
  

Disjoint-Set Forests



  

Thanks for Showing Up!



  

Outline for Today

● Incremental Connectivity
● Maintaining connectivity as edges are added to a 

graph.

● Disjoint-Set Forests
● A simple data structure for incremental connectivity.

● Union-by-Rank and Path Compression
● Two improvements over the basic data structure.

● Forest Slicing
● A technique for analyzing these structures.

● The Ackermann Inverse Function
● An unbelievably slowly-growing function.



  

The Dynamic Connectivity Problem



  

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so 
that queries of the form “are nodes u and v 

connected?”

● Using Θ(m + n) preprocessing, can preprocess the 
graph to answer queries in time O(1).
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Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be 
inserted an deleted and connectivity queries may be 

answered efficiently.

● This is a much harder problem!



  

Dynamic Connectivity

● Today, we'll focus on the incremental dynamic connectivity 
problem: maintaining connectivity when edges can only be 
added, not deleted.

● Has applications to Kruskal's MST algorithm and to many other 
online connectivity settings.

● Look up percolation theory for an example.
● These data structures are also used as building blocks in other 

algorithms:

● Speeding up Edmond's blossom algorithm for finding 
maximum matchings.

● As a subroutine in Tarjan's offline lowest common ancestors 
algorithm.

● Building meldable priority queues out of non-meldable 
queues.



  

Incremental Connectivity and Partitions



  

Set Partitions

● The incremental connectivity problem is 
equivalent to maintaining a partition of a set.

● Initially, each node belongs to its own set.
● As edges are added, the sets at the endpoints 

become connected and are merged together.
● Querying for connectivity is equivalent to 

querying for whether two elements belong to 
the same set.



  

Representatives

● Given a partition of a set S, we can choose one 
representative from each of the sets in the 
partition.

● Representatives give a simple proxy for which set 
an element belongs to: two elements are in the 
same set in the partition iff their set has the same 
representative.



  

Union-Find Structures

● A union-find structure is a data structure 
supporting the following operations:
● find(x), which returns the representative of the 

set containing node x, and
● union(x, y), which merges the sets containing x 

and y into a single set.

● We'll focus on these sorts of structures as a 
solution to incremental connectivity.



  

Data Structure Idea

● Idea: Have each element store a pointer 
directly to its representative.

● To determine if two nodes are in the same set, 
check if they have the same representative.

● To link two sets together, change all elements 
of the two sets so they reference a single 
representative.



  

Using Representatives



  

Using Representatives

● If we update all the representative 
pointers in a set when doing a union, we 
may spend time O(n) per union 
operation.
● If you're clever with how you change the 

pointers, you can make it amortized O(log n) 
per operation. Do you see how?

● Can we avoid paying this cost?



  

Hierarchical Representatives



  

Hierarchical Representatives

● In a degenerate case, a hierarchical 
representative approach will require 
time Θ(n) for some find operations.

● Therefore, some union operations will 
take time Θ(n) as well.

● Can we avoid these degenerate cases?



  

Union by Rank
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Union by Rank

● Assign to each node a rank that is initially zero.

● To link two trees, link the tree of the smaller 
rank to the tree of the larger rank.

● If both trees have the same rank, link one to 
the other and increase the rank of the other 
tree by one.



  

Union by Rank

● Claim: The number of nodes in a tree of rank r is at 
least 2r.
● Proof is by induction; intuitively, need to double the size to 

get to a tree of the next order.
● Fun fact: the smallest tree with a root of rank r is a binomial 

tree of order r. Crazy!

● Claim: Maximum rank of a node in a graph with n 
nodes is O(log n).

● Runtime for union and find is now O(log n).
● Useful fact for later on: The number of nodes of 

rank r or higher in a disjoint set forest with n nodes is 
at most n / 2r.



  

Path Compression
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Path Compression
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Path Compression

● Path compression is an optimization to the 
standard disjoint-set forest.

● When performing a find, change the parent 
pointers of each node found along the way to 
point to the representative.

● Purely using path compression, each 
operation has amortized cost O(log n).

● What happens if we combine this with union-
by-rank?



  

The Claim

● Claim: The runtime of performing m union and find 
operations on an n-node disjoint-set forest using path 
compression and union-by-rank is O(n + mα(n)), 
where α is an extremely slowly-growing function.

