Welcome to CS166!

 Four handouts available up front.
« Also available online!

* Today:
 Why study data structures?
 The range minimum query problem.

Why Study Data Structures?

Why Study Data Structures?

 Explore where theory meets practice.

 Some of the data structures we'll cover are used extensively in
practice. Many were invented about twenty miles from here!

* Challenge your intuition for the limits of efficiency.

* You'd be amazed how many times we'll take a problem you're
sure you know how to solve and then see how to solve it faster.

* See the beauty of theoretical computer science.

 We'll cover some amazingly clever theoretical techniques in the
course of this class. You'll love them.

 Equip yourself to solve complex problems.

 Powertful data structures make excellent building blocks for
solving seemingly difficult problems.

Course Staff

Keith Schwarz (htiek@cs.stanford.edu)

Benjamin Plaut
Mitchell Douglass

Rafa Musa
Sam Redmond

Course Staff Mailing List:
cs166-sprl1718-staff@lists.stanford.edu

mailto:htiek@cs.stanford.edu
mailto:cs166-spr1718-staff@lists.stanford.edu

The Course Website

http://cs166.stanford.edu

http://cs166.stanford.edu/

Recommended Reading

v [owrene | © Introduction to
- tounio L uves Algorithms, Third
— e Edition by Cormen,
| | [eiserson, Rivest, and
Stein.

 You'll want the third
edition for this
course.

INTRODUCTION TO

ALGORITHMS
ﬂ e Available in the
bookstore; several
copies on hold at the
Engineering Library.

Prerequisites

« CS161 (Design and Analysis of Algorithms)

 We'll assume familiarity with asymptotic notation,
correctness proofs, algorithmic strategies (e.g.
divide-and-conquer, dynamic programming),
classical algorithms, recurrence relations, universal
hashing, etc.

« CS107 (Computer Organization and Systems)

« We'll assume comfort working from the command-
line, designing and testing nontrivial programs, and
manipulating bitwise representations of data. You
should have some knowledge of the memory
hierarchy. You should also know how to code in both
high-level and low-level languages.

Grading Policies

B 1/3 Assignments
m1/3 Midterm
1/3 Final Project

Midterm: Tuesday, May 29
7PM - 10PM
Location TBA

Problem Sets

* The first problem set of the quarter,
Problem Set O, goes out today. It’s due next
Tuesday at 2:30PM.

» This problem set is designed as a refresher
on the techniques and concepts that we’ll
be using over the course of this class.

* You're welcome to work in pairs or
individually. See the “Problem Set Policies”
handout for more details.

Let’s Get Started!

Range Minimum Queries

The RMQ Problem

* The Range Minimum Query problem
(RMQ tor short) is the following:

Given an array A and two indices i < j,

what is the smallest element out of
Alil, Ali + 1], ..., Alj - 1], Alj]?

31

|
41 59, 26 .53 58 97 93
i

The RMQ Problem

* The Range Minimum Query problem
(RMQ tor short) is the following:

Given an array A and two indices i < j,

what is the smallest element out of
Alil, Ali + 1], ..., Alj - 1], Alj]?

* Notation: We'll denote a range minimum
query in array A between indices i and j
as RMQ, (1, j).

* For simplicity, let's assume 0-indexing.

A Trivial Solution

There's a simple O(n)-time algorithm for
evaluating RMQ,(i, j): just iterate across the

elements between i and j, inclusive, and take
the minimum!

So... why is this problem at all algorithmically
interesting?

Suppose that the array A is fixed in advance
and you're told that we're going to make a
number of different queries on it.

Can we do better than the naive algorithm?

An Observation

 In an array of length n, there are only ®(n?) possible

queries.
e Why?

1 subarray of
length 5

2 subarrays of
length 4

3 subarrays of
length 3

4 subarrays of
length 2

5 subarrays of
length 1

A Different Approach

There are only ©(n?) possible RMQs in an array of
length n.

If we precompute all of them, we can answer RMQ in
time O(1) per query.

o 1 2 3
0
1 *
16 18 33 98 2
® 1 2 3 3

Building the Table

* One simple approach: for each entry in
the table, iterate over the range in
question and find the minimum value.

« How efficient is this?

« Number of entries: ©(n?).
 Time to evaluate each entry: O(n).
 Time required: O(n3).

 The runtime is O(n?) using this approach.
Is it also ®(n?3)?

J O U1 & W N = O

O 1 2 3 4 5 o0 7

Each entry in yellow requires at
least n/ 2 = ©(n) work to evaluate.

