

Disjoint-Set Forests

Thanks for Showing Up!

Outline for Today

● Incremental Connectivity
● Maintaining connectivity as edges are added to a

graph.

● Disjoint-Set Forests
● A simple data structure for incremental connectivity.

● Union-by-Rank and Path Compression
● Two improvements over the basic data structure.

● Forest Slicing
● A technique for analyzing these structures.

● The Ackermann Inverse Function
● An unbelievably slowly-growing function.

The Dynamic Connectivity Problem

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so
that queries of the form “are nodes u and v

connected?”

● Using Θ(m + n) preprocessing, can preprocess the
graph to answer queries in time O(1).

0
0

0

0

1

3

1

2 2

3

3

3 2

2

2

2

0

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● Today, we'll focus on the incremental dynamic connectivity
problem: maintaining connectivity when edges can only be
added, not deleted.

● Has applications to Kruskal's MST algorithm and to many other
online connectivity settings.

● Look up percolation theory for an example.
● These data structures are also used as building blocks in other

algorithms:

● Speeding up Edmond's blossom algorithm for finding
maximum matchings.

● As a subroutine in Tarjan's offline lowest common ancestors
algorithm.

● Building meldable priority queues out of non-meldable
queues.

Incremental Connectivity and Partitions

Set Partitions

● The incremental connectivity problem is
equivalent to maintaining a partition of a set.

● Initially, each node belongs to its own set.
● As edges are added, the sets at the endpoints

become connected and are merged together.
● Querying for connectivity is equivalent to

querying for whether two elements belong to
the same set.

Representatives

● Given a partition of a set S, we can choose one
representative from each of the sets in the
partition.

● Representatives give a simple proxy for which set
an element belongs to: two elements are in the
same set in the partition iff their set has the same
representative.

Union-Find Structures

● A union-find structure is a data structure
supporting the following operations:
● find(x), which returns the representative of the

set containing node x, and
● union(x, y), which merges the sets containing x

and y into a single set.

● We'll focus on these sorts of structures as a
solution to incremental connectivity.

Data Structure Idea

● Idea: Have each element store a pointer
directly to its representative.

● To determine if two nodes are in the same set,
check if they have the same representative.

● To link two sets together, change all elements
of the two sets so they reference a single
representative.

Using Representatives

Using Representatives

● If we update all the representative
pointers in a set when doing a union, we
may spend time O(n) per union
operation.
● If you're clever with how you change the

pointers, you can make it amortized O(log n)
per operation. Do you see how?

● Can we avoid paying this cost?

Hierarchical Representatives

Hierarchical Representatives

● In a degenerate case, a hierarchical
representative approach will require
time Θ(n) for some find operations.

● Therefore, some union operations will
take time Θ(n) as well.

● Can we avoid these degenerate cases?

Union by Rank

0

1

0

2

1

0

0

0

0 0

Union by Rank

● Assign to each node a rank that is initially zero.

● To link two trees, link the tree of the smaller
rank to the tree of the larger rank.

● If both trees have the same rank, link one to
the other and increase the rank of the other
tree by one.

Union by Rank

● Claim: The number of nodes in a tree of rank r is at
least 2r.
● Proof is by induction; intuitively, need to double the size to

get to a tree of the next order.
● Fun fact: the smallest tree with a root of rank r is a binomial

tree of order r. Crazy!

● Claim: Maximum rank of a node in a graph with n
nodes is O(log n).

● Runtime for union and find is now O(log n).
● Useful fact for later on: The number of nodes of

rank r or higher in a disjoint set forest with n nodes is
at most n / 2r.

Path Compression

0

1

0

2

1

0

0

0

0 0

Path Compression

0

1

0

2

1

0

0

0

0 0

Path Compression

● Path compression is an optimization to the
standard disjoint-set forest.

● When performing a find, change the parent
pointers of each node found along the way to
point to the representative.

● Purely using path compression, each
operation has amortized cost O(log n).

● What happens if we combine this with union-
by-rank?

The Claim

● Claim: The runtime of performing m union and find
operations on an n-node disjoint-set forest using path
compression and union-by-rank is O(n + mα(n)),
where α is an extremely slowly-growing function.

● The original proof of this result (which is included in
CLRS) is due to Tarjan and uses a complex amortized
charging scheme.

