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Outline for Today

● Data Structures on Integers
● How can we speed up operations that work 

on integer data?

● Tiered Bitvectors
● A simple data structure for ordered 

dictionaries.

● van Emde Boas Trees
● An extremely fast data structure for ordered 

dictionaries.



  

Integer Data Structures



  

Working with Integers

● Integers are interesting objects to work with:
● They can be treated as strings of bits, so we can 

use techniques from string processing.
● They fit into machine words, so we can process 

the bits in parallel with individual word 
operations.

● Today, we'll explore van Emde Boas trees, 
which rely on this second property.

● On Thursday, we'll see y-Fast tries, which 
will pull together just about everything from 
the quarter.



  

Our Machine Model

● We will assume that we are working with a 
transdichotomous machine model.

● Memory is split apart into integer words 
composed of w bits each.

● The CPU can perform basic arithmetic 
operations (addition, subtraction, 
multiplication, division, shifts, AND, OR, 
etc.) on machine words in time O(1) each.

● When working on a problem where each 
instance has size n, we assume w = Ω(log n).



  

Ordered Dictionaries



  

Ordered Dictionaries

● An ordered dictionary is a data structure that 
maintains a set S of elements drawn from an ordered 
universe  and supports these operations: �
● insert(x), which adds x to S.
● is-empty(), which returns whether S = Ø.
● lookup(x), which returns whether x ∈ S.
● delete(x), which removes x from S.
● max() / min(), which returns the maximum or minimum 

element of S.
● successor(x), which returns the smallest element of S 

greater than x, and
● predecessor(x), which returns the largest element of S 

smaller than x.



  

Ordered Dictionaries

● Balanced BSTs support all ordered 
dictionary operations in time O(log n) 
each.

● Hash tables support insertion, lookups, 
and deletion in expected time O(1), but 
require time O(n) for min, max, 
successor, and predecessor.



  

Ordered Integer Dictionaries

● Suppose that our universe consists of natural 
numbers upper-bounded by some number U.
● Specifically, � = [U] = {0, 1, 2, …, U – 1}.
● In our analysis, we'll assume that U fits into O(1) 

machine words.

● Question: Can we design a data structure that 
supports the ordered dictionary operations on   �
faster than a balanced BST?

● The answer is yes, and we'll see van Emde Boas 
trees and y-fast tries as two possible solutions.



  

A Preliminary Approach: Bitvectors



  

Bitvectors

● A bitvector is an array of bits of length U.

● Represents a set of elements with insertions, 
deletions, and lookups each taking time O(1):

● To insert x, set the bit for x to 1.
● To delete x, set the bit for x to 0.
● To lookup x, check whether the bit for x is 1.

● Space usage is Θ(U).

1101110010111011110001001101010111100110111101111



  

Bitvectors

● The min, max, predecessor, and successor 
operations on bitvectors can be extremely slow.

● Runtime will be Θ(U) in the worst case.

000000000000000000000000010000000000000000000000000



  

Tiered Bitvectors

● Adapting an approach similar to our hybrid 
RMQs, we can put a summary structure on top 
of our bitvector.

● Break the universe  into Θ(� U / B) blocks of 
size B.

● Create an auxiliary bitvector of size Θ(U / B) 
that stores which blocks are nonempty.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0



  

Tiered Bitvectors

● Using the same techniques we used for RMQ, we 
can speed up ordered dictionary operations so that 
they run in time O(U / B + B).

● As before, this is minimized when B = Θ(U1/2).

● Claim: Ordered dictionary runtimes are now all 
O(U1/2) (and possibly faster).

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0



  

Tiered Bitvectors

● We can view our tiered bitvector structure in a 
different light that will help lead to future 
improvements.

● Instead of thinking of this as two bitvectors (a 
main and a summary), think of it as Θ(U1/2) 
smaller main bitvectors and a summary 
bitvector.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0



  

Tiered Bitvectors

● To perform lookup(x) in this structure, check 
the ⌊x / U1/2⌋th bitvector to see if x mod U1/2 is 
present.

