢ is then

         = 1 + 3 lg (W / wᵢ) 
         = 1 + 3 lg (n / 1)
         = O(log n).

 To bound the total drop in potential, note that in the worst
case any key xᵢ may initially be in a subtree of total weight
n and end in a subtree of total weight 1. Therefore, the
maximum possible potential drop is

    
 So the total cost of performing m operations on an n-node

splay tree is O(m log n + n log n), as required. ■

∑
i=1

n

lgn − ∑
i=1

n

lg1 = n lgn.



  

A Stronger Result

● Recall: A statically optimal binary search 
tree has expected lookup cost Θ(1 + H), 
where H is the Shannon entropy of the 
access probability distribution.

● Claim: In a sense, splay trees achieve 
this statically optimal bound.



  

Static Optimality Theorem: Let S = { x₁, …, xₙ } be a
set of keys stored in a splay tree. Suppose a series of
lookups is performed where

 

· every node is accessed at least once, and
· all lookups are successful.

 

 Then the amortized cost of each access is O(1 + H),
where H is the Shannon entropy of the access
distribution.



  

Proof: Assign each key xᵢ weight pᵢ, where pᵢ is the fraction of
the lookups that access xᵢ. The amortized cost of a lookup of
xᵢ is therefore at most

1 + 3 lg (W / wᵢ) = 1 + 3 lg (1 / pᵢ) = 1 – 3 lg pᵢ.   

Since each element is accessed mpᵢ times, the sum of the 
amortized lookup times is given by

  
To bound the total drop in potential, notice that each node 
contributes lg sᵢ to the potential, where sᵢ is the weight of 
the subtree rooted at sᵢ. The maximum value of sᵢ is 1 (when 
all nodes are in xᵢ's tree) and the minimum value of sᵢ is pᵢ 
(when xᵢ is by itself), so the maximum possible potential 
drop from a single element is given by -lg pᵢ. Therefore, the 
maximum potential drop is

 
So the cost of the m lookups is O(m + mH), and since there 
are m lookups, the amortized cost of each is O(1 + H). ■

∑
i=1

n

(mpi(1−3lgpi)) = m∑
i=1

n

(pi − 3pi lgpi) = m + 3mH .

∑
i=1

n

−lgpi ≤ ∑
i=1

n

−mpi lgpi = m∑
i=1

n

−pi lgpi = m H



  

Beating Static Optimality

● On many classes of access sequences, splay trees can 
outperform statically optimal BSTs.

● The sequential access theorem says that

If you look up all n elements in a splay tree in ascending 
order, the amortized cost of each lookup is O(1).

● The working-set theorem says that

If you perform Ω(n log n) successful lookups, the 
amortized cost of each successful lookup is O(1 + log t), 

where t is the number of searches since we last looked up 
the element searched for.

● In the upcoming programming assignment, you'll compare 
the performance of splay trees to (nearly) optimal BSTs. 
See if you notice anything interesting in these cases!



  

An Open Problem: Dynamic Optimality



  

The BST Model

● Consider a BST with a pointer called the finger, 
which points to some element, initially the root.

● You are allowed to perform the following 
operations at any time:
● Move the finger to a left or right child.
● Move the finger to a parent.
● Rotate the node pointed at by the finger with its 

parent.
● Return the node pointed at by the finger.

● Note that the splay tree fits into this model; the 
finger starts at a root, descends to a node, then 
splays back up to the top.



  

Dynamic Optimality

● Observation: For any set of keys and initial BST, given 
the lookup sequence in advance, there is 
(nonconstructively) some optimal series of tree 
operations we can perform to minimize the lookup time.

● For a series of lookups S, we'll say that OPT(S) is the 
number of operations required in this sequence.

● Open Problem: Is there a single BST data structure 
whose cost on any sequence S is O(OPT(S))?

● Such a binary search tree would be called a 
dynamically optimal binary search tree and would 
be within a constant factor of the fastest possible BST 
on any possible sequence of lookups.



  

Competitive Ratios

● A binary search tree data structure is called 
f(n)-competitive if the ratio of the cost of 
performing a sequence of operations S on 
that data structure is at most f(n) · OPT(S).

● A dynamically-optimal BST would be an 
O(1)-competitive BST, for example.

● We don't know of any BSTs with this 
property yet. But we do know a few things!



  

What We Know

● Known: Data structures exist that are provably 
O(log log n)-competitive (Tango trees,  
multisplay trees).

● Conjectured: Splay trees are O(1)-competitive.

● Suspected: A recently-developed data structure 
(the online greedy BST) may be the first tree 
structure that will be proven to be dynamically 
optimal.

● Tango trees, multisplay trees, online greedy 
BSTs, and the associated proofs would make for 
really, really interesting final project topics!



  

Next Time

● Randomized Data Structures
● How do we trade worst-case guarantees for 

probabilistic guarantees?

● Count[-Min] Sketches
● Counting in sublinear space.

● Concentration Inequalities
● How do we show that we're near the 

expected value most of the time?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