● Today, we'll use an an aggregate analysis due to
Seidel and Sharir based on a technique called forest-
slicing.

Where We're Going

● First, we're going to define our cost model
so we know how to analyze the structure.

● Next, we'll introduce the forest-slicing
approach and use it to prove a key lemma.

● Finally, we'll use that lemma to build
recurrence relations that analyze the
runtime.

Our Cost Model

● The cost of performing a union or find depends on
the length of the paths followed.

● The cost of any one operation is

Θ(1 + #ptr-changes-made)

because each time we visit a node that doesn't
immediately point to its representative, we change
where it points.

● Therefore, the cost of m operations is

Θ(m + #ptr-changes-made)

● We will analyze the number of pointers changed
across the life of the data structure to bound the
overall cost.

Some Accounting Tricks

● To perform a union operation, we need to first
perform two finds.

● After that, only O(1) time is required to perform
the union operation.

● Therefore, we can replace each union(x, y) with
three operations:
● A call to find(x).
● A call to find(y).
● A linking step between the nodes found this way.

● Going forward, we will assume that each union
operation will take worst-case time O(1).

A Slight Simplification

● Currently, find(x) compresses from x up to its
ancestor.

● For mathematical simplicity, we'll introduce an
operation compress(x, y) that compresses
from x upward to y, assuming that y is an
ancestor of x.

● Our analysis will then try to bound the total
cost of the compress operations.

Removing the Interleaving

● We will run into some trouble in our
analysis because unions and
compresses can be interleaved.

● To address this, we will will remove the
interleaving by pretending that all
unions come before all compresses.

● This does not change the overall work
being done.

Removing the Interleaving

compress(j, b)
union(b, a)

compress(h, a)

f → b
h → b
j → b
b → a
h → a

a

b c d

e f

h

g

i

j

union(b, a)
compress(j, b)
compress(h, a)

b → a
f → b
h → b
j → b
h → a

Recap: The Setup

● Transform any sequence of unions and finds as
follows:
● Replace all union operations with two finds and a

union on the ancestors.
● Replace each find operation with a compress

operation indicating its start and end nodes.
● Move all union operations to the front.

● Since all unions are at the front, we build the
entire forest before we begin compressing.

● Can analyze compress assuming the forest has
already been created for us.

A Quick Initial Analysis

An Initial Analysis

● Lemma: Any series of m compress operation on a forest with ℱ
n nodes and maximum rank r makes at most nr pointer changes.

● Proof: Every time a node's representative change, the rank of
that representative increases. The maximum number of times this
can happen per node is r, giving an upper bound of nr. ■

0 0

1

0

2

0

1

0

3

0

1

2

0 0

1

3

0

The Forest-Slicing Approach

Forest-Slicing

a

b c d

e f

h

g

i

k

j

l

Forest-Slicing

● Let be a disjoint-set forest.ℱ
● Consider splitting into two forests ₊ ℱ ℱ

and ₋ with the following properties:ℱ
● ₊ ℱ is upward-closed: if x ∈ ₊, then any ℱ

ancestor of x is also in ₊.ℱ
● ₋ ℱ is downward-closed: if x ∈ ₋, then any ℱ

descendant of x is also in ₋.ℱ
● We'll call ₊ the ℱ top forest and ₋ the ℱ

bottom forest.

Forest-Slicing

a

b c d

e f

h

g

i

k

j

l

Nodes from ₋ never ℱ
move into ₊ or vice-ℱ
versa. We retain the

original cut after doing
compressions.

Nodes from ₋ never ℱ
move into ₊ or vice-ℱ
versa. We retain the

original cut after doing
compressions.

Why Slice Forests?

