Suffix Trees and Suffix Arrays

Outline for Today

. Suffix Tries
* A simple data structure for string searching.

* Suffix Trees

« A powerful and flexible data structure for
string algorithms.

» Suffix Arrays
* A compact alternative to suffix trees.
 Applications of Suffix Trees and Arrays

 There are many!

Recap from Last Time

Tries

A trie is a tree that stores

a collection of strings over
some alphabet 2.

 Each node corresponds to
a prefix of some string in
the set.

* Tries are sometimes called
prefix trees, since each
node in a trie corresponds
to a prefix of one of the
words in the trie.

Aho-Corasick String Matching

« The Aho-Corasick string matching algorithm
is an algorithm for finding all occurrences of a
set of strings Ps, ..., Px inside a string T.

 Runtime is (O(n), O(m + z)), where
- m = |T],

* n=|Pi| + ... + |Px|, and
* zis the number of matches.

* Great for the case where the patterns are fixed
and the text to search changes.

New Stuff!

Genomics Databases

 Many string algorithms these days are
developed for or used extensively in
computational genomics.

» Typically, we have a huge database with many
very large strings (genomes) that we'll
preprocess to speed up future operations.

« Common problem: given a fixed string T to
search and changing patterns Ps, ..., Pk, find all
matches of those patterns in T.

* Question: Can we instead preprocess T to
make it easy to search for variable patterns?

Suffix Tries

Substrings, Prefixes, and Suffixes

 Useful Fact 1: Given a trie storing a set
of strings Si, Sz, ..., Sk, it's possible to
determine, in time O(|Q]), whether a query
string Q is a prefix of any S..

— OO~ =0

Substrings, Prefixes, and Suffixes

 Useful Fact 1: Given a trie storing a set
of strings Si, Sz, ..., Sk, it's possible to
determine, in time O(|Q]), whether a query
string Q is a prefix of any S..

» Useful Fact 2: A string P is a substring of
a string T if and only if P is a prefix of
some suffix of T.

» Specifically, write T' = aPw; then P is a prefix
of the suffix Pw of T.

Suffix Tries

* A suffix trie of T is a trie
of all the suffixes of T.

* Given any pattern string
P, we can check in time
O(|P|) whether P is a
substring of T by seeing
whether P is a prefix in
T's suffix trie.

 (This checks whether
P is a prefix of some
suffix of T.)

nonsense

Suffix Tries

* A suffix trie of T is a trie
of all the suffixes of T.

 More generally, given
any nonempty patterns
P1, ..., Px of total length
n, we can detect how
many of those patterns
are substrings of T in
time O(n).

* (Finding all matches is a
bit trickier; more on that
later.)

nonsense

A Typical Transform
@

S s
Append some new e N o
character $ € X to the end @ @ ()
of T, then construct the S/ n o s n e
trie for T$. O O @
The new $ character S n e 5 3
lexicographically precedes O O @ ® ©
all other characters. e s $/n e
» This is usually called O © o é
the sentinel; think of it $ e S n
like the Theoryland é é é é
version of a null n & S
terminator. é é é
Leaf nodes correspond to S S e
suffixes. é Cv) é
Internal nodes correspond € é . é
to prefixes of those &
suffixes. é nonsense$

Constructing Suffix Tries

* Once we build a single suffix trie for
string T, we can efficiently detect

whether patterns match in-

ime O(n).

* Question: How long does i
construct a suffix trie?

 Problem: There's an Q(m?)

- take to

lower bound

on the worst-case complexity of any
algorithm for building suffix tries.

A Degenerate Case

a"b"$

0l od 0 o8

There are ®(m)
copies of nodes
chained together as

b"S.

Space usage: Q(m?).

0l od 008

0l od o o8

0l od 0 08

Correcting the Problem

* Because suffix tries may have Q(m?)
nodes, all suffix trie algorithms must run
in time Q(m?) in the worst-case.

e Can we reduce the number of nodes in
the trie?