● The original proof of this result (which is included in 
CLRS) is due to Tarjan and uses a complex amortized 
charging scheme.

● Today, we'll use an an aggregate analysis due to 
Seidel and Sharir based on a technique called forest-
slicing.



  

Where We're Going

● First, we're going to define our cost model 
so we know how to analyze the structure.

● Next, we'll introduce the forest-slicing 
approach and use it to prove a key lemma.

● Finally, we'll use that lemma to build 
recurrence relations that analyze the 
runtime.



  

Our Cost Model

● The cost of performing a union or find depends on 
the length of the paths followed.

● The cost of any one operation is

Θ(1 + #ptr-changes-made)

because each time we visit a node that doesn't 
immediately point to its representative, we change 
where it points.

● Therefore, the cost of m operations is

Θ(m + #ptr-changes-made)

● We will analyze the number of pointers changed 
across the life of the data structure to bound the 
overall cost.



  

Some Accounting Tricks

● To perform a union operation, we need to first 
perform two finds.

● After that, only O(1) time is required to perform 
the union operation.

● Therefore, we can replace each union(x, y) with 
three operations:
● A call to find(x).
● A call to find(y).
● A linking step between the nodes found this way.

● Going forward, we will assume that each union 
operation will take worst-case time O(1).



  

A Slight Simplification

● Currently, find(x) compresses from x up to its 
ancestor.

● For mathematical simplicity, we'll introduce an 
operation compress(x, y) that compresses 
from x upward to y, assuming that y is an 
ancestor of x.

● Our analysis will then try to bound the total 
cost of the compress operations.



  

Removing the Interleaving

● We will run into some trouble in our 
analysis because unions and 
compresses can be interleaved.

● To address this, we will will remove the 
interleaving by pretending that all 
unions come before all compresses.

● This does not change the overall work 
being done.



  

Removing the Interleaving

compress(j, b)
union(b, a)

compress(h, a)

f → b
h → b
j → b
b → a
h → a

a
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e f

h

g

i

j

union(b, a)
compress(j, b)
compress(h, a)

b → a
f → b
h → b
j → b
h → a



  

Recap: The Setup

● Transform any sequence of unions and finds as 
follows:
● Replace all union operations with two finds and a 

union on the ancestors.
● Replace each find operation with a compress 

operation indicating its start and end nodes.
● Move all union operations to the front.

● Since all unions are at the front, we build the 
entire forest before we begin compressing.

● Can analyze compress assuming the forest has 
already been created for us.



  

A Quick Initial Analysis



  

An Initial Analysis

● Lemma: Any series of m compress operation on a forest  with ℱ
n nodes and maximum rank r makes at most nr pointer changes.

● Proof: Every time a node's representative change, the rank of 
that representative increases. The maximum number of times this 
can happen per node is r, giving an upper bound of nr. ■
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The Forest-Slicing Approach



  

Forest-Slicing
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Forest-Slicing

● Let  be a disjoint-set forest.ℱ
● Consider splitting  into two forests ₊ ℱ ℱ

and ₋ with the following properties:ℱ
● ₊ ℱ is upward-closed: if x ∈ ₊, then any ℱ

ancestor of x is also in ₊.ℱ
● ₋ ℱ is downward-closed: if x ∈ ₋, then any ℱ

descendant of x is also in ₋.ℱ
● We'll call ₊ the ℱ top forest and ₋ the ℱ

bottom forest.



  

Forest-Slicing
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Nodes from ₋ never ℱ
move into ₊ or vice-ℱ
versa. We retain the 

original cut after doing 
compressions.

Nodes from ₋ never ℱ
move into ₊ or vice-ℱ
versa. We retain the 

original cut after doing 
compressions.



  

Why Slice Forests?