Forest-Slicing

● Key insight: Each compress operation
is either
● purely in ₊,ℱ
● purely in ₋, orℱ
● crosses from ₋ into ₊.ℱ ℱ

● If we can bound the cost of compress
operations that cross from ₋ to ₊, we ℱ ℱ
can try to set up a recurrence relation to
analyze the cost of those compresses.

c

d e f

b

a

g

c

d

e

f

b

a

g

Observation 1: The portion of the
compression in ₊ is equivalent to a ℱ

compression of the first node in ₊ on ℱ
the compression path to the last node

in ₊ on the compression path.ℱ

Observation 1: The portion of the
compression in ₊ is equivalent to a ℱ

compression of the first node in ₊ on ℱ
the compression path to the last node

in ₊ on the compression path.ℱ

c

d e f

b

a

g

c

d e f

b

a

g

Observation 2: The effect of the
compression on ₋ is ℱ not the same as

the effect of compressing from the first
node in ₋ to the last node in ₋.ℱ ℱ

Observation 2: The effect of the
compression on ₋ is ℱ not the same as

the effect of compressing from the first
node in ₋ to the last node in ₋.ℱ ℱ

c

d e f

b

a

g

c

d e f

b

a

g

Observation 3: The cost of the compress in
₋ is the number of nodes in ₋ that got a ℱ ℱ

parent in ₊, plus (possibly) one more for the ℱ
topmost node in ₋ on the compression path.ℱ

Observation 3: The cost of the compress in
₋ is the number of nodes in ₋ that got a ℱ ℱ

parent in ₊, plus (possibly) one more for the ℱ
topmost node in ₋ on the compression path.ℱ

The Cost of Crossing Compressions

● Suppose we do m compressions, of which m₊ of
them cross from ₋ into ₊.ℱ ℱ

● We can upper bound the cost of these
compressions as the sum of the following:
● the cost of all the tops of those compressions,

which occur purely in ₊;ℱ
● the number of nodes in ₋, since each node in ℱ

₋ gets a parent in ₊ for the first time at most ℱ ℱ
once; and

● m₊, since each compression may change the
pointer of the topmost node on the path in ₋.ℱ

Theorem: Let be a disjoint-set forest and let ₊ℱ ℱ
 and ₋ be a partition of into top and bottomℱ ℱ

forests.

Then for any series of m compressions C, there exist
two sequences of compressions
– C₊, a series of m₊ compressions purely in ₊; andℱ
– C₋, a series of m₋ compressions purely in ₋,ℱ

such that

 · m₊ + m₋ = m

 · cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊

Compressions that
appear purely in ₊ or ℱ
purely in ₋, plus the ℱ

tops of crossing
compressions.

Compressions that
appear purely in ₊ or ℱ
purely in ₋, plus the ℱ

tops of crossing
compressions.

Nodes in ₋ ℱ
getting their
first parent

in ₊ℱ

Nodes in ₋ ℱ
getting their
first parent

in ₊ℱ

Nodes in ₋ ℱ
having their
parent in ₊ ℱ

change.

Nodes in ₋ ℱ
having their
parent in ₊ ℱ

change.

Time-Out for Announcements!

The midterm is tonight
from 7PM – 10PM
in room 320-105.

Good luck!

Back to CS166!

The Main Analysis

Where We Are

● We now have a sort of recurrence relation for
evaluating the runtime of a series C of m
compresses on an n-node forest sliced into ₊ ℱ ℱ
and ₋:ℱ

cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊
● This recurrence relation assumes that we already

know how we've sliced into ₊ and ₋.ℱ ℱ ℱ
● To complete the analysis, we're going to need to

precisely quantify what happens if we slice the
forest in a number of different ways.

Natural Slices

● One “natural” way to slice a forest into ₊ and ℱ ℱ
₋ is to pick some threshold rank. We then ℱ

choose ₊ to be all the nodes whose rank is above ℱ
the threshold and ₋ to be all the other nodes.ℱ

0 0

1

0

2

0

1

0

3

0

1

2

0 0

1

3

0

Natural Slices

● If our initial forest has maximum rank r and we
slice the forest at rank r', the bottom forest has
maximum rank r' and the top forest is
(essentially) a forest of rank r – r'.

0 0

1

0

0

0

1

0

1

0

1

0

0 0

1

1

0

Slicing our Forest

● Imagine that we have our forest of ℱ
maximum rank r.

● Suppose we cut slice the forest into ₊ ℱ
and ₋ at some rank ℱ r'.

● We know that

cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊.
● Let's investigate cost(C₊) and cost(C₋)

independently.

The Top Forest

● Let's begin by thinking about cost(C₊), the cost of
compresses in the top forest ₊.ℱ

● Recall: ₊ consists of all nodes of rank ℱ r'or higher.
● Intuitively, we'd expect there to not be “too many”

nodes in the top forest, since it's exponentially harder
to get nodes of progressively harder orders.