Patricia Iries

« A “silly” node in a
trie is a node that $

has exactly one
child.

A Patricia trie (or
radix trie) is a trie
where all “silly”
nodes are merged
with their parents.

e

©woun o
(e

0—0

n

r® W O

O

YN ERENEE:
)

nonsenses

r O OMO® WO O

n

rD DO

Suffix Trees

* A suffix tree for
a string T'i1s an
Patricia trie of T'$
where each leaf is
labeled with the index
where the
corresponding suffix
starts in T'S.

* (Note that suffix trees
aren’t the same as
suffix tries. To the

best of my knowledge,

suffix tries aren’t
used anywhere.)

3$

©woun o
(e

0—0

n

9]
r O W O

YN ERENEE:
)

O
2

(O

nonsenses$
012345678

r O OMO® WO O

n

rD DO

Properties of Suffix Trees

o If |T| = m, the
suffix tree has
exactly m + 1
leaf nodes.

Forany T # g, all
internal nodes in
the suffix tree
have at least two
children.

Number of nodes

in a suffix tree is
O(m).

%
wnw o

YN ERENEE:
)

7y
B (O

0—0

n

9]
r O W O

O
2

(O

nonsenses$
012345678

r O OMO® WO O

n

rD DO

Suftfix Tree Representations

Suffix trees may have ®(m) nodes, but the
labels on the edges can have size w(1).

This means that a naive representation of a
suffix tree may take w(m) space.

Useful fact: Each edge in a suffix tree is
labeled with a consecutive range of characters
from w.

Trick: Represent each edge labeled with a
string a as a pair of integers [start, end]
representing where in the string o appears.

Suftfix Tree Representations

$g eg n% o :g

n

8 s

e

n

S e n o s S

start | 8 4 0 1 3 g
end 8 4 0 8 4 @
child 1

nonsenses$
012345678

Building Suffix Trees

 Claim: It’s possible to build a suffix tree
for a string of length m in time ®(m).

 These algorithms are not trivial! We'll
discuss one of them next time.

Application: String Search

String Matching

Y

e Suppose we

/
N

preprocess a string $
T by building a
suffix tree for it.

0 e
LV,)
nw 2
O
D Wn

YN EENEE
)

* Given any pattern 7
string P of length n,
we can determine,
in time O(n),
whether n is a
substring of P by
looking it up in the
suffix tree.

r OO M®Wo O

v
B (O

A 1
2

o

nonsense$
012345678

n
S
§ ¢
s ©

n

r® 0 O

String Matching

e Claim: After
spending O(m) time $
preprocessing TS,
can find all
matches of a string
P in time O(n + 2),
where 2 is the
number of matches.

o O
r
wnw o

Observation 1: Every
occurrence of Pin T is a
prefix of some suffix of T.

v o
B (O

O
n; o
U n

o S 5

n e S

S n

€ S n :

n S $

S 5 e é

€ S

S & 1

O 2

0

nonsensesS

012345678

n

r® 0 O

String Matching

e Claim: After

spending O(m) time $
preprocessing TS,
can find all

matches of a string

P in time O(n + 2),
where 2 is the
number of matches.

U
nw o

Observation 2: Every
suffix of T'$ beginning
with some pattern P
appears in the subtree

found by searching for P.

v o
B (O

O
n; o
U n

o S 5

n e S

S n

e S n :

n S $

S 5 e é

€ S

S & 1

O 2

0

nonsensesS

012345678

n

r® 0 O

String Matching

e Claim: After
spending O(m) time
preprocessing TS,
can find all
matches of a string
P in time O(n + 2),
where 2 is the
number of matches.

nonsense$
012345678

r
wnw o

r 0D

String Matching

e Claim: After
spending O(m) time

preprocessing T'$, O

can find all 0 S

matches of a string n ©
. . S

P in time O(n + 2), e &

. n
where z is the n <
number of matches. Z 5 e

< $
O
© 2
0
nonsense$

012345678

Finding All Matches

» To find all matches of string P, start by searching
the tree for P.