● In other words, our top-level lookup(x) call 
turns into a recursive lookup(⌊x / U1/2⌋) call in a 
smaller bitvector.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

⌊42 / 8⌋ = 5     42 mod 8 = 2



  

Tiered Bitvectors

● To perform insert(x) in this structure, insert 
x mod U1/2 into the ⌊x / U1/2⌋th bitvector, then 
insert ⌊x / U1/2⌋ into the summary bitvector.

● Turns one insert call into two recursive insert 
calls.

00100010 00000000 00000000 01000000 00000100 11110111 00000000 00000000

1 0 0 1 1 1 0 0

⌊25 / 8⌋ = 3     25 mod 8 = 1



  

Tiered Bitvectors

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0

● To perform max(), call max on the summary 
structure.

● If it returns value v, return max of the vth 
bitvector.

● Turns one max call into two recursive maxs.



  

Tiered Bitvectors

● To perform successor(x), do the following:

● Find max in the ⌊x / U1/2⌋th bitvector.

● If it exists and is greater than x, find 
successor(x mod U1/2) in that bitvector.

● Otherwise, find successor(⌊x / U1/2⌋) in the summary 
structure; let it be j if it exists.

● Return min of the jth bitvector of it exists or ∞ 
otherwise.

● Turns successor into a max, a min, and a successor.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0



  

Tiered Bitvectors

● To perform an is-empty query, return the 
result of that query on the summary structure.

● Turns one is-empty query into a single smaller 
is-empty query.

00100010 00000000 00000000 00000000 00000100 11110111 00000000 00000000

1 0 0 0 1 1 0 0



  

Tiered Bitvectors

● To perform delete(x) in this structure, delete 
x mod U1/2 from the ⌊x / U1/2⌋th bitvector.

● Then, check is-empty on that bitvector, and if 
so, delete(⌊x / U1/2⌋) from the summary 
bitvector.

● Turns one delete call into up to two recursive 
deletes and one is-empty.

00100010 00000000 00000000 00000000 00000000 11110111 00000000 00000000

1 0 0 0 0 1 0 0



  

The Story So Far

● Each operation turns into recursive 
operations on a smaller bitvector:
● insert: 2x insert
● lookup: 1x lookup
● is-empty: 1x is-empty
● min: 2x min
● successor: 1x successor, 1x max, 1x min
● delete: 2x delete, 1x is-empty



  

A Recursive Approach

● Adding one tier to the bitvector sped things up 
appreciably.

● Idea: What if we apply this same approach to 
each of the smaller bitvectors?

● Builds a recursive data structure:
● If U ≤ 2, just use a normal bitvector.
● Otherwise, to build a data structure for a universe of 

size U, split the input apart into Θ(U1/2) blocks of size 
Θ(U1/2) and add a summary data structure on top.

● Answer queries using the same approach we 
outlined earlier.



  

Our Data Structure

● Let  = [256]. �
● The top-level structure looks like this:

  

● Each structure one level below (and the summary) 
looks like this: 

  

 
● Each structure one level below that looks like this:

0 1 2 3 4 ... 14 15 summary

0 1 2 3 summary

00



  

So... how efficient is it?



  

Analyzing the Operations

● Let's analyze the is-empty and lookup 
operations in this structure.

● Each makes a recursive call to a problem 
of size Θ(U1/2) and does O(1) work.

● Recurrence relation:

    T(2) = Θ(1)
    T(U) ≤ T(U1/2) + Θ(1)

● How do we solve this recurrence?



  

A Useful Substitution

● The Master Theorem is great for working with 
recurrences of the form

T(n) ≤ aT(n / b) + O(nd)
● This recurrence doesn't have this form because 

the “shrinking” step is a square root rather than a 
division.

● To address this, we'll transform the recurrence so 
that it fits into the above form.

● If we write U = 2k, then U1/2 = 2k/2.
● Turn the recurrence from a recurrence in U to a 

recurrence in k = log U.



  

The Substitution

● Define S(k) = T(2k).