● Using our lemma from before, we know that there can
be at most n / 2r' nodes in ₊.ℱ

● Therefore, using our (weak) bound from before, we
see that

cost(C₊) ≤ nr / 2r'.

Slicing our Forest

● Imagine that we have our forest of maximum ℱ
rank r.

● Suppose we cut slice the forest into ₊ and ₋ at ℱ ℱ
some rank r'.

● We know that

cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊.
● Therefore

cost(C) ≤ nr / 2r' + cost(C₋) + n + m₊.
● Let's now go investigate cost(C₋).

Improving our Recurrence

cost(C) ≤ nr / 2r' + cost(C₋) + n + m₊.
● Notice that cost(C) is the cost of

● doing m compresses,
● in an n-node forest, with
● maximum rank r.

● We now have cost(C₋), which is the cost of
● doing m₋ compresses,
● in a forest with at most n nodes, with
● maximum rank r'.

● Let's make these dependencies more explicit.

Improving our Recurrence

cost(C) ≤ nr / 2r' + cost(C₋) + n + m₊.
● Define T(m, n, r) to be the cost of

● performing m compress operations,
● in a forest of at most n nodes, where
● the maximum rank is r.

● The above recurrence can be rewritten as

T(m, n, r) ≤ T(m₋, n, r') + nr / 2r' + n + m₊
● Now, we “just” need to solve this recurrence.

Don't worry... it's not too bad!

Finalizing our Recurrence

T(m, n, r) ≤ T(m₋, n, r') + nr / 2r' + n + m₊
● The above recurrence is dependent on having a

choice of r' based on our choice of r.
● If we make r' too large, then the recurrence

relation takes too long to bottom out and we'll
expect a higher runtime.

● If we make r' too small, the nr / 2r' term will be too
large and our analysis won't be tight.

● How do we balance these terms out?

Finalizing our Recurrence

T(m, n, r) ≤ T(m₋, n, r') + nr / 2r' + n + m₊
● Idea: Choose r' = lg r. Then

T(m, n, r) ≤ T(m₋, n, lg r) + 2n + m₊.
● Imagine that this recurrence expands out L times

before it bottoms out. Think about what happens:
● The 2n term gets summed in L times.
● The m₊ term – the number of compresses in the

top forest – sums up to at most m across all
compressions.

● Overall, we get T(m, n, r) ≤ 2nL + m.

Iterated Logarithms

● We now have

T(m, n, r) ≤ 2nL + m.
● The quantity L represents the number of layers in the

recurrence, and at each step we have r dropping to
lg r.

● The iterated logarithm, denoted lg* n, is the number
of times we can apply lg to n before it drops to some
constant (say, 2). Therefore:

T(m, n, r) ≤ 2n lg* r + m.
● And since the maximum rank is at most lg n, we see

that the cost of performing m operations on an n-node
forest is O(n lg* n + m).

Iterated Logarithms

● The function lg n is the inverse of the function
2n; that is, 2 × 2 × … × 2, n times.

● The tetration operation, denoted n2, is given
by , with n copies of 2 in the tower of
exponents. It grows extremely quickly!

● The function lg* n is the inverse of tetration. It
grows extremely slowly!

● Useful fact: lg* n ≤ 5 for any n less than or
equal to the number of atoms in the universe.

n2 = 22...2

Our Strategy

● Let's recap, how we got here.
● We begin with a forest of ℱ

maximum rank r.
● We sliced at rank lg ℱ r.
● We (directly) obtained a weak

bound on the cost of the
compressions in the (small)
forest ₊.ℱ

● We recursively obtained a
(good) bound on the cost of the
compressions in the (larger)
forest ₋.ℱ

● We solved the recurrence to
get the bound

T(m, n, r) ≤ 2n lg* r + m.

Cost here: n

Cost here:
T(m₋, n, lg r)

Our Strategy

What could we do to
tighten the runtime
bound?

● Option 1: Tighten
the bound on the
cost of the top
forest.

Option 2: Slice the
forest even lower to
make the recursion
tree shorter.