  

Forest-Slicing

● Key insight: Each compress operation 
is either
● purely in ₊,ℱ
● purely in ₋, orℱ
● crosses from ₋ into ₊.ℱ ℱ

● If we can bound the cost of compress 
operations that cross from ₋ to ₊, we ℱ ℱ
can try to set up a recurrence relation to 
analyze the cost of those compresses.
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Observation 1: The portion of the 
compression in ₊ is equivalent to a ℱ

compression of the first node in ₊ on ℱ
the compression path to the last node 

in ₊ on the compression path.ℱ

Observation 1: The portion of the 
compression in ₊ is equivalent to a ℱ

compression of the first node in ₊ on ℱ
the compression path to the last node 

in ₊ on the compression path.ℱ
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Observation 2: The effect of the 
compression on ₋ is ℱ not the same as 

the effect of compressing from the first 
node in ₋ to the last node in ₋.ℱ ℱ

Observation 2: The effect of the 
compression on ₋ is ℱ not the same as 

the effect of compressing from the first 
node in ₋ to the last node in ₋.ℱ ℱ
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Observation 3: The cost of the compress in 
₋ is the number of nodes in ₋ that got a ℱ ℱ

parent in ₊, plus (possibly) one more for the ℱ
topmost node in ₋ on the compression path.ℱ

Observation 3: The cost of the compress in 
₋ is the number of nodes in ₋ that got a ℱ ℱ

parent in ₊, plus (possibly) one more for the ℱ
topmost node in ₋ on the compression path.ℱ



  

The Cost of Crossing Compressions

● Suppose we do m compressions, of which m₊ of 
them cross from ₋ into ₊.ℱ ℱ

● We can upper bound the cost of these 
compressions as the sum of the following: 
● the cost of all the tops of those compressions, 

which occur purely in ₊;ℱ
● the number of nodes in ₋, since each node in ℱ

₋ gets a parent in ₊ for the first time at most ℱ ℱ
once; and

● m₊, since each compression may change the 
pointer of the topmost node on the path in ₋.ℱ



  

Theorem: Let  be a disjoint-set forest and let ₊ℱ ℱ
 and ₋ be a partition of  into top and bottomℱ ℱ

forests.

Then for any series of m compressions C, there exist 
two sequences of compressions
– C₊, a series of m₊ compressions purely in ₊; andℱ
– C₋, a series of m₋ compressions purely in ₋,ℱ

such that

 · m₊ + m₋ = m

 · cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊

Compressions that 
appear purely in ₊ or ℱ
purely in ₋, plus the ℱ

tops of crossing 
compressions.

Compressions that 
appear purely in ₊ or ℱ
purely in ₋, plus the ℱ

tops of crossing 
compressions.

Nodes in ₋ ℱ
getting their 
first parent 

in ₊ℱ

Nodes in ₋ ℱ
getting their 
first parent 

in ₊ℱ

Nodes in ₋ ℱ
having their 
parent in ₊ ℱ

change.

Nodes in ₋ ℱ
having their 
parent in ₊ ℱ

change.



  

Time-Out for Announcements!



  

The midterm is tonight
from 7PM – 10PM
in room 320-105.

Good luck!



  

Back to CS166!



  

The Main Analysis



  

Where We Are

● We now have a sort of recurrence relation for 
evaluating the runtime of a series C of m 
compresses on an n-node forest  sliced into ₊ ℱ ℱ
and ₋:ℱ

cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊
● This recurrence relation assumes that we already 

know how we've sliced  into ₊ and ₋.ℱ ℱ ℱ
● To complete the analysis, we're going to need to 

precisely quantify what happens if we slice the 
forest in a number of different ways.



  

Natural Slices

● One “natural” way to slice a forest  into ₊ and ℱ ℱ
₋ is to pick some threshold rank. We then ℱ

choose ₊ to be all the nodes whose rank is above ℱ
the threshold and ₋ to be all the other nodes.ℱ
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Natural Slices

● If our initial forest has maximum rank r and we 
slice the forest at rank r', the bottom forest has 
maximum rank r' and the top forest is 
(essentially) a forest of rank r – r'.
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Slicing our Forest

● Imagine that we have our forest  of ℱ
maximum rank r.

● Suppose we cut slice the forest into ₊ ℱ
and ₋ at some rank ℱ r'.

● We know that

cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊.
● Let's investigate cost(C₊) and cost(C₋) 

independently.



  

The Top Forest

● Let's begin by thinking about cost(C₊), the cost of 
compresses in the top forest ₊.ℱ

● Recall: ₊ consists of all nodes of rank ℱ r'or higher.
● Intuitively, we'd expect there to not be “too many” 

nodes in the top forest, since it's exponentially harder 
to get nodes of progressively harder orders.

● Using our lemma from before, we know that there can 
be at most n / 2r' nodes in ₊.ℱ

● Therefore, using our (weak) bound from before, we 
see that

cost(C₊) ≤ nr / 2r'.



