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Recap from Last Time
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The RMQ Problem

● The Range Minimum Query (RMQ) 
problem is the following:

Given a fied array A and two indices 
i ≤ j, what is the smallest element out of 

A[i], A[i + 1], …, A[j – 1], A[j]?
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Some Notation

● We'll say that an RMQ data structure has time 
compleiity ⟨p(n), q(n)⟩ if

● preprocessing takes time at most p(n) and
● queries take time at most q(n).

● Last time, we saw structures with the following 
runtimes:

● ⟨O(n2), O(1)⟩ (full preprocessing)
● ⟨O(n log n), O(1)⟩ (sparse table)
● ⟨O(n log log n), O(1)⟩ (hybrid approach)
● ⟨O(n), O(n1/2)⟩ (blocking)
● ⟨O(n), O(log n)⟩ (hybrid approach)
● ⟨O(n), O(log log n)⟩ (hybrid approach)
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● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution 
for the block minima and a ⟨p₂(n), q₂(n)⟩-time RMQ 
solution within each block. Let the block size be b.

● In the hybrid structure, the preprocessing time is

O(n + p₁(n / b) + (n / b) p₂(b))
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● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution 
for the block minima and a ⟨p₂(n), q₂(n)⟩-time RMQ 
solution within each block. Let the block size be b.

● In the hybrid structure, the query time is

O(q₁(n / b) + q₂(b))



  

Is there an ⟨O(n), O(1)⟩ solution to RMQ?

Yes!



  

New Stuf!



  

An Observation



  

The Limits of Hybrids

● The preprocessing time on a hybrid structure is

O(n + p₁(n / b) + (n / b) p₂(b)).
● The query time is

O(q₁(n / b) + q₂(b)).
● To build an ⟨O(n), O(1)⟩ hybrid, we need to 

have p₂(n) = O(n) and q₂(n) = O(1).
● We can't build an optimal solution with the 

hybrid approach unless we already have 
one!

● Or can we?
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A Key Diference

● Our original problem is

Solve RMQ on a single array in time 
⟨O(n), O(1)⟩  

● The new problem is

Solve RMQ on a large number of small 
arrays with O(1) query time and total 

preprocessing time O(n).
● These are not the same problem.
● Question: Why is this second problem any 

easier than the frst?



  

An Observation
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An Observation

Claim: The indices of the 
answers to any range 

minimum queries on these 
two arrays are the same.

Claim: The indices of the 
answers to any range 

minimum queries on these 
two arrays are the same.



  

Modifying RMQ

● From this point forward, let's have 
RMQA(i, j) denote the index of the 
minimum value in the range rather than 
the value itself.

● Observation: If RMQ structures return 
indices rather than values, we can use a 
single RMQ structure for both of these 
arrays:
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Some Notation

● Let B₁ and B₂ be blocks of length b.
● We'll say that B₁ and B₂ have the same block 

type (denoted B₁ ~ B₂) if the following holds:

For all 0 ≤ i ≤ j < b:
RMQB₁(i, j) = RMQB₂(i, j)

● Intuitively, the RMQ answers for B₁ are always 
the same as the RMQ answers for B₂.

● If we build an RMQ to answer queries on some 
block B₁, we can reuse that RMQ structure on 
some other block B₂ if B₁ ~ B₂.



  

Where We’re Going
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● Suppose we use an ⟨O(n log n), O(1)⟩ sparse table for the top 
and the ⟨O(n2), O(1)⟩ precompute-all structures for the blocks.

● However, whenever possible, we share block-level RMQ 
structures across multiple blocks.

● Our preprocessing time is now

O(n + (n / b) log n + b2 · #distinct-blocks-of-size-b)



  

What We Need to Do

In order to make this work, we need to 
answer some questions.
● Given two blocks B₁ and B₂, how do you tell 

whether B₁ ~ B₂?
● How many possible unique block types are 

there, as a function of the block size b?
● How do we eficiently share block-level RMQ 

structures across blocks?
● How do we choose b to make this all work 

out to linear preprocessing time?



  

The Adventure Begins!



  

Detecting Block Types

● For this approach to work, we need to be 
able to check whether two blocks have the 
same block type.

● Problem: Our formal defnition of B₁ ~ B₂ is 
defned in terms of RMQ.
● Not particularly useful a priori; we don't want to 

have to compute RMQ structures on B₁ and B₂ to 
decide whether they have the same block type!

● Is there a simpler way to determine whether 
two blocks have the same type?