Cost here: n

Cost here:
T(m₋, n, lg r)

Previously, we used our weak bound
that the cost of any series of

operations on n nodes in a forest of
maximum rank r was at most nr. We
now have a bound of 2n lg* r + m,

which is much tighter.

Previously, we used our weak bound
that the cost of any series of

operations on n nodes in a forest of
maximum rank r was at most nr. We
now have a bound of 2n lg* r + m,

which is much tighter.

Our Strategy

What could we do to
tighten the runtime
bound?

Option 1: Tighten
the bound on the
cost of the top
forest.

● Option 2: Slice the
forest even lower to
make the recursion
tree shorter.

Cost here: n

Cost here:
T(m₋, n, lg r)

If we have a tighter bound on the
cost of the top forest, we can afford
to have more nodes in the top forest
at the same cost, so we can slice the

bottom forest even deeper.

If we have a tighter bound on the
cost of the top forest, we can afford
to have more nodes in the top forest
at the same cost, so we can slice the

bottom forest even deeper.

Slicing our Forest, Again

● Imagine that we have a forest of maximum rank ℱ r.
● Suppose we cut slice the forest into ₊ and ₋ at ℱ ℱ

some rank r'.
● We know that

cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊.
● Therefore

T(m, n, r) ≤ cost(C₊) + T(m, n, r') + n + m₊.
● Let's investigate cost(C₊) using our previous analysis.

The Top Forest

● Lemma: In an n-node forest of maximum rank ℱ r, if
we split into ₊ and ₋ by cutting the forest at ℱ ℱ ℱ
rank r', then cost(C₊) ≤ 2n lg* r / 2r' + m₊.

● Proof: There are n / 2r' nodes in this forest and the
maximum rank is at most r. The cost of performing
m₊ compress operations here is therefore

2(n / 2r') lg* r + m₊.
● Observation: Our previous bound was

rn / 2r'.

We previously set r' = lg r because that was as low as
we could go without cost(C₊) being too high. With
our new bound, we can afford to make r' much lower.

Our Recurrence

● We had

T(m, n, r) ≤ cost(C₊) + T(m₋, n, r') + n + m₊.
● So we now have

T(m, n, r) ≤ T(m₋, n, r') + 2n lg* r / 2r' + n + 2m₊.
● Previously, we picked r' = lg r and ended up with a bound in

terms of lg* r.
● Now, we pick r' = lg* r. Then we have

T(m, n, r) ≤ T(m₋, n, lg* r) + 2n + 2m₊.
● Using a similar analysis as before, if L is the number of

layers in the recurrence, this solves to

T(m, n, r) ≤ 2nL + 2m.

Iterated Iteration

● We have

T(m, n, r) ≤ 2nL + 2m,

where L is the number of layers in the iteration.
● At each step, we shrink r to lg* r. The maximum

number of times we can do this is denoted lg** r, so
we have

T(m, n, r) ≤ 2n lg** r + 2m.
● So the cost of any m operations is O(n lg** n + m).

Iterated Iterated Logarithms

● The pentation operation is next in the family of fast-
growing functions.

● Just as tetration is iterated exponentiation, pentation is
iterated tetration, so 2 pentated to the nth power,
denoted n2, is

where there are n2 copies of the exponential towers.
● The function lg** n is the inverse of pentation. It grows

unbelievably slowly!

(222...2

)
...

(222...2)

Our Strategy

● Let's recap, how we got here.
● We begin with a forest of ℱ

maximum rank r.
● We sliced at rank lg* ℱ r.
● We (directly) obtained a weak

bound on the cost of the
compressions in the (small)
forest ₊.ℱ

● We recursively obtained a
(good) bound on the cost of the
compressions in the (larger)
forest ₋.ℱ

● We solved the recurrence to
get the bound

T(m, n, r) ≤ 2n lg** r + 2m.

Cost here: n + m₊

Cost here:
T(m₋, n, lg* r)

Our Strategy

What could we do to
tighten the runtime
bound?

● Option 1: Tighten
the bound on the
cost of the top
forest.

Option 2: Slice the
forest even lower to
make the recursion
tree shorter.

Cost here: n + m₊

Cost here:
T(m₋, n, lg* r)

Previously, we used our weak bound that
the cost of any series of operations on n
nodes in a forest of maximum rank r was

at most 2n lg* r + m. We now have a
bound of 2n lg** r + 2m, which is much

tighter.

