

Range Minimum Queries
Part Two

Recap from Last Time

41 59 26 5331 41 59 26 53 58 97 93

The RMQ Problem

● The Range Minimum Query (RMQ)
problem is the following:

Given a fied array A and two indices
i ≤ j, what is the smallest element out of

A[i], A[i + 1], …, A[j – 1], A[j]?

31 58 97 93

Some Notation

● We'll say that an RMQ data structure has time
compleiity ⟨p(n), q(n)⟩ if

● preprocessing takes time at most p(n) and
● queries take time at most q(n).

● Last time, we saw structures with the following
runtimes:

● ⟨O(n2), O(1)⟩ (full preprocessing)
● ⟨O(n log n), O(1)⟩ (sparse table)
● ⟨O(n log log n), O(1)⟩ (hybrid approach)
● ⟨O(n), O(n1/2)⟩ (blocking)
● ⟨O(n), O(log n)⟩ (hybrid approach)
● ⟨O(n), O(log log n)⟩ (hybrid approach)

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution
for the block minima and a ⟨p₂(n), q₂(n)⟩-time RMQ
solution within each block. Let the block size be b.

● In the hybrid structure, the preprocessing time is

O(n + p₁(n / b) + (n / b) p₂(b))

The Framework

31 41 59 26 53 58 97 93 23 84 62 64 33 83 27

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

31 26 23 62 27

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution
for the block minima and a ⟨p₂(n), q₂(n)⟩-time RMQ
solution within each block. Let the block size be b.

● In the hybrid structure, the query time is

O(q₁(n / b) + q₂(b))

Is there an ⟨O(n), O(1)⟩ solution to RMQ?

Yes!

New Stuf!

An Observation

The Limits of Hybrids

● The preprocessing time on a hybrid structure is

O(n + p₁(n / b) + (n / b) p₂(b)).
● The query time is

O(q₁(n / b) + q₂(b)).
● To build an ⟨O(n), O(1)⟩ hybrid, we need to

have p₂(n) = O(n) and q₂(n) = O(1).
● We can't build an optimal solution with the

hybrid approach unless we already have
one!

● Or can we?

The Limits of Hybrids

The preprocessing time on a hybrid structure is

O(n + p₁(n / b) + (n / b) p₂(b)).

The query time is

O(q₁(n / b) + q₂(b)).

To build an ⟨O(n), O(1)⟩ hybrid, we need to
have p₂(n) = O(n) and q₂(n) = O(1).

We can't build an optimal solution with the
hybrid approach unless we already have
one!

Or can we?

A Key Diference

● Our original problem is

Solve RMQ on a single array in time
⟨O(n), O(1)⟩

● The new problem is

Solve RMQ on a large number of small
arrays with O(1) query time and total

preprocessing time O(n).
● These are not the same problem.
● Question: Why is this second problem any

easier than the frst?

An Observation

10 30 20 40 166 361 261 464

30 20 40 361 261 46410 30 20 40 166 361 261 464

An Observation

10 166

30 20 40 361 261 46410 30 20 40 166 361 261 464

An Observation

10 166

30 20 40 361 261 46430 20 40 361 261 46410 166

An Observation

10 166

30 36110 16630 20 40 361 261 46420 40 261 46410 166

An Observation

30 36110 16630 20 40 361 261 46420 40 261 46410 166

An Observation

30 20 361 26110 16630 20 361 26110 16640 46440 464

An Observation

30 20 361 26110 16630 20 40 361 261 46440 46410 166

An Observation

30 20 361 26110 16630 20 40 361 261 46440 46410 166

An Observation

30 20 361 26110 16630 20 361 26110 16640 46440 464

An Observation

Claim: The indices of the
answers to any range

minimum queries on these
two arrays are the same.

Claim: The indices of the
answers to any range

minimum queries on these
two arrays are the same.

Modifying RMQ

● From this point forward, let's have
RMQA(i, j) denote the index of the
minimum value in the range rather than
the value itself.