 If the search falls off the tree, report no matches.

* Otherwise, let v be the node at which the search
stops, or the endpoint of the edge where it stops if
it ends in the middle of an edge.

Do a DFS and report the numbers of all the leaves
found in this subtree. The indices reported this
way give back all positions at which P occurs.

Finding All Matches

To find all matches of string P, start by searching
the tree for P.

If the search falls off the tree, report no matches.

Otherwise, let v be the node at which the search
stops, or the endpoint of the edge where it stops if
it ends in the middle of an edge.

Do a DFS and report the numbers of all the leaves
found in this subtree. The indices reported this
way give back all positions at which P occurs.

How fast is
this step?

Claim: The DFS to find all leaves in the subtree
corresponding to prefix P takes time O(2),
where z is the number of matches.

Proof: If the DFS reports z matches, it must have
visited z different leaf nodes.

Since each internal node of a suffix tree has at
least two children, the total number of internal
nodes visited during the DFS is at most z - 1.

During the DFS, we don't need to actually
match the characters on the edges. We just
follow the edges, which takes time O(1).

Therefore, the DFS visits at most O(z) nodes
and edges and spends O(1) time per node or
edge, so the total runtime is O(z). ®

Reverse Aho-Corasick

* Given patterns Pi, ... Pk of total length n,
suffix trees can find all matches of those
patterns in time O(m + n + 2).

 Build the tree in time O(m), then search for
all matches of each Pi; total time across all
searches is O(n + 2).

e Acts as a “reverse” Aho-Corasick:

* Aho-Corasick string matching runs in time
(O(n), O(Mm+2))

* Suffix tree string matching runs in time
(O(m), O(n+2))

Another Application:
Longest Repeated Substring

Longest Repeated Substring

* Consider the following problem:

Given a string T, find the longest substring w of T
that appears in at least two different positions.

« Some examples:

* In monsoon, the longest repeated substring is on.

* In banana, the longest repeated substring is ana. (The
substrings can overlap.)

« Applications to computational biology: more than
half of the human genome is formed from repeated
DNA sequences!

Longest Repeated Substring

()
S
$é e n% z .
8 S n 0 S S8
S n e e S
7 e S n 6 e
$ e $ n 5 $
n e
é S $ é
4 ° 5 e
e $ é 3
S pA 1
Observation 1: If w is O 2

o

a repeated substring of
T, it must be a prefix of

at least two different nonsenses$
suffixes. 012345678

Longest Repeated Substring

O
S e n; 0 >
é @ n €
8 S n 0 S S8
S n e € S
7 e S n 6 e
$ e & S
n 3
© " s e
4 5 5 ° ¢
e $ é 3
S & 1
Observation 2: If w is O 2
a repeated substring of | ©
T, it must correspond
nonsense$

to a prefix of a path to
an internal node. 012345678

Longest Repeated Substring

® S
$é e n% z .
g8 3 n 0 S S8
S n & S S
7 e S n 6 e
S e S n Z $
é : S $ é
4 e > g é 3
S & 1
O 2

Observation 3: If wis a
longest repeated
substring, it corresponds nonsensesS

to a full path to an 012345678

internal node.

o

Longest Repeated Substring

.) %

wn

Observation 3: If wis a
longest repeated

substring, it corresponds nonsenses$
to a full path to an 012345678

internal node.

Longest Repeated Substring

« For each node v in a suffix tree, let s(v)
be the string that it corresponds to.

 The string depth of a node v is defined
as |s(v)|, the length of the string v
corresponds to.

* The longest repeated substring in T can
be found by finding the internal node in T
with the maximum string depth.

Longest Repeated Substring

 Here's an O(m)-time algorithm for
solving the longest repeated substring
problem:

e Build the suffix tree for T in time O(m).

 Run a DFS over the suffix tree, tracking the
string depth as you go, to find the internal
node of maximum string depth.

 Recover the string that node corresponds to.

* Good exercise: How might you find the
longest substring of T that repeats at
least k times?