  

Slicing our Forest

● Imagine that we have our forest  of maximum ℱ
rank r.

● Suppose we cut slice the forest into ₊ and ₋ at ℱ ℱ
some rank r'.

● We know that

cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊.
● Therefore

cost(C) ≤ nr / 2r' + cost(C₋) + n + m₊.
● Let's now go investigate cost(C₋).



  

Improving our Recurrence

cost(C) ≤ nr / 2r' + cost(C₋) + n + m₊.
● Notice that cost(C) is the cost of

● doing m compresses,
● in an n-node forest, with
● maximum rank r.

● We now have cost(C₋), which is the cost of
● doing m₋ compresses,
● in a forest with at most n nodes, with
● maximum rank r'.

● Let's make these dependencies more explicit. 



  

Improving our Recurrence

cost(C) ≤ nr / 2r' + cost(C₋) + n + m₊.
● Define T(m, n, r) to be the cost of

● performing m compress operations,
● in a forest of at most n nodes, where
● the maximum rank is r.

● The above recurrence can be rewritten as

T(m, n, r) ≤ T(m₋, n, r') + nr / 2r' + n + m₊
● Now, we “just” need to solve this recurrence. 

Don't worry... it's not too bad!



  

Finalizing our Recurrence

T(m, n, r) ≤ T(m₋, n, r') + nr / 2r' + n + m₊
● The above recurrence is dependent on having a 

choice of r' based on our choice of r.
● If we make r' too large, then the recurrence 

relation takes too long to bottom out and we'll 
expect a higher runtime.

● If we make r' too small, the nr / 2r' term will be too 
large and our analysis won't be tight.

● How do we balance these terms out?



  

Finalizing our Recurrence

T(m, n, r) ≤ T(m₋, n, r') + nr / 2r' + n + m₊
● Idea: Choose r' = lg r. Then

T(m, n, r) ≤ T(m₋, n, lg r) + 2n + m₊.
● Imagine that this recurrence expands out L times 

before it bottoms out. Think about what happens:
● The 2n term gets summed in L times.
● The m₊ term – the number of compresses in the 

top forest – sums up to at most m across all 
compressions.

● Overall, we get T(m, n, r) ≤ 2nL + m.



  

Iterated Logarithms

● We now have

T(m, n, r) ≤ 2nL + m.
● The quantity L represents the number of layers in the 

recurrence, and at each step we have r dropping to 
lg r.

● The iterated logarithm, denoted lg* n, is the number 
of times we can apply lg to n before it drops to some 
constant (say, 2). Therefore:

T(m, n, r) ≤ 2n lg* r + m.
● And since the maximum rank is at most lg n, we see 

that the cost of performing m operations on an n-node 
forest is O(n lg* n + m).



  

Iterated Logarithms

● The function lg n is the inverse of the function 
2n; that is, 2 × 2 × … × 2, n times.

● The tetration operation, denoted n2, is given 
by              , with n copies of 2 in the tower of 
exponents. It grows extremely quickly!

● The function lg* n is the inverse of tetration. It 
grows extremely slowly!

● Useful fact: lg* n ≤ 5 for any n less than or 
equal to the number of atoms in the universe.

n2 = 22...2



  

Our Strategy

● Let's recap, how we got here.
● We begin with a forest  of ℱ

maximum rank r.
● We sliced  at rank lg ℱ r.
● We (directly) obtained a weak 

bound on the cost of the 
compressions in the (small) 
forest ₊.ℱ

● We recursively obtained a 
(good) bound on the cost of the 
compressions in the (larger) 
forest ₋.ℱ

● We solved the recurrence to 
get the bound

T(m, n, r) ≤ 2n lg* r + m.

Cost here: n

Cost here:
T(m₋, n, lg r)



  

Our Strategy

What could we do to 
tighten the runtime 
bound?

● Option 1: Tighten 
the bound on the 
cost of the top 
forest.

Option 2: Slice the 
forest even lower to 
make the recursion 
tree shorter.

Cost here: n

Cost here:
T(m₋, n, lg r)

Previously, we used our weak bound 
that the cost of any series of 

operations on n nodes in a forest of 
maximum rank r was at most nr. We 
now have a bound of 2n lg* r + m, 

which is much tighter.

Previously, we used our weak bound 
that the cost of any series of 

operations on n nodes in a forest of 
maximum rank r was at most nr. We 
now have a bound of 2n lg* r + m, 

which is much tighter.