● Observation: If RMQ structures return
indices rather than values, we can use a
single RMQ structure for both of these
arrays:

30 20 361 26110 16630 20 361 26110 16640 46440 464

Some Notation

● Let B₁ and B₂ be blocks of length b.
● We'll say that B₁ and B₂ have the same block

type (denoted B₁ ~ B₂) if the following holds:

For all 0 ≤ i ≤ j < b:
RMQB₁(i, j) = RMQB₂(i, j)

● Intuitively, the RMQ answers for B₁ are always
the same as the RMQ answers for B₂.

● If we build an RMQ to answer queries on some
block B₁, we can reuse that RMQ structure on
some other block B₂ if B₁ ~ B₂.

Where We’re Going

22 29 55 35 19 60 43 67 91 53 35 44 74 71 11

Block-Level
RMQ

Block-Level
RMQ

Block-Level
RMQ

Summary
RMQ

22 19 43 35 11

● Suppose we use an ⟨O(n log n), O(1)⟩ sparse table for the top
and the ⟨O(n2), O(1)⟩ precompute-all structures for the blocks.

● However, whenever possible, we share block-level RMQ
structures across multiple blocks.

● Our preprocessing time is now

O(n + (n / b) log n + b2 · #distinct-blocks-of-size-b)

What We Need to Do

In order to make this work, we need to
answer some questions.
● Given two blocks B₁ and B₂, how do you tell

whether B₁ ~ B₂?
● How many possible unique block types are

there, as a function of the block size b?
● How do we eficiently share block-level RMQ

structures across blocks?
● How do we choose b to make this all work

out to linear preprocessing time?

The Adventure Begins!

Detecting Block Types

● For this approach to work, we need to be
able to check whether two blocks have the
same block type.

● Problem: Our formal defnition of B₁ ~ B₂ is
defned in terms of RMQ.
● Not particularly useful a priori; we don't want to

have to compute RMQ structures on B₁ and B₂ to
decide whether they have the same block type!

● Is there a simpler way to determine whether
two blocks have the same type?

An Initial Idea

● Since the elements of the array are ordered
and we're looking for the smallest value in
certain ranges, we might look at the
permutation types of the blocks.

Claim: If B₁ and B₂ have the same permutation
on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27

An Initial Idea

● Since the elements of the array are ordered
and we're looking for the smallest value in
certain ranges, we might look at the
permutation types of the blocks.

Claim: If B₁ and B₂ have the same permutation
on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27

1 2 3 2 3 1 2 1 3 1 2 3

3 1 2 3 2 1 3 2 1 2 3 1

An Initial Idea

● Since the elements of the array are ordered
and we're looking for the smallest value in
certain ranges, we might look at the
permutation types of the blocks.

● Claim: If B₁ and B₂ have the same permutation

on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27

1 2 3 2 3 1 2 1 3 1 2 3

3 1 2 3 2 1 3 2 1 2 3 1

Some Problems

● There are two main problems with this approach.

● Problem One: It's possible for two blocks to have
diferent permutations but the same block type.

All three of these blocks have the same block type
but diferent permutation types:

Problem Two: The number of possible
permutations of a block is b!.

b has to be absolutely minuscule for b! to be small.

Is there a better criterion we can use?

Some Problems

● There are two main problems with this approach.

● Problem One: It's possible for two blocks to have
diferent permutations but the same block type.

● All three of these blocks have the same block type
but diferent permutation types:

Problem Two: The number of possible
permutations of a block is b!.

b has to be absolutely minuscule for b! to be small.

Is there a better criterion we can use?

261 268 161 161 261 167

4 5 1 1 4 3

167 166

3 2

166 268

2 5

167 261 161

3 4 1

268 166

5 2

Some Problems

● There are two main problems with this approach.

● Problem One: It's possible for two blocks to have
diferent permutations but the same block type.

● All three of these blocks have the same block type
but diferent permutation types:

● Problem Two: The number of possible
permutations of a block is b!.

● b has to be absolutely minuscule for b! to be small.

Is there a better criterion we can use?

261 268 161 161 261 167

4 5 1 1 4 3

167 166

3 2

166 268

2 5

167 261 161

3 4 1

268 166

5 2

Some Problems

● There are two main problems with this approach.

● Problem One: It's possible for two blocks to have
diferent permutations but the same block type.

● All three of these blocks have the same block type
but diferent permutation types:

● Problem Two: The number of possible
permutations of a block is b!.

● b has to be absolutely minuscule for b! to be small.