Challenge Problem:

Solve this problem in linear time without
using suffix trees (or sutfix arrays).

Time-Out for Announcements!

Problem Sets

 Problem Set O solutions will be up on the
course website later today.

« We’ll try to get it graded and returned as
soon as possible.

 Problem Set 1 is due on Tuesday at
2:30PM.

* Stop by office hours with questions!
« Ask questions on Piazza!

DISTINGUISHED
SPEAKER
SERIES

TRACY YOUNG

Come hear from co-founders
of Plangrid, Tracy Young and
Ralph Gootee, about their
journey building Plangrid, a
company that creates
software for the $8 trillion a
year construction industry.
Dinner will be provided.

PlanGrid

Back to CS1606!

Generalized Suffix Trees

Suffix Trees for Multiple Strings

o Suffix trees store information about a
single string and exports a huge amount
of structural information about that
string.

« However, many applications require
information about the structure of
multiple different strings.

Generalized Suffix Trees

* A generalized suffix tree for T, ..., Tk is a Patricia trie of
all suffixes of T1$1, ..., Tx$x. Each Ti has a unique end marker.

- Leaves are tagged with i, meaning “ith suffix of string T

e LN o S
O D o €
@ 0 S n f O
81 S &, N f e e, s F $1 n
O s € n s &, 7 e e 3z ¢
T2 71 é e N s e ész n n N 61 é e
62 > S e n S S S 52 $1
N e $2 51 é e e
S e
31 32§ é $1
é e 4, $1 $2 34
22 S é> é> é}
44 32 1, <§ 2, 11 0,

nonsense$i 01 offense$:
012345678 01234567

Generalized Suffix Trees

* Claim: A generalized suffix tree for
strings T1, ..., Tk of total length m can be
constructed in time O(m).

* Use a two-phase algorithm:
* Construct a suffix tree for the single string
T1$1712%2 ... Tk$x In time O(m).
- This will end up with some invalid suffixes.

Do a DFS over the suffix tree and prune the
invalid suffixes.

- Runs in time O(m) if implemented intelligently.

Applications of Generalized Suftfix Trees

Longest Common Substring

» Consider the following problem:

Given two strings T: and T2, find the
longest string w that is a substring of
both T1 and T>.

* Can solve in time O(|T1]| - |T2]) using
dynamic programming.

e Can we do better?

Longest Common Substring

$1 &, £ n, OA :
O s n
o f O
81 S &, n f e | e s F $1 n
@ s e n S| &, O e e 3z ¢
T2 71 é e n s e ész n n N 61 é e
62 . S e n 5 S S S 52 $1
N e $2 S . é e e e é
$1 $2 $2 é $1 $
e 42 1 $2 31
é 22 S1 é é é
44 32 1, R 2, 14 0,
01

Observation: Any common
substring of T1 and T2 will be

nonsensesSi a prefix of a suffix of Ta and offensesS:
012345678 a prefix of a suffix of T. 01234567

Longest Common Substring

o B 4

wn

™ » O

Observation: Any common
substring of T1 and T2 will be

nonsensesSi a prefix of a suffix of T1 and offensesS:
012345678 a prefix of a suffix of T. 01234567

Longest Common Substring

* Build a generalized suftfix tree tor T: and 1z
in time O(m).

« Annotate each internal node in the tree with
whether that node has at least one leaf node
from each of 71 and Tx.

* Takes time O(m) using DFS.

e Run a DFS over the tree to find the marked
node with the highest string depth.

» Takes time O(m) using DFS
 Overall time: O(m).

Suffix Trees: The Catch

Space Usage

* Suffix trees are memory hogs.
« Suppose 2 =1{A,(C, G, T, $}.

e Each internal node needs 15 machine words: for
each character, words for the start/end index and

a child pointer. A C

T
start | 8 4 0
end 8 4 0

ST

This is still O(m), but it's a huge hidden constant!

G $
1 3
8 4

Can we get the flexibility of a sutfix tree
without the memory costs?