● Since

       T(2) ≤ Θ(1)
      T(U) ≤ T(U1/2) + Θ(1) 

● We have

      S(1) ≤ Θ(1)
      S(k) ≤ S(k / 2) + Θ(1)

● This means that S(k) = O(log k).

● So T(U) = T(2lg U) = S(lg U) = O(log log U).



  

Analyzing the Operations

● The insert and min operations each make two recursive 
calls on subproblems of size Θ(U1/2) and do Θ(1) work.

● Gives this recurrence:

     T(2) ≤ Θ(1)
    T(U) ≤ 2T(U1/2) + Θ(1)   

● Substituting S(k) = T(2k) yields

     S(1) ≤ Θ(1)
    S(k) ≤ 2S(k / 2) + Θ(1)

● So S(k) = O(k).

● Therefore, T(U) = S(2lg U) = O(log U).



  

Analyzing the Operations

● Each delete call makes two recursive delete calls and 
one call to is-empty.

● As we saw, is-empty takes time O(log log U)

● Recurrence relation is

    T(2) ≤ Θ(1)
    T(U) ≤ 2T(U1/2) + O(log log U)

● Letting S(k) = T(2k) gives

    S(1) ≤ Θ(1)
    S(k) ≤ 2S(k / 2) + O(log k)

● Via the Master Theorem, S(k) = O(k).

● Thus T(U) = O(log U).



  

Analyzing the Operations

● Each successor call makes one recursive successor 
call and one call to max and min.

● As we saw, max and min takes time O(log U)

● Recurrence relation is

    T(2) ≤ Θ(1)
    T(U) ≤ T(U1/2) + O(log U)

● Letting S(k) = T(2k) gives

    S(1) ≤ Θ(1)
    S(k) ≤ T(k / 2) + O(k)

● Via the Master Theorem, S(k) = O(k).

● Thus T(U) = O(log U).



  

Where We Stand

● Right now, we have a data structure where 
lookups are exponentially faster than a 
balanced BST if n = Ω(log U).

● Other operations have runtime proportional to 
log U, which is (usually) greater than log n.

● Can we speed things up?



  

Time-Out for Announcements!



  

Problem Set Five

● As a reminder, Problem Set Five is due 
this Thursday at the start of class.

● Have questions? As always, stop by our 
office hours or ask questions on Piazza.



  

Midterm Logistics

● The CS166 midterm exam is next Tuesday, May 24 from 
7PM – 10PM in 320-105.

● Exam is cumulative and covers everything we've talked about 
this quarter, with a focus on the topics from PS1 – PS5. Topics 
from this week and next Tuesday are fair game but, 
understandably, won't be tested in nearly as much depth.

● Exam is closed-book, closed-computer, and limited-note: you can 
bring a double-sided, 8.5” × 11” sheet of notes with you when 
you take the exam.

● We've released a set of practice problems to help you prepare 
for the exam. They're up on the course website and we'll 
distribute solutions on Thursday.

● Can't make the exam time? Let us know ASAP so that we can set 
up an alternate time.



  



  

Register to Vote!

● I have a giant stack of voter registration 
forms up at the front of class today.

● If you're not registered to vote and would 
like to register, feel free to pick one up.



  

Back to CS166!



  

Identifying Inefficiencies

● Fundamentally, the recurrences we need to solve to 
determine the costs of these operations either have 
the form

T(U) = T(U1/2) + f(U)

or

T(U) = 2T(U1/2) + f(U).
● This first recurrence (often) solves to O(log log U), 

which is o(log n) as long as n = ω(log U).
● The second recurrence often solves to O(log U), which 

is never o(log n).
● Theoryland Goal: Find a way to convert recurrences 

of the second type into recurrences of the first type.



  

Identifying Inefficiencies

● A few operations seem like easy candidates for 
speedups:
● is-empty certainly seems like it shouldn't take time 

O(log log U).
● max and min can probably don't actually need time 

O(log U).

● We'll show how to speed up these three 
operations.

● By doing so, we'll significantly improve the 
runtimes of the other operations.