● Is there a better criterion we can use?

261 268 161 161 261 167

4 5 1 1 4 3

167 166

3 2

166 268

2 5

167 261 161

3 4 1

268 166

5 2

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

75 35 80 85 83

6 5 3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

75 35 80 85 83

6 5 3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

75 35 80 85 83

6 5 3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

75 35 80 85 83

6 5 3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

6 5 3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

6 5 3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

6 5 3 9 7

161 167 166

11 43 35

3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

6 5

161 167 166

11 43 35

3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

6 5

161 167 166

11 43 35

3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

6 5

161 167 166

11 43 35

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

161 167 166

11 43 35

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

161 167 166

11 43 35

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

261 268 161 167 166

14 22 11 43 35

Cartesian Trees

● A Cartesian tree is a binary tree derived from an
array and defned as follows:

● The empty array has an empty Cartesian tree.
● For a nonempty array, the root stores the minimum

value. Its left and right children are Cartesian trees
for the subarrays to the left and right of the
minimum.

261 268 161 167 166 14 55 22 43 116 5 3 9 7

161

261 166

167268

3

7

9

5

6

11

14

22

4355

Cartesian Trees

● A Cartesian tree can also be defned as follows:

● The Cartesian tree for an array is a binary tree
obeying the min-heap property whose inorder
traversal gives back the original array.

261 268 161 167 166 14 55 22 43 116 5 3 9 7

161

261 166

167268

3

7

9

5

6

11

14

22

4355

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

Proof sketch:

(⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have the same minima.

6 5 3 9 7

3

7

9

5

6

103 99 14 21 17

14

17

21

99

103

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇒) Induction. B₁ and B₂ have equal RMQs, so

corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇒) Induction. B₁ and B₂ have equal RMQs, so

corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇒) Induction. B₁ and B₂ have equal RMQs, so

corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇒) Induction. B₁ and B₂ have equal RMQs, so

corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇒) Induction. B₁ and B₂ have equal RMQs, so

corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇒) Induction. B₁ and B₂ have equal RMQs, so

corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇒) Induction. B₁ and B₂ have equal RMQs, so

corresponding ranges have minima at the same positions.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇐) Induction. It's possible to answer RMQ using a

recursive walk on the Cartesian tree.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇐) Induction. It's possible to answer RMQ using a

recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇐) Induction. It's possible to answer RMQ using a

recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇐) Induction. It's possible to answer RMQ using a

recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇐) Induction. It's possible to answer RMQ using a

recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇐) Induction. It's possible to answer RMQ using a

recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇐) Induction. It's possible to answer RMQ using a

recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇐) Induction. It's possible to answer RMQ using a

recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

● Proof sketch:
● (⇐) Induction. It's possible to answer RMQ using a

recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

23

26

62

27

83

3331

41

59

53

58

97 64

84

93

Two blocks can share an RMQ structure
if and only if they have isomorphic

Cartesian trees.

How quickly can we build a Cartesian tree?

Building Cartesian Trees

● Here's a naïve algorithm for constructing
Cartesian trees:
● Find the minimum value.
● Recursively build a Cartesian tree for the array

to the left of the minimum.
● Recursively build a Cartesian tree with the

elements to the right of the minimum.
● Return the overall tree.

● How eficient is this approach?

Building Cartesian Trees

● This algorithm works by
● doing a linear scan over the array,
● identifying the minimum at whatever position it

occupies, then
● recursively processing the left and right halves

on the array.
● Similar to the recursion in quicksort: it

depends on where the minima are.
● Always get good splits: Θ(n log n).
● Always get bad splits: Θ(n2).

● We're going to need to be faster than this.

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393 84 33 64 62 83

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

Observation 1: Once this
node is inserted, it has to be
the rightmost node on the
right spine of the tree. (An

inorder traversal of the
Cartesian tree has to give
back the original array.)

Observation 1: Once this
node is inserted, it has to be
the rightmost node on the
right spine of the tree. (An

inorder traversal of the
Cartesian tree has to give
back the original array.)

63

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

Observation 2: Cartesian
trees are min-heaps (each
node’s value is at least as

large as its parent’s).

Observation 2: Cartesian
trees are min-heaps (each
node’s value is at least as

large as its parent’s).