Yes... kinda!

Suffix Arrays

* A suffix array for

a string T is an ® nonsense$
array of the ; °“Se“5§$
suffixes of T, 3 ::Eg:g
stored in sorted A
ensesS

order. 5 rses

* By convention, $ 6 se$
precedes all other 7 e$
characters. 8 $

Suffix Arrays

* A suffix array for

a string T'1s an 8 3

array of the Z €3 &

suffixes of T'$, 5 ﬁgzienses

stored in sorted 5

order nses

‘ 2 nsense$

By convention, $ 1 onsense$

precedes all other 6 se$

characters. 3 sense$

Representing Suftfix Arrays

» Suffix arrays are
typically represented
implicitly by just
storing the indices of
the suffixes in sorted
order rather than the
suffixes themselves.

* Space required: ©(m).

« More precisely, space
for T'$, plus one extra
word for each
character.

$

e$

ensesS

nonsensesS

nses$

nsense$

onsensesS

se$

WA R NUUVIOALANO®

sensesS

Representing Suftfix Arrays

» Suffix arrays are
typically represented
implicitly by just
storing the indices of
the suffixes in sorted
order rather than the
suffixes themselves.

* Space required: ©(m).

AR DNUVWIO L NO

« More precisely, space
for T'$, plus one extra
word for each
character. nonsensesS

W

Searching a Suffix Array

* Recall: P is a

substring of T iff it's a 8 S
prefix of a suffix of T. 7 e$

« All matches of Pin T 4 ense3
have a common O nonsense$
prefix, so they'll be 5 nse$
stored consecutively. 2 nsense$

- Can find all matches 1 onsense3
of P in T by doing a 6 se$
binary search over 3 sense$

the suffix array.

Analyzing the Runtime

* The binary search will require O(log m)
probes into the suffix array.

 Each comparison takes time O(n): have to
compare P against the current suffix.

» Time for binary searching: O(n log m).

* Time to report all matches after that point:
O(2).

» Total time: O(n log m + 2).

Why the Slowdown?

A L.oss of Structure

 Many algorithms on suffix trees involve
looking for internal nodes with various
properties:

» Longest repeated substring: internal node
with largest string depth.

 Longest common substring: internal node
with largest string depth that has a child
from each string.

* Because suffix arrays do not store the
tree structure, we lose access to this
information.

Suffix Trees and Suffix Arrays

S e n 0
: .
8 S n o S S
S n e e
7 e s n
$ e § o S
@ 2 s g
4 3 s
S 1
O
O 2

0
nonsense$

012345678

r® 0 O

$

e$

ensesS

nonsensesS

nses$

nsense$

onsensesS

se$

WA R NUUVIOALANO®

sensesS

Suffix Trees and Suffix Arrays

@ S
$é e n% (r: .
8 9 n o S 5 $ 0
S n e e
7 e s " e . 0 nonsense$
iﬁ ﬁ . n : $ 5 nse$
S8 O 2 S
s nsense
4 e 3 g Cv) 3
S 1
@
O 2
0
nonsensesS

012345678

Suffix Trees and Suffix Arrays

(o) S

n e

S

e S n
n S
S

e 7 ¢
? &
O 2
0
nonsensesS

012345678

(O

nonsensesS

Ui

nse$

N

nsensesS

Suffix Trees and Suffix Arrays

o S
$é e n% (r: .
g8 S n o S S $ 0
S n e e S
7 e S n 6 e
5@ ‘; . n Z $ 5 nse$
S8 O 2 S
S nsense
4 e 3 g Cv) 3
S 1
O
O 2
0
nonsense$

012345678

Suffix Trees and Suffix Arrays

22
m:%
NSHRY,
= ||[=
m‘m
M M
= U
n
M
a2,

r 0D

O
2

nonsense$
012345678

The longest common prefix of a range of
strings in a suffix array corresponds to the
lowest common ancestor of those suffixes

in the suffix tree.