  

An Initial Idea

● Since the elements of the array are ordered 
and we're looking for the smallest value in 
certain ranges, we might look at the 
permutation types of the blocks.

 

 

 

Claim: If B₁ and B₂ have the same permutation 
on their elements, then B₁ ~ B₂.
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Some Problems

● There are two main problems with this approach.

● Problem One: It's possible for two blocks to have 
diferent permutations but the same block type.

All three of these blocks have the same block type 
but diferent permutation types:

 

 

Problem Two: The number of possible 
permutations of a block is b!.

b has to be absolutely minuscule for b! to be small.

Is there a better criterion we can use?
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An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁ 
and B₂ must occur at the same position.

 

 

 

 

Claim: This property must hold recursively on 
the subarrays to the left and right of the 
minimum.
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Cartesian Trees

● A Cartesian tree is a binary tree derived from an 
array and defned as follows:

● The empty array has an empty Cartesian tree.
● For a nonempty array, the root stores the minimum 

value. Its left and right children are Cartesian trees 
for the subarrays to the left and right of the 
minimum.
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Cartesian Trees

● A Cartesian tree can also be defned as follows:

● The Cartesian tree for an array is a binary tree 
obeying the min-heap property whose inorder 
traversal gives back the original array.
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Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then 
B₁ ~ B₂ if B₁ and B₂ have isomorphic Cartesian trees.

Proof sketch:

(⇒) Induction. B₁ and B₂ have equal RMQs, so 
corresponding ranges have the same minima.

6 5 3 9 7
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Two blocks can share an RMQ structure
if and only if they have isomorphic 

Cartesian trees.



  

How quickly can we build a Cartesian tree?



  

Building Cartesian Trees

● Here's a naïve algorithm for constructing 
Cartesian trees:
● Find the minimum value.
● Recursively build a Cartesian tree for the array 

to the left of the minimum.
● Recursively build a Cartesian tree with the 

elements to the right of the minimum.
● Return the overall tree.

● How eficient is this approach?



  

Building Cartesian Trees

● This algorithm works by
● doing a linear scan over the array,
● identifying the minimum at whatever position it 

occupies, then
● recursively processing the left and right halves 

on the array.
● Similar to the recursion in quicksort: it 

depends on where the minima are.
● Always get good splits: Θ(n log n).
● Always get bad splits: Θ(n2).

● We're going to need to be faster than this.



  

A Better Approach

● It turns out that it's possible to build a Cartesian 
tree over an array of length k in time O(k).

● High-level idea: Build a Cartesian tree for the 
frst element, then the frst two, then the frst 
three, then the frst four, etc.
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An Eficient Implementation



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.
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Analyzing the Runtime

● Adding in another node to the Cartesian tree might take 
time O(n), since we might have to pop everything of the 
stack.

● Since there are n nodes to add, the runtime of this approach 
is O(n2).

● Claim: This is a weak bound! The runtime is actually Θ(n).
● Proof: Work done per node is directly proportional to the 

number of stack operations performed when that node was 
processed.

● Total number of stack operations is at most 2n.
● Every node is pushed once.
● Every node is popped at most once.

● Total runtime is therefore Θ(n).



  

Time-Out for Announcements!



  



  



  

Ofice Hours

● We’ll be holding three sets of ofice hours 
each week!

● Mondays: Ben and Sam
● 5PM – 7PM, Huang Basement.

● Wednesdays: Keith
● 2PM – 4PM, Gates 178.

● Fridays: Rafa and Mitchell
● 1PM – 3PM, Huang Basement.



  

Problem Set Zero

● Problem Set Zero is due neit Tuesday at 
2:30PM.

● Have questions?
● Ask on Piazza!
● Stop by ofice hours!



  

Problem Set Logistics

● We will be using GradeScope for assignment 
submissions this quarter.

● To use it, visit the GradeScope website and use the code

MJBPJ8 

to register for CS166.
● No hardcopy assignments will be accepted. We're 

using GradeScope to track due dates and as a 
gradebook.

● Programming assignments are submitted separately 
using our AFS-hosted submission script.



  

Back to CS166!



  

The Story So Far

● Our high-level idea is to use the hybrid framework, 
but to avoid rebuilding RMQ structures for blocks 
when they've already been computed.

● Since we can build Cartesian trees in linear time, 
we can test if two blocks have the same type in 
linear time.

● There are still some questions we need to answer:
● How many possible unique blocks of size b are there?
● How do we eficiently recycle RMQ structures across 

blocks?



  

Theorem: The number of Cartesian trees 
for an array of length b is at most 4b.