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

Core idea: Reshape the
right spine of the tree to put
the new node into the right

place.

Core idea: Reshape the
right spine of the tree to put
the new node into the right

place.

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

55

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

55

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

55

55

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

55

55

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

55

55

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the
frst element, then the frst two, then the frst
three, then the frst four, etc.

6393

93

84

84

33

33

64

64

62

62

83

83

63

55

55

An Eficient Implementation

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

45

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

45

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

45

45

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

45

45

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

45

45

16

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

45

16

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

18

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

18

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

18

18

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

18

18

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

18

18

9

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

18

9

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

9

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

9

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

9

33

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

9

33

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

9

33

33

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

9

33

33

Analyzing the Runtime

● Adding in another node to the Cartesian tree might take
time O(n), since we might have to pop everything of the
stack.

● Since there are n nodes to add, the runtime of this approach
is O(n2).

● Claim: This is a weak bound! The runtime is actually Θ(n).
● Proof: Work done per node is directly proportional to the

number of stack operations performed when that node was
processed.

● Total number of stack operations is at most 2n.
● Every node is pushed once.
● Every node is popped at most once.

● Total runtime is therefore Θ(n).

Time-Out for Announcements!

Ofice Hours

● We’ll be holding three sets of ofice hours
each week!

● Mondays: Ben and Sam
● 5PM – 7PM, Huang Basement.

● Wednesdays: Keith
● 2PM – 4PM, Gates 178.

● Fridays: Rafa and Mitchell
● 1PM – 3PM, Huang Basement.

Problem Set Zero

● Problem Set Zero is due neit Tuesday at
2:30PM.

● Have questions?
● Ask on Piazza!
● Stop by ofice hours!

Problem Set Logistics

● We will be using GradeScope for assignment
submissions this quarter.

● To use it, visit the GradeScope website and use the code

MJBPJ8

to register for CS166.
● No hardcopy assignments will be accepted. We're

using GradeScope to track due dates and as a
gradebook.

● Programming assignments are submitted separately
using our AFS-hosted submission script.

Back to CS166!

The Story So Far

● Our high-level idea is to use the hybrid framework,
but to avoid rebuilding RMQ structures for blocks
when they've already been computed.

● Since we can build Cartesian trees in linear time,
we can test if two blocks have the same type in
linear time.

● There are still some questions we need to answer:
● How many possible unique blocks of size b are there?
● How do we eficiently recycle RMQ structures across

blocks?

Theorem: The number of Cartesian trees
for an array of length b is at most 4b.

In case you're curious, the actual number is

 ,

which is roughly equal to

 .

Look up the Catalan numbers for more information!

4b

b3 /2
√π

1
b+1 (2b

b)

Proof Approach

● Our stack-based algorithm for generating
Cartesian trees is capable of producing a
Cartesian tree for every possible input
array.

● Therefore, if we can count the number of
possible executions of that algorithm, we
can count the number of Cartesian trees.

● Using a simple counting scheme, we can
show that there are at most 4b possible
executions.

The Insight

● Claim: The Cartesian tree produced by the stack-
based algorithm is uniquely determined by the
sequence of pushes and pops made on the stack.

● There are at most 2b stack operations during the
execution of the algorithm: b pushes and no more than
b pops.

● Can represent the execution as a 2b-bit number, where
1 means “push” and 0 means “pop.” We'll pad the end
with 0's (pretend we pop everything from the stack.)

● We'll call this number the Cartesian tree number of a
particular block.

● There are at most 22b = 4b possible 2b-bit numbers, so
there are at most 4b possible Cartesian trees.