Previously, we used our weak bound that
the cost of any series of operations on n
nodes in a forest of maximum rank r was

at most 2n lg* r + m. We now have a
bound of 2n lg** r + 2m, which is much

tighter.

Our Strategy

What could we do to
tighten the runtime
bound?

Option 1: Tighten
the bound on the
cost of the top
forest.

● Option 2: Slice the
forest even lower to
make the recursion
tree shorter.

Cost here: n + m₊

Cost here:
T(m₋, n, lg* r)

If we have a tighter bound on the
cost of the top forest, we can afford
to have more nodes in the top forest
at the same cost, so we can slice the

bottom forest even deeper.

If we have a tighter bound on the
cost of the top forest, we can afford
to have more nodes in the top forest
at the same cost, so we can slice the

bottom forest even deeper.

The Feedback Lemma

● Lemma: Suppose we know that

T(m, n, r) ≤ 2n lg*(k) n + km.

Then

T(m, n, r) ≤ 2n lg*(k+1)n + (k+1)m.
● Proof: Induction! Use the previous proof as a

template: split the forest at rank lg*(k) r, use the
known bound to bound the cost of the top
forest, and use recursion to bound the cost of
the bottom forest. ■

The Final Steps

● For any k ∈ ℕ, we have

T(m, n, r) ≤ 2n lg*(k) r + km.
● We can upper-bound r at log n, so we have

T(m, n) ≤ 2n lg*(k) n + km.
● As n gets larger and larger, we can increase the value of

k to make the lg*(k) n term at most some constant value.
● Question: What is that k, as a function of n?
● The Ackermann inverse function, denoted α(n), is

α(n) = min{ k ∈ ℕ | lg*(k) n ≤ 3 }
● Theorem: The cost of performing any m operations on

any n-node disjoint set forest using union-by-rank and
path compression is O(n + mα(n)).

Intuiting α(n)

● Imagine we want to define some function A such that
● A(n, 0) = 2
● A(n, 1) = 2 + 2 + … + 2 = 2n
● A(n, 2) = 2 × 2 × … × 2 = 2n.
● A(n, 3) = 22...² = n2. (tetration)
● A(n, 4) = ²...22 = n2 . (pentation)
● A(n, 5) doesn't have a name, but scares children.

● The function A is called an Ackermann-type
function. There are a number of different functions in
this family, but they all (fundamentally) apply higher
and higher orders of functions to the arguments.

Intuiting α(n)

● Theorem: Asymptotically, the function α(n) is the inverse
of A(n, n), hence the name “Ackermann inverse”.

● Intuition:
● lg n is the inverse of 2n, which is A(n, 2).
● lg* n is the inverse of n2 (tetration), which is A(n, 3).
● lg** is the inverse of n2 (pentation), which is A(n, 4).

● α(n) tells you how many stars you need to make lg*(k) n drop to a
constant, which essentially asks for which essentially asks for
what order of operation you need to invert.

● This function grows more slowly than any of the iterated
logarithm families. It's so slowly-growing that an input to
it that would make it more than, say, 10 can't even be
expressed without inventing special notation for fast-
growing numbers.

Intuiting α(n)

● If you keep dividing by two, you should
expect a log term.

● If you keep taking logs, you should
expect a log* term.

● If you keep taking log*s, you should
expect a log** term.

● If you keep adding stars to your logs, you
should expect an α term.

Some Notes on α(n)

● The term α(n) arises in many different algorithms:
● Range semigroup queries: there's a lower bound of α(n) on

the cost of a query under certain algebraic assumptions.
● Minimum spanning trees: the fastest known deterministic

MST algorithm runs in time O(mα(n)) due to a connection to
the above topic.

● Splay trees: imagine you treat a splay tree as a deque.
Hilariously, the best bound we have on the runtime of
performing n deque operations is O(nα*(n)). It's suspected to
be O(n), but this hasn't been proven.

● α(n) and its variants are the slowest-growing functions
that are routinely encountered in algorithms and data
structures. And now you know where it comes from!

Next Time

● Euler Tour Trees
● Fully dynamic connectivity in forests.

● Dynamic Graphs
● Fully dynamic connectivity in general graphs

(ITA).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