Longest Common Prefixes

* Given two strings x and y, the longest
common prefix or (LCP) of x and y is
the longest prefix of x that is also a prefix
of y.

« The LCP of x and y is denoted lcp(x, y).

 Fun fact: There is an O(m)-time
algorithm for computing LCP information
on a suffix array.

e [et's see how it works.

Pairwise LCP

« Fact: There is an
algorithm (due to Kasai
et al.) that constructs,
in time O(m), an array
of the LCPs of adjacent
suffix array entries.

 The algorithm isn't that
complex, but the
correctness argument
is a bit nontrivial.

$

e$

ensesS

nonsensesS

nses$

nsense$

onsensesS

NO O WwWRrRORO

se$

WA R NUUVIOALANO®

sensesS

Pairwise LCP

 Claim: This
information is enough
for us to figure out
the longest common
prefix of a range of
elements in the suffix
array.

$

e$

ensesS

nonsensesS

nses$

nsense$

onsensesS

se$

NO O WwWRrRORO

WA R NUUVIOALANO®

sensesS

Pairwise LCP

 Claim: This
information is enough
for us to figure out
the longest common
prefix of a range of
elements in the suffix
array.

$

e$

ensesS

nonsensesS

nses$

nsense$

onsensesS

se$

NO O WRORO

WA R NUUVIOALANO®

sensesS

Pairwise LCP

 Claim: This
information is enough
for us to figure out
the longest common
prefix of a range of
elements in the suffix
array.

Hey, lookr It's a
range minimum guery
problem:

$

e$

ensesS

nonsensesS

nses$

nsense$

onsensesS

NO o wroro

se$

WA R NUUVIOALANO®

sensesS

Computing LCPs

* To preprocess a suffix array to support O(1)
L.CP queries:

« Use Kasai's O(m)-time algorithm to build the LCP
array.

« Build an RMQ structure over that array in time
O(m) using Fischer-Heun.

« Use the precomputed RMQ structure to answer
LCP queries over ranges.

 Requires O(m) preprocessing time and only
O(1) query time.

Searching a Suffix Array

* Recall: Can search a suffix array of T for all
matches of a pattern P in time O(n log m + 2).

» If we've done O(m) preprocessing to build the
LCP information, we can speed this up.

Searching a Suffix Array

S e nH)
: .
g8 S n o S S
S n & S
7 S n
S e § 0 :
n
§> > 5 e °
e $ é
S 1
O
O 2
0
nonsensesS
012345678

r® 0 DO

$

e$

ensesS

nonsensesS

nses$

nsense$

onsensesS

se$

WA R NUUVIOALANO®

sensesS

NONS

Searching a Suffix Array

S e nH)
: .
g8 S n o S S
S n & S
7 S n
S e § 0 :
n
§> > 5 e °
e $ é
S 1
O
O 2
0
nonsensesS
012345678

r® 0 DO

$

e$

ensesS

nonsensesS

nses$

nsense$

onsensesS

se$

WA R NUUVIOALANO®

sensesS

NONS

Searching a Suffix Array

S e nH)
: .
g8 S n o S S
S n & S
7 S n
S e § 0 :
n
§> > 5 e °
e $ é
S 1
O
O 2
0
nonsensesS
012345678

r® 0 DO

$

e$

ensesS

nonsensesS

nses$

nsense$

onsensesS

se$

WA R NUUVIOALANO®

sensesS

NONS

Searching a Suffix Array

S e nH)
: .
g8 S n o S S
S n & S
7 S n
S e § 0 :
n
§> > 5 e °
e $ é
S 1
O
O 2
0
nonsensesS
012345678

r® 0 DO

$

e$

ensesS

nonsensesS

nsesS

nsense$

onsensesS

se$

WA R NUUVIOALANO®

sensesS

nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

YN ERENEK
)

2 se$

WA R NUUVIOALANO®

(O

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

YN ERENEK
)

2 se$

WA R NUUVIOALANO®

(O

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

YN ERENEK
)