Cartesian Tree Numbers

32 45 16 18 9 33

Cartesian Tree Numbers

32 45 16 18 9 33

Cartesian Tree Numbers

32 45 16 18 9 33

32

Cartesian Tree Numbers

32 45 16 18 9 33

32

Cartesian Tree Numbers

32 45 16 18 9 33 1

32

32

Cartesian Tree Numbers

32 45 16 18 9 33 1

32

32

Cartesian Tree Numbers

32 45 16 18 9 33 1

32

32

45

Cartesian Tree Numbers

32 45 16 18 9 33 1

32

32

45

Cartesian Tree Numbers

32 45 16 18 9 33 1 1

32

32

45

45

Cartesian Tree Numbers

32 45 16 18 9 33 1 1

32

32

45

45

Cartesian Tree Numbers

32 45 16 18 9 33 1 1

32

32

45

45

16

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0

32

32

45

16

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0

32

45

16

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0

32

45

16

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1

32

45

16

16

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1

32

45

16

16

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1

32

45

16

16

18

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1

32

45

16

16

18

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1

32

45

16

16

18

18

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1

32

45

16

16

18

18

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1

32

45

16

16

18

18

9

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0

32

45

16

16

18

9

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0

32

45

16

18

9

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0

32

45

16

18

9

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1

32

45

16

18

9

9

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1

32

45

16

18

9

9

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1

32

45

16

18

9

9

33

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1

32

45

16

18

9

9

33

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1

32

45

16

18

9

9

33

33

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1

32

45

16

18

9

9

33

33

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1 0

32

45

16

18

9

9

33

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1 0 0

32

45

16

18

9

33

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1 0 0

32

45

16

18

9

33

One Last Observation

● Recall: Our goal is to be able to detect when two
blocks have the same type so that we can share RMQ
structures between them.

● We've seen that two blocks have the same type if and
only if they have the same Cartesian tree.

● Using the connection between Cartesian trees and
Cartesian tree numbers, we can see that we don't
actually have to build any Cartesian trees!

● We can just compute the Cartesian tree number of
each block and use those numbers to test for block
equivalence.

Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

Cartesian Tree Numbers

27 18 28 18 28 45

1

90 45 23 53 60 28 74 71 35

27

Cartesian Tree Numbers

27 18 28 18 28 45

1

90 45 23 53 60 28 74 71 35

27

Cartesian Tree Numbers

27 18 28 18 28 45

1 0

90 45 23 53 60 28 74 71 35

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1

90 45 23 53 60 28 74 71 35

18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1

90 45 23 53 60 28 74 71 35

18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1

90 45 23 53 60 28 74 71 35

18 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1

90 45 23 53 60 28 74 71 35

18 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0

90 45 23 53 60 28 74 71 35

18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1

90 45 23 53 60 28 74 71 35

18 18 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1

90 45 23 53 60 28 74 71 35

18 18 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45 90

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45 90

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0

90 45 23 53 60 28 74 71 35

18 18 28 45

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18 28 45 45

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18 28 45 45

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

18 18 28 45

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0

18 18 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0

18 18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1

18 18 23

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1

18 18 23

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1

18 18 23 53

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1

18 18 23 53

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1

18 18 23 53 60

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1

18 18 23 53 60

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0

18 18 23 53

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0

18 18 23

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1

18 18 23 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1

18 18 23 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1

18 18 23 28 74

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1

18 18 23 28 74

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0

18 18 23 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1

18 18 23 28 71

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1

18 18 23 28 71

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0

18 18 23 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1

18 18 23 28 35

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0

18 18 23 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0

18 18 23

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0

18 18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0

18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0

Finishing Things Up

● Using the previous algorithm, we can compute
the Cartesian tree number of a block in time
O(b) and without actually building the tree.

● And, we bounded the number of Cartesian
trees at 4b using this setup!

● And, since we can map each block to a number,
we have an easy way of sharing RMQ
structures across blocks!

000000

000001

111111

…

75 55 39 66 13 59 84 44 22 31 25 17

000000

000001

111111

…

75 55 39 66 13 59 84 44 22 31 25 17

000000

000001

111111

…

75 55 39 66 13 59 84 44 22 31 25 17

111000

…

Block-level
RMQ

000000

000001

111111

…

75 55 39 66 13 59 84 44 22 31 25 17

111000

…

Block-level
RMQ

000000

000001

111111

…

75 55 39 66 13 59 84 44 22 31 25 17

111000

…

Block-level
RMQ

…

110100
Block-level

RMQ

000000

000001

111111

…

75 55 39 66 13 59 84 44 22 31 25 17

111000

…

Block-level
RMQ

…

110100
Block-level

RMQ

000000

000001

111111

…

75 55 39 66 13 59 84 44 22 31 25 17

111000

…

Block-level
RMQ

…

110100
Block-level

RMQ

000000

000001

111111

…

75 55 39 66 13 59 84 44 22 31 25 17

111000

110100

…

…

Block-level
RMQ

Block-level
RMQ

000000

000001

111111

…

75 55 39 66 13 59 84 44 22 31 25 17

111000

110100

…

…

Block-level
RMQ

Block-level
RMQ

75 55 39 66 13 59 84 44 22 31 25 17

Block-level
RMQ

Block-level
RMQ

How eficient is this approach?