In case you're curious, the actual number is

                   ,
 

which is roughly equal to

              .

Look up the Catalan numbers for more information!

4b

b3 /2
√π

1
b+1 (2b

b )



  

Proof Approach

● Our stack-based algorithm for generating 
Cartesian trees is capable of producing a 
Cartesian tree for every possible input 
array.

● Therefore, if we can count the number of 
possible executions of that algorithm, we 
can count the number of Cartesian trees.

● Using a simple counting scheme, we can 
show that there are at most 4b possible 
executions.



  

The Insight

● Claim: The Cartesian tree produced by the stack-
based algorithm is uniquely determined by the 
sequence of pushes and pops made on the stack.

● There are at most 2b stack operations during the 
execution of the algorithm: b pushes and no more than 
b pops.

● Can represent the execution as a 2b-bit number, where 
1 means “push” and 0 means “pop.” We'll pad the end 
with 0's (pretend we pop everything from the stack.)

● We'll call this number the Cartesian tree number of a 
particular block.

● There are at most 22b = 4b possible 2b-bit numbers, so 
there are at most 4b possible Cartesian trees.



  

Cartesian Tree Numbers
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One Last Observation

● Recall: Our goal is to be able to detect when two 
blocks have the same type so that we can share RMQ 
structures between them.

● We've seen that two blocks have the same type if and 
only if they have the same Cartesian tree.

● Using the connection between Cartesian trees and 
Cartesian tree numbers, we can see that we don't 
actually have to build any Cartesian trees!

● We can just compute the Cartesian tree number of 
each block and use those numbers to test for block 
equivalence.
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Finishing Things Up

● Using the previous algorithm, we can compute 
the Cartesian tree number of a block in time 
O(b) and without actually building the tree.

● And, we bounded the number of Cartesian 
trees at 4b using this setup!

● And, since we can map each block to a number, 
we have an easy way of sharing RMQ 
structures across blocks!
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How eficient is this approach?
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The Fischer-Heun Structure

● Set b = ½ log₄ n.
● Split the input into blocks of size b. Compute an 

array of minimum values from each block.
● Build a sparse table on that array of minima.
● Build per-block RMQ structures for each block, 

using Cartesian tree numbers to avoid 
recomputing RMQ structures unnecessarily.

● Make queries using the standard hybrid solution 
approach.

● This is an ⟨O(n), O(1)⟩ solution to RMQ!



  

Practical Concerns

● This structure is actually reasonably 
eficient  preprocessing is relatively fast.

● In practice, the ⟨O(n), O(log n)⟩ hybrid we 
talked about last time is a bit faster.
● Constant factor in the Fischer-Heun's O(n) 

preprocessing is a bit higher.
● Constant factor in the hybrid approach's O(n) 

and O(log n) are very low.
● Check the Fischer-Heun paper for details.



  

Wait a Minute...

● This approach assumes that the Cartesian tree 
numbers will ft into individual machine words!

● If b = ½log₄ n = ¼log₂ n, then each Cartesian tree 
number will have ½ log₂ n bits.

● Cartesian tree numbers will ft into a machine 
word if n fts into a machine word.

● In the transdichotomous machine model, we 
assume the problem size always fts into a machine 
word.

● Reasonable – think about how real computers work.
● So there's nothing to worry about.



  

The Method of Four Russians

● The technique employed here is an example of 
the Method of Four Russians.

● Idea:
● Split the input apart into blocks of size Θ(log n).
● Using the fact that there can only be polynomially 

many diferent blocks of size Θ(log n), precompute all 
possible answers for each possible block and store 
them for later use.

● Combine the results together using a top-level 
structure on an input of size Θ(n / log n).

● This technique is used frequently to shave log 
factors of of runtimes.



  

Why Study RMQ?

● I chose RMQ as our frst problem for a few reasons:

● See diferent approaches to the same problem. 
Diferent intuitions produced diferent runtimes.

● Build data structures out of other data structures. 
Many modern data structures use other data structures 
as building blocks, and it's very evident here.

● See the Method of Four Russians. This trick looks like 
magic the frst few times you see it and shows up in lots 
of places.

● Explore modern data structures. This is relatively 
recent data structure (2005), and I wanted to show you 
that the feld is still very active!

● So what's next?



  

Next Time

● Tries
● A powerful and versatile data structure for 

sets of strings.
● Substring Searching

● Challenges in implementing .indexOf.
● The Aho-Corasick Algorithm

● A linear-time substring search algorithm that 
doubles as a data structure!