2 se$

WA R NUUVIOALANO®

(O

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

YN ERENEK
)

2 se$

WA R NUUVIOALANO®

(O

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

S

e$

ensesS

nonsensesS

nses$

U
nr® W O

nsense$

onsensesS

O

YN ERENEK
)

2 se$

WA R NUUVIOALANO®

(O

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

YN ERENEK
)

2 se$

WA R NUUVIOALANO®

(O

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

YN ERENEK
)

2 se$

WA R NUUVIOALANO®

(O

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

YN ERENEK
)

2 se$

WA R NUUVIOALANO®

(O

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nses$

U
nr® W O

nsense$

onsensesS

O

YN ERENEK
)

2 se$

WA R NUUVIOALANO®

(O

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

YN ERENEK
)

2 se$

WA R NUUVIOALANO®

(O

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

YN ERENEK
)

2 se$

WA R NUUVIOALANO®

(O

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

té}"ﬂ'm(ﬂ=m(ﬂ=°

2 se$

WA R NUUVIOALANO®

o (4
-"

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

té}"ﬂ'm(ﬂ=m(ﬂ=°

2 se$

WA R NUUVIOALANO®

o (4
-"

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

té}"ﬂ'm(ﬂ=m(ﬂ=°

2 se$

WA R NUUVIOALANO®

o (4
-"

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

$

e$

ensesS

nonsensesS

nsesS

U
nr® W O

nsense$

onsensesS

O

té}"ﬂ'm(ﬂ=m(ﬂ=°

2 se$

WA R NUUVIOALANO®

o (4
-"

sensesS

nonsenses$
012345678 nons

Searching a Suffix Array

 Intuitively, simulate doing a binary search of the
leaves of a suffix tree, remembering the deepest
subtree you've matched so far.

« At each point, if the binary search probes a leaf
outside of the current subtree, skip it and
continue the binary search in the direction of the
current subtree.

* To implement this on an actual suffix array, we
use LCP information to implicitly keep track of
where the bounds on the current subtree are.

Searching a Suffix Array

* Claim: The algorithm we just sketched
runs in time O(n + log m + 2).

 Proof Sketch: The O(log m) term comes
from the binary search over the leaves of
the suffix tree. The O(n) term
corresponds to descending deeper into
the suffix tree one character at a time.
Finally, we have to spend O(z) time
reporting matches. W

Applications:
Longest Common Extensions

Longest Common Extensions

* Given two strings T1 and T2 and start positions i
and j, the longest common extension of T1 and
T2, starting at positions i and j, is the length of the
longest string w that appears at position i in 71 and
position j in 1x.

« We'll denote this value by LCE_, (i, j).

« Typically, T1 and T2 are fixed and multiple (i, j)
queries are specified.

= M
n o
W0

nons
of fe

Longest Common Extensions

* Given two strings T1 and T2 and start positions i
and j, the longest common extension of T1 and
T2, starting at positions i and j, is the length of the
longest string w that appears at position i in 71 and
position j in 1x.

- We'll denote this value by LCE,. (i, j).

« Typically, T1 and T2 are fixed and multiple (i, j)
queries are specified.

\ 4

nons
of fe

n o
W0

e
n
)

Longest Common Extensions

* Given two strings T1 and T2 and start positions i
and j, the longest common extension of T1 and
T2, starting at positions i and j, is the length of the
longest string w that appears at position i in 71 and
position j in 1x.

- We'll denote this value by LCE,. (i, j).

« Typically, T1 and T2 are fixed and multiple (i, j)
queries are specified.

\ 4

nonNns
of fe

wn o
()

e
n
)

Longest Common Extensions

* Given two strings T1 and T2 and start positions i
and j, the longest common extension of T1 and
T2, starting at positions i and j, is the length of the
longest string w that appears at position i in 71 and
position j in 1x.

- We'll denote this value by LCE,. (i, j).

« Typically, T1 and T2 are fixed and multiple (i, j)
queries are specified.