There are roughly n?/ 8 = ©(n?)
entries here.

Total work required: G(n?)

A Different Approach

« Nailvely precomputing the table is inefficient.
 Can we do better?

 Claim: We can precompute all subarrays in time ©(n?)
using dynamic programming.

o 1 2 3
0 16
1 18
16 18 33 98 2 33
© 1 2 3 3 98

A Different Approach

« Nailvely precomputing the table is inefficient.
 Can we do better?

 Claim: We can precompute all subarrays in time ©(n?)
using dynamic programming.

o 1 2 3
0 16 16
1 18
16 18 33 98 2 33
© 1 2 3 3 98

A Different Approach

« Nailvely precomputing the table is inefficient.

e Can we do better?

 Claim: We can precompute all subarrays in time ©(n?)
using dynamic programming.

16

18

33

98

© 1 2 3
16 16 16 16
18 18 | 18

33 33

98

Some Notation

« We'll say that an RMQ data structure has time
complexity {p(n), gq(n)) if
* preprocessing takes time at most p(n) and
* queries take time at most g(n).

« We now have two RMQ data structures:
* {O(1), O(n)) with no preprocessing.
e (O(n2), O(1)) with full preprocessing.

e These are two extremes on a curve of tradeoffs: no
preprocessing versus full preprocessing.

* Question: Is there a “golden mean” between
these extremes?

Another Approach: Block Decomposition

31

59

26

53

58

97

23

62

64

33

27

A Block-Based Approach

» Split the input into O(n / b) blocks of
some “block size” b.

e Here, b = 3.

31 41 59126 53 58|97 93 23|84 62 64| 33

A Block-Based Approach

» Split the input into O(n / b) blocks of
some “block size” b.

e Here, b = 3.

« Compute the minimum value in each
block.

31 26 23 62 27

31 41 59|26 53 58|97 93 23|84 62 64| 33 83

A Block-Based Approach

» Split the input into O(n / b) blocks of
some “block size” b.

e Here, b = 3.

« Compute the minimum value in each
block.

31

26

23

62

27

31

41

59

26

53

58

97

93

23

84

62

64

33

83

27

°*

Analyzing the Approach

» Let's analyze this approach in terms of n and b.

 Preprocessing time:
* O(b) work on O(n / b) blocks to find minima.
» Total work: O(n).

« Time to evaluate RMQ,(i, j):

* O(1) work to find block indices (divide by block size).
* O(b) work to scan inside i and j's blocks.

 O(n/ b) work looking at block minima between i and j.
 Total work: O(b + n / b).

31

26

23

62

27

31

41

59

26

53

58

o7

93

23

84

62

64

33

83

27

{}

{}

Intuiting O(b + n / b)

e As b increases:

* The b term rises (more elements to scan within
each block).

« The n / b term drops (fewer blocks to look at).
« As b decreases:

 The b term drops (fewer elements to scan within
a block).

e The n / b term rises (more blocks to look at).

* Is there an optimal choice of b given these
constraints?

Optimizing b

What choice of b minimizes b + n/ b?
Start by taking the derivative:
i(b+n/b) = 1—%

Setting the dericzflzltive to zero:
1-n/b*> = 0
1 = n/b’
b> = n
b = 4n

Asymptotically optimal runtime is when b = n'/%,
In that case, the runtime is
OMb +n/b)=0Nn"?+n/n"? =0n"?+ n"?) =0(n"?)

Summary of Approaches

* Three solutions so far:
* Full preprocessing: (O(n?), O(1)).
* Block partition: (O(n), 0O(n'?)).
 No preprocessing: (O(1), O(n)).

« Modest preprocessing yields modest
performance increases.

* Question: Can we do better?

A Second Approach: Sparse Tables

An Intuition

* The (O(n?), O(1)) solution gives fast
queries because every range we might
look up has already been precomputed.

* This solution is slow overall because we
have to compute the minimum of every
possible range.

* Question: Can we still get constant-time
queries without preprocessing all
possible ranges?

An Observation

31

41

59

26

53

58

97

93

0

2

3

4

6

7

<N O O W NN = O

0O 1 2 3 4 5 6 7

31

31

31

26

41

41

26

26

59

26

26

26

26

26

26

26

53

53

53

53

58

58

58

97

93

93

An Observation

31

41

59

26

53

58

97

93

0

2

3

4

6

7

<N O O W NN = O

0O 1 2 3 4 5 6 7

31

31

31

26

41

41

26

26

59

26

26

26

26

26

26

26

53

53

53

53

58

58

58

97

93

93

The Intuition

It's still possible to answer any query in time O(1)
without precomputing RMQ over all ranges.