  

Improving Min and Max

● Suppose you have a priority queue where 
finding the min takes time ω(1).

● How could you modify it so that finding the 
min can be done in time O(1)?

● Answer: Store the minimum outside of the 
priority queue.

min

137



  

Improving Min and Max

● Observation: In this setup, the cost of 
inserting into an empty priority queue is 
O(1).

● We just store the value in the min field 
without having to do any priority queue 
operations.

min

137



  

van Emde Boas Trees

● A van Emde Boas tree is a slight modification to our 
previous structure.

● As before, each level recursively splits the universe into 
Θ(U1/2) blocks of size Θ(U1/2).

● As before, each level stores pointers to children for each 
subuniverse and stores a pointer to a summary structure 
of size Θ(U1/2).

● Each recursive copy of data structure stores its minimum 
and maximum values separately from the rest of the 
structure.
● This is not the same as caching the min and max. The 

minimum and maximum values at each level of the recursion 
are stored separately and not recursively added into the rest of 
the structure. This is important for the later analysis!



  

van Emde Boas Trees

● Let  = [256]. �
● The top-level structure looks like this:

  

● Each structure one level below (and the 
summary) looks like this:

0 1 2 3 4 ... 14 15 summary

0 1 2 3 summary

min max

min max



  

vEB Tree Lookups

● Lookups in a vEB tree work as before, 
but with one extra step: check whether 
the value being searched for is the min 
or max value.

0 1 2 3 4 5 6 7 summary

15

min
62

max



  

vEB Tree Insertions

● Insertions in a vEB tree work as before, but 
with extra logic to handle min and max.
● May need to handle the case where the tree is 

empty.
● May need to handle the case where the tree has 

just one element.
● May need to displace min or max into the tree.

0 1 2 3 4 5 6 7 summary

3

min
33

max

13 1



  

vEB Tree Deletions

● Deletions in a vEB tree work as before, but 
with extra logic to handle min and max.
● May need to pull an element to fill in a missing 

min or max.
● May need to clear min or max.

0 1 2 3 4 5 6 7 summary min max



  

Why This Matters

● This may seem like a minor cosmetic 
change, but this fundamentally changes 
the analysis for two reasons:
● The cost of a min, max, or is-empty query 

drops to O(1), reducing the cost of the other 
recurrences.

● The cost of inserting into or deleting from an 
empty vEB tree is now worst-case O(1).

● Let's trace through these effects and see 
what happens.



  

Analyzing the Runtime

● This simple change profoundly affects the 
runtime of the operations for several reasons:
● We can now instantly query for the min and max 

values in a tree.
● The behavior of insert and delete changes slightly 

when working with empty or nearly empty trees.

● min, max, and is-empty run in time O(1).
● lookup runs in time O(log log U) as before.
● Let's revisit all the operations to see how 

efficiently they work.



  

Updating insert

● The logic for insert(x) works as follows:
● If the tree is empty or has just one element, update 

min and max appropriately and stop.
● Potentially displace the min or max and insert that 

value instead of x.
● Insert x mod U1/2 into the appropriate substructure.
● Insert ⌊x / U1/2⌋ into the summary.

● Recurrence relation:

      T(2) = Θ(1)
     T(U) = 2T(U1/2) + Θ(1).

● This still solves to O(log U). Can we do better?



  

An Observation

● The summary structure stores the indices of 
the substructures that are nonempty.

● Therefore, we only need to insert ⌊x / U1/2⌋ 
into the summary if that block previously was 
empty.

● Here's our new approach:
● If the ⌊x / U1/2⌋th substructure is not empty:

– Call insert(x mod U1/2) into that substructure.
● Otherwise:

– Call insert(x mod U1/2) into that substructure.
– Call insert(⌊x / U1/2⌋) into the summary structure.



  

A Very Clever Insight

● Useful Fact: Inserting an element into an empty 
vEB tree takes time O(1).

● We only make at most one “real” recursive call:
● If we don't recurse into the summary, we only made one 

recursive call down into a substructure.
● If we make a recursive call into the summary, we did so 

because the other call was on an empty subtree, which 
isn't a “real” recursive call.