  

Our Strategy

What could we do to 
tighten the runtime 
bound?

Option 1: Tighten 
the bound on the 
cost of the top 
forest.

● Option 2: Slice the 
forest even lower to 
make the recursion 
tree shorter.

Cost here: n

Cost here:
T(m₋, n, lg r)

If we have a tighter bound on the 
cost of the top forest, we can afford 
to have more nodes in the top forest 
at the same cost, so we can slice the 

bottom forest even deeper.

If we have a tighter bound on the 
cost of the top forest, we can afford 
to have more nodes in the top forest 
at the same cost, so we can slice the 

bottom forest even deeper.



  

Slicing our Forest, Again

● Imagine that we have a forest  of maximum rank ℱ r.
● Suppose we cut slice the forest into ₊ and ₋ at ℱ ℱ

some rank r'.
● We know that

cost(C) ≤ cost(C₊) + cost(C₋) + n + m₊.
● Therefore

T(m, n, r) ≤ cost(C₊) + T(m, n, r') + n + m₊.
● Let's investigate cost(C₊) using our previous analysis.



  

The Top Forest

● Lemma: In an n-node forest  of maximum rank ℱ r, if 
we split  into ₊ and ₋ by cutting the forest at ℱ ℱ ℱ
rank r', then cost(C₊) ≤ 2n lg* r / 2r' + m₊.

● Proof: There are n / 2r' nodes in this forest and the 
maximum rank is at most r. The cost of performing 
m₊ compress operations here is therefore

2(n / 2r') lg* r + m₊.
● Observation: Our previous bound was

rn / 2r'.

We previously set r' = lg r because that was as low as 
we could go without cost(C₊) being too high. With 
our new bound, we can afford to make r' much lower.



  

Our Recurrence

● We had

T(m, n, r) ≤ cost(C₊) + T(m₋, n, r') + n + m₊.
● So we now have

T(m, n, r) ≤ T(m₋, n, r') + 2n lg* r / 2r' + n + 2m₊.
● Previously, we picked r' = lg r and ended up with a bound in 

terms of lg* r.
● Now, we pick r' = lg* r. Then we have

T(m, n, r) ≤ T(m₋, n, lg* r) + 2n + 2m₊.
● Using a similar analysis as before, if L is the number of 

layers in the recurrence, this solves to

T(m, n, r) ≤ 2nL + 2m.



  

Iterated Iteration

● We have

T(m, n, r) ≤ 2nL + 2m,

where L is the number of layers in the iteration.
● At each step, we shrink r to lg* r. The maximum 

number of times we can do this is denoted lg** r, so 
we have

T(m, n, r) ≤ 2n lg** r + 2m.
● So the cost of any m operations is O(n lg** n + m).



  

Iterated Iterated Logarithms

● The pentation operation is next in the family of fast-
growing functions.

● Just as tetration is iterated exponentiation, pentation is 
iterated tetration, so 2 pentated to the nth power, 
denoted n2, is

where there are n2 copies of the exponential towers.
● The function lg** n is the inverse of pentation. It grows 

unbelievably slowly!

(222...2

)
...

(222...2)



  

Our Strategy

● Let's recap, how we got here.
● We begin with a forest  of ℱ

maximum rank r.
● We sliced  at rank lg* ℱ r.
● We (directly) obtained a weak 

bound on the cost of the 
compressions in the (small) 
forest ₊.ℱ

● We recursively obtained a 
(good) bound on the cost of the 
compressions in the (larger) 
forest ₋.ℱ

● We solved the recurrence to 
get the bound

T(m, n, r) ≤ 2n lg** r + 2m.

Cost here: n + m₊

Cost here:
T(m₋, n, lg* r)



  

Our Strategy

What could we do to 
tighten the runtime 
bound?

● Option 1: Tighten 
the bound on the 
cost of the top 
forest.

Option 2: Slice the 
forest even lower to 
make the recursion 
tree shorter.

Cost here: n + m₊

Cost here:
T(m₋, n, lg* r)

Previously, we used our weak bound that 
the cost of any series of operations on n 
nodes in a forest of maximum rank r was 

at most 2n lg* r + m. We now have a 
bound of 2n lg** r + 2m, which is much 

tighter.