If we precompute the answers over too many
ranges, the preprocessing time will be too large.

If we precompute the answers over too few ranges,
the query time won't be O(1).

Goal: Precompute RMQ over a set of ranges such
that

« There are o(n?) total ranges, but

* there are enough ranges to support O(1) query
times.

Some Observations

The Approach

* For each index i, compute RMQ for ranges
starting at i of size 1, 2, 4, 8, 16, ..., 2¥ as long
as they fit in the array.

* Gives both large and small ranges starting at
any point in the array.

* Only O(log n) ranges computed for each array
element.

* Total number of ranges: O(n log n).

 Claim: Any range in the array can be formed
as the union of two of these ranges.

Creating Ranges

18

16 ¢

16

Creating Ranges

Doing a Query

» To answer RMQ, (i, j):
 Find the largest k such that 2x<j -1 + 1.

- With the right preprocessing, this can be done in

time O(1); you'll figure out how in Problem Set
One.

 The range [i, j] can be formed as the overlap
of the ranges [i,i + 2k-1]and [j - 2k + 1, Jl.

 Each range can be looked up in time O(1).
 Total time: O(1).

Precomputing the Ranges

 There are O(n log n) ranges to precompute.

* Using dynamic programming, we can compute

all of them in time O(n log n).
20 21 22)3

31 41 59 26 53 58 97 93
O 1 2 3 4 5 6 7

N O O b WIN = O

Precomputing the Ranges

 There are O(n log n) ranges to precompute.

* Using dynamic programming, we can compute

all of them in time O(n log n).
20 21 22)3

31 41 59 26 53 58 97 93
O 1 2 3 4 5 6 7

N O O b WIN = O

Precomputing the Ranges

 There are O(n log n) ranges to precompute.

* Using dynamic programming, we can compute

all of them in time O(n log n).
20 21 22)3

31

41
59
26
53
58
97
93

31 41 59 26 53 58 97 93
O 1 2 3 4 5 6 7

N O O b WIN = O

Precomputing the Ranges

 There are O(n log n) ranges to precompute.

* Using dynamic programming, we can compute

all of them in time O(n log n).
20 21 22)3

31 %

41
59
26
53
58
97
93

31 41 59 26 53 58 97 93
O 1 2 3 4 5 6 7

N O O b WIN = O

Sparse Tables

* This data structure is called a sparse
table.

* It gives an (O(n log n), O(1)) solution to
RMQ.

» This is asymptotically better than
precomputing all possible ranges!

The Story So Far

 We now have the following solutions for
RMQ:

 Precompute all: (O(n?), O(1)).
* Sparse table: (O(n log n), O(1)).
» Blocking: (O(n), O(n'?)).
 Precompute none: (O(1), O(n)).

e Can we do better?

A Third Approach: Hybrid Strategies

Blocking Revisited

This is just RMQ on
the block minima!

Blocking Revisited

26 23 62

53 58197 93 | 23|84 62

This is just RMQ
inside the blocks!

The Setup

 Here's a new possible route for solving RMQ:

e Split the input into blocks of some block size b.

 For each of the O(n / b) blocks, compute the
minimum.

e Construct an RMQ structure on the block
minima.
« Construct RMQ structures on each block.

« Combine the local RMQ answers to solve RMQ
globally.

« This technique of splitting a problem into a bunch
of smaller pieces unified by a larger piece is
common in data structure design.

Combinations and Permutations

 The decomposition we just saw isn't a single
data structure; it's a framework for data
structures.

 We get to choose

* the block size,
 which RMQ structure to use on top, and
 which RMQ structure to use for the blocks.

« Summary and block RMQ structures don't have
to be the same type of RMQ data structure - we
can combine different structures together to
get different results.

The Framework

 Suppose we use a {(pi(n), gqi(n))-time RMQ solution
for the block minima and a (pz2(n), gz2(n))-time RMQ

solution within each block.
 Let the block size be b.

* In the hybrid structure, the preprocessing time is
O(n + pa(n/b) + (n/ b) p2(b))

O(n) time to get the
minimum value of

pi(n / b) time to build
an RMQ structure on

p2(b) time to build an
RMQ structure for a

each block. the block minima. single block, times
O(n / b) total blocks.
31 26 23 62 27
31 41 59|26 53 58|97 93 23184 62 64|33 83 27

The Framework

Suppose we use a (pi1(n), gi1(n))-time RMQ solution
for the block minima and a (pz2(n), gz2(n))-time RMQ
solution within each block.