● New recurrence relation:

    T(2) = Θ(1)
    T(U) ≤ T(U1/2) + Θ(1)

● As we've seen, this solves to O(log log U).



  

Analyzing delete

● The logic for delete(x) works as follows:
● If the tree has just one element, update min and max 

appropriately and stop.
● If min or max are being deleted, replace them with the min 

or max of the first or last nonempty tree, then proceed as if 
deleting that element instead.

● Delete x mod U1/2 from its subtree.
● If that subtree is empty, delete ⌊x / U1/2⌋ from the summary.

● Recurrence relation:

      T(2) = Θ(1)
      T(U) ≤ 2T(U1/2) + Θ(1).

● Still solves to O(log U). However, is this bound tight?



  

A Better Analysis

● Observation: Deleting the last element out of a 
vEB tree takes time O(1).
● Just need to update the min and max fields.

● Therefore, delete makes at most one “real” 
recursive call:
● If it empties a subtree, the recursive call that did so 

ran in time O(1) and the “real” call is on the 
summary structure.

● If it doesn't, then there's no second call on the 
summary structure.



  

The New Runtime

● With this factored in, the runtime of doing an 
delete is given by the recurrence

    T(2) = Θ(1) 
    T(U) ≤ T(U1/2) + Θ(1)

● As we've seen, this solves to O(log log U).



  

Finding a Successor

★ ★ ★

0 1 2 3 4 5 6 7 summary

2

min
39

max

● In a vEB tree, we can find a successor as follows:

● If the tree is empty or x > max(), there is no successor.
● Otherwise, let i be the index of the tree containing x.
● If subtree i is nonempty and x is less than i's max, x's 

successor is the successor in subtree i.
● Otherwise, find the successor j of i in the summary.
● If j exists, return the minimum value in tree j.
● Otherwise, return the tree max.



  

Finding a Successor

● In a vEB tree, we can find a successor as follows:

● If the tree is empty or x > max(), there is no successor.
● Otherwise, let i be the index of the tree containing x.
● If subtree i is nonempty and x is less than i's max, x's 

successor is the successor in subtree i.
● Otherwise, find the successor j of i in the summary.
● If j exists, return the minimum value in tree j.
● Otherwise, return the tree max.

● At most one recursive call is made and each other 
operation needed runs in time O(1).

● Recurrence: T(U) ≤ T(U1/2) + Θ(1); solves to O(log log U).



  

van Emde Boas Trees

● The van Emde Boas tree supports insertions, 
deletions, lookups, successor queries, and 
predecessor queries in time O(log log U).

● It can answer min, max, and is-empty queries 
in time O(1).

● If n = ω(log U), this is exponentially faster 
than a balanced BST!



  

The Catch

● There is, unfortunately, one way in which 
vEB trees stumble: space usage.

● We've assumed that the complete vEB 
tree has been constructed before we 
make any queries on it.

● How much space does it use?



  

The Recurrence

● The space usage of a van Emde Boas tree is 
given by the following recurrence relation:

    S(2) = Θ(1)

    S(U) = (U1/2 + 1)S(U1/2) + Θ(U1/2)

● Using the substitution method, this can be 
shown to be Θ(U).

● Space usage is proportional to the size of the 
universe, not the number of elements stored!



  

Reducing Space Usage

● We can cut the space usage for a vEB tree 
down by using hash tables at each level 
instead of arrays.

● Using cuckoo hashing, we get the same 
worst-case time bounds on each operation 
except for insert.

● This drops the space usage down to O(n).
● However, this requires a lot of different hash 

tables, and that's expensive!



  

Next Time

● x-Fast Tries
● A randomized data structure matching the vEB 

bounds and using O(n log U) space.

● y-Fast Tries
● A randomized data structure matching the vEB 

bounds in an amortized sense and using O(n) 
space.

● (These data structures pull together just about 
everything we've covered this quarter – I hope 
they make for great midterm review!)
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