O(n + (n / b) log n + b2 4b)

O(n + (n / b) log n + b2 4b)

The 4b term grows
exponentially in n unless

we pick b = O(log n).

The 4b term grows
exponentially in n unless

we pick b = O(log n).

The (n / b) log n term will
be superlinear unless we

pick b = Ω(log n).

The (n / b) log n term will
be superlinear unless we

pick b = Ω(log n).

O(n + (n / b) log n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + (n / b) log n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + (n / k log₄ n) log n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + (n / log n) log n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + (n / log n) log n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + n + b2 4b)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + n + b2 4k log₄ n)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + n + b2 4log₄ nᵏ)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + n + b2 nk)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + n + (k log₄ n)2 nk)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + n + (log n)2 nk)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + n + (log n)2 nk)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.

O(n + n + (log n)2 nk)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.
Now, set k = ½.Now, set k = ½.

O(n + n + (log n)2 n1/2)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.
Now, set k = ½.Now, set k = ½.

O(n + n + n)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.
Now, set k = ½.Now, set k = ½.

O(n)

Suppose we pick
b = k log₄ n

for some constant k.

Suppose we pick
b = k log₄ n

for some constant k.
Now, set k = ½.Now, set k = ½.

The Fischer-Heun Structure

● Set b = ½ log₄ n.
● Split the input into blocks of size b. Compute an

array of minimum values from each block.
● Build a sparse table on that array of minima.
● Build per-block RMQ structures for each block,

using Cartesian tree numbers to avoid
recomputing RMQ structures unnecessarily.

● Make queries using the standard hybrid solution
approach.

● This is an ⟨O(n), O(1)⟩ solution to RMQ!

Practical Concerns

● This structure is actually reasonably
eficient preprocessing is relatively fast.

● In practice, the ⟨O(n), O(log n)⟩ hybrid we
talked about last time is a bit faster.
● Constant factor in the Fischer-Heun's O(n)

preprocessing is a bit higher.
● Constant factor in the hybrid approach's O(n)

and O(log n) are very low.
● Check the Fischer-Heun paper for details.

Wait a Minute...

● This approach assumes that the Cartesian tree
numbers will ft into individual machine words!

● If b = ½log₄ n = ¼log₂ n, then each Cartesian tree
number will have ½ log₂ n bits.

● Cartesian tree numbers will ft into a machine
word if n fts into a machine word.

● In the transdichotomous machine model, we
assume the problem size always fts into a machine
word.

● Reasonable – think about how real computers work.
● So there's nothing to worry about.

The Method of Four Russians

● The technique employed here is an example of
the Method of Four Russians.

● Idea:
● Split the input apart into blocks of size Θ(log n).
● Using the fact that there can only be polynomially

many diferent blocks of size Θ(log n), precompute all
possible answers for each possible block and store
them for later use.

● Combine the results together using a top-level
structure on an input of size Θ(n / log n).

● This technique is used frequently to shave log
factors of of runtimes.

Why Study RMQ?

● I chose RMQ as our frst problem for a few reasons:

● See diferent approaches to the same problem.
Diferent intuitions produced diferent runtimes.

● Build data structures out of other data structures.
Many modern data structures use other data structures
as building blocks, and it's very evident here.

● See the Method of Four Russians. This trick looks like
magic the frst few times you see it and shows up in lots
of places.

● Explore modern data structures. This is relatively
recent data structure (2005), and I wanted to show you
that the feld is still very active!

● So what's next?

Next Time

● Tries
● A powerful and versatile data structure for

sets of strings.
● Substring Searching

● Challenges in implementing .indexOf.
● The Aho-Corasick Algorithm

● A linear-time substring search algorithm that
doubles as a data structure!