Previously, we used our weak bound that 
the cost of any series of operations on n 
nodes in a forest of maximum rank r was 

at most 2n lg* r + m. We now have a 
bound of 2n lg** r + 2m, which is much 

tighter.



  

Our Strategy

What could we do to 
tighten the runtime 
bound?

Option 1: Tighten 
the bound on the 
cost of the top 
forest.

● Option 2: Slice the 
forest even lower to 
make the recursion 
tree shorter.

Cost here: n + m₊

Cost here:
T(m₋, n, lg* r)

If we have a tighter bound on the 
cost of the top forest, we can afford 
to have more nodes in the top forest 
at the same cost, so we can slice the 

bottom forest even deeper.

If we have a tighter bound on the 
cost of the top forest, we can afford 
to have more nodes in the top forest 
at the same cost, so we can slice the 

bottom forest even deeper.



  

The Feedback Lemma

● Lemma: Suppose we know that

T(m, n, r) ≤ 2n lg*(k) n + km.

Then

T(m, n, r) ≤ 2n lg*(k+1)n + (k+1)m.
● Proof: Induction! Use the previous proof as a 

template: split the forest at rank lg*(k) r, use the 
known bound to bound the cost of the top 
forest, and use recursion to bound the cost of 
the bottom forest. ■



  

The Final Steps

● For any k ∈ ℕ, we have

T(m, n, r) ≤ 2n lg*(k) r + km.
● We can upper-bound r at log n, so we have

T(m, n) ≤ 2n lg*(k) n + km.
● As n gets larger and larger, we can increase the value of 

k to make the lg*(k) n term at most some constant value.
● Question: What is that k, as a function of n?
● The Ackermann inverse function, denoted α(n), is

α(n) = min{ k ∈ ℕ | lg*(k) n ≤ 3 }
● Theorem: The cost of performing any m operations on 

any n-node disjoint set forest using union-by-rank and 
path compression is O(n + mα(n)).



  

Intuiting α(n)

● Imagine we want to define some function A such that
● A(n, 0) = 2
● A(n, 1) = 2 + 2 + … + 2 = 2n
● A(n, 2) = 2 × 2 × … × 2 = 2n.
● A(n, 3) = 22...² = n2. (tetration)
● A(n, 4) = ²...22 = n2 . (pentation)
● A(n, 5) doesn't have a name, but scares children.

● The function A is called an Ackermann-type 
function. There are a number of different functions in 
this family, but they all (fundamentally) apply higher 
and higher orders of functions to the arguments.



  

Intuiting α(n)

● Theorem: Asymptotically, the function α(n) is the inverse 
of A(n, n), hence the name “Ackermann inverse”.

● Intuition: 
● lg n is the inverse of 2n, which is A(n, 2).
● lg* n is the inverse of n2 (tetration), which is A(n, 3).
● lg** is the inverse of n2 (pentation), which is A(n, 4).

● α(n) tells you how many stars you need to make lg*(k) n drop to a 
constant, which essentially asks for which essentially asks for 
what order of operation you need to invert.

● This function grows more slowly than any of the iterated 
logarithm families. It's so slowly-growing that an input to 
it that would make it more than, say, 10 can't even be 
expressed without inventing special notation for fast-
growing numbers.



  

Intuiting α(n)

● If you keep dividing by two, you should 
expect a log term.

● If you keep taking logs, you should 
expect a log* term.

● If you keep taking log*s, you should 
expect a log** term.

● If you keep adding stars to your logs, you 
should expect an α term.



  

Some Notes on α(n)

● The term α(n) arises in many different algorithms:
● Range semigroup queries: there's a lower bound of α(n) on 

the cost of a query under certain algebraic assumptions.
● Minimum spanning trees: the fastest known deterministic 

MST algorithm runs in time O(mα(n)) due to a connection to 
the above topic.

● Splay trees: imagine you treat a splay tree as a deque. 
Hilariously, the best bound we have on the runtime of 
performing n deque operations is O(nα*(n)). It's suspected to 
be O(n), but this hasn't been proven.

● α(n) and its variants are the slowest-growing functions 
that are routinely encountered in algorithms and data 
structures. And now you know where it comes from!



  

Next Time

● Euler Tour Trees
● Fully dynamic connectivity in forests.

● Dynamic Graphs
● Fully dynamic connectivity in general graphs 

(ITA).
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