Let the block size be b.
In the hybrid structure, the preprocessing time is
O(n + pi(n/b) + (n/ b) p2(b))
The query time is
O(qi(n / b) + qz(b))

31

26

23

62

27

31

41

59

26

53

58

97

93

23

84

62

64

33

83

27

A Sanity Check

« The (O(n), O(n2)) block-based structure from earlier uses
this framework with the (O(1), O(n)) no-preprocessing

RMQ structure and b = ntz,

« According to our formulas, the preprocessing time should

be

O(n + pi(n/ b) + (n/ b) p2(b))

=0n+1+n/b)
= 0(n)

* The query time should be

O(q:(n / b) + q2(b))
= 0O(n/b + b)
— O(nl/Z)

* Looks good so far!

For Reference

pi(n) = O(1)
qi1(n) = O(n)
p2(n) = O(1)
q2(n) = O(n)

b = nl~

An Observation

A sparse table takes time O(n log n) to construct
on an array of n elements.

With block size b, there are O(n / b) total blocks.

Time to construct a sparse table over the block
minima: O((n / b) log (n/ b)).

Since log (n / b) = O(log n), the time to build the
sparse table is at most O((n / b) log n).

Cute trick: If b = ©(log n), the time to construct a
sparse table over the minima is

O((n/ b) logn) =0((n/logn)logn)=0(n)

One Possible Hybrid

Set the block size to log n.

Use a sparse table for the top-level structure.

Use the “no preprocessing” structure for each block.

Preprocessing time:

O(n + pi(n/b) + (n/b) p2Ab))

= O(n+n+ n/logn)
= 0(n)

Query time:

O(qi(n / b) + gz(b))
= O(1 + log n)
= O(log n)

An (O(n), O(log n)) solution!

For Reference

pi(n) = O(n log n)

qi(n) = O(1)
p2(n) = O(1)
q2(n) = O(n)

b =logn

Another Hybrid

Let's suppose we use the (O(n log n), O(1)) sparse table
for both the top and bottom RMQ structures with a
block size of log n.

The preprocessing time is

O(n + pi(n/ b) + (n/ b) p2Ab))
=0O(n+n+(n/logn)blogbh)
= O(n + (n/log n) log n log log n)
= 0(n log log n)

For Reference

The query time is pi1(n) = O(n log n)

O(q1(n / b) + qz=(b)) qi(n) = O(1)
= 0(1) pz(n) = O(n log n)

We have an (O(n log log n), O(1)) | gz(n) = O(1)
solution to RMQ!

b = log n

One Last Hybrid

Suppose we use a sparse table for the top structure
and the (O(n), O(log n)) solution for the bottom
structure. Let's choose b = log n.

The preprocessing time is

O(n + pi(n/b) + (n/ b) p2Ab))
=0n+n+ (n/logn)b)
= O(n +n+ (n/log n) log n)
= 0O(n)

The query time is

For Reference

pi(n) = O(n log n)
O(qi(n / b) + q2(b)) q1(n) = O(1)
= O(1 + log log n) —
_ p2(n) = O(n)
= 0O(log log n) g2(n) = O(log n)
We have an (O(n), O(log log n))
solution to RMQ!

b = log n

Where We Stand

« We've seen a bunch of RMQ structures

today:

 No preprocessing:

* Full preprocessing:

(O(1), O(n))
(O(n?), O(1))

 Block partition: (O(n), O(n'?))

* Sparse table: (O(n |
 Hybrid 1: (O(n), O(]
 Hybrid 2: (O(n log .

og n), O(1))

og n))
og n), O(1))

+ Hybrid 3: (0(n), O(

og log n))

Where We Stand

* Full preprocessing: (O(n?4), O(1))
* Sparse table: (O(n log n), O(1))

 Hybrid 2: (O(n log log n), O(1))

Where We Stand

* Block partition: (O(n), O(n'/?))
 Hybrid 1: (O(n), O(log n))

 Hybrid 3: {(O(n), O(log log n))

Is there an (O(n), O(1)) solution to RMQ?

Yes!

Next Time

 Cartesian Trees

« A data structure closely related to RMQ.
« The Method of Four Russians

* A technique for shaving off log factors.
» The Fischer-Heun Structure

« A deceptively simple, asymptotically optimal
RMQ structure.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