\ 4

on
ff

= M
n o
W0

S
e

n
o)
4

Longest Common Extensions

* Given two strings T1 and T2 and start positions i
and j, the longest common extension of T1 and
T2, starting at positions i and j, is the length of the
longest string w that appears at position i in 71 and
position j in 1x.

- We'll denote this value by LCE,. (i, j).

« Typically, T1 and T2 are fixed and multiple (i, j)
queries are specified.

\ 4

on
ff

= M
n o
W0

S
e

n
o)
)

Longest Common Extensions

* Given two strings T1 and T2 and start positions i
and j, the longest common extension of T1 and
T2, starting at positions i and j, is the length of the
longest string w that appears at position i in 71 and
position j in 1x.

- We'll denote this value by LCE,. (i, j).

« Typically, T1 and T2 are fixed and multiple (i, j)
queries are specified.

\ 4

= M
n o
W0

nons
of fe

n
f

Longest Common Extensions

» Observation: LCE, . (i, j) is the length of the

longest common prefix of the suffixes of 71 and
T2 starting at positions i and j.

Longest Common Extensions

» Observation: LCE, . (i, j) is the length of the

longest common prefix of the suffixes of 71 and
T2 starting at positions i and j.

Longest Common Extensions

» Observation: LCE, . (i, j) is the length of the

longest common prefix of the suffixes of 71 and
T2 starting at positions i and j.

nsense
nse

Longest Common Extensions

» Observation: LCE, . (i, j) is the length of the

longest common prefix of the suffixes of 71 and
T2 starting at positions i and j.

nsense
nse

Suffix Arrays and LCE

e Claim: There is an (O(m), O(1))
data structure for LCE.

* Preprocessing:

* Construct a generalized suffix
array for T and T2 augmented
with LCP information.

= (Just build a suffix array for
T1$1T12%2.)

 Then build a table mapping each
index in the string to its index in
the suffix array.
* Query:

Do an RMQ over the LCP array
at the appropriate indices.

81

S1

52

S2

11

E$1

4,

e$z

41

ensesS1

12

ensesS:2

01

nonsenseSi

51

nseS1

22

nses:

21

nsenseSi

11

onsenseS1

61

seS1

32

seS:

ONNOOWWEROARROO

31

senseS1

02

tenseS:

nonsensesS:

N =

tenseS:

Suffix Arrays and LCE

e Claim: There is an (O(m), O(1))
data structure for LCE.

* Preprocessing:

* Construct a generalized suffix
array for T and T2 augmented
with LCP information.

= (Just build a suffix array for
T1$1T12%2.)

 Then build a table mapping each
index in the string to its index in
the suffix array.
* Query:

Do an RMQ over the LCP array
at the appropriate indices.

81

S1

52

S2

11

E$1

4,

e$z

41

ensesS1

12

ensesS:2

01

nonsenseSi

51

nseS1

22

nses:

21

nsenseSi

11

onsenseS1

61

seS1

32

seS:

ONNOOWWEROARROO

31

senseS1

02

tenseS:

nonsensesS:

N =

nses:

Suffix Arrays and LCE

e Claim: There is an (O(m), O(1))
data structure for LCE.

* Preprocessing:

* Construct a generalized suffix
array for T and T2 augmented
with LCP information.

= (Just build a suffix array for
T1$1T12%2.)

 Then build a table mapping each
index in the string to its index in
the suffix array.
* Query:

Do an RMQ over the LCP array
at the appropriate indices.

81

S1

52

S2

11

E$1

4,

e$z

41

ensesS1

12

ensesS:2

01

nonsenseSi

51

nseS1

22

nses:

21

nsenseSi

11

onsenseS1

61

seS1

32

seS:

ONNOOWWEROARROO

31

senseS1

02

tenseS:

nonsensesS:

N =

nses:

Suffix Arrays and LCE

e Claim: There is an (O(m), O(1))
data structure for LCE.

* Preprocessing:

* Construct a generalized suffix
array for T and T2 augmented
with LCP information.

= (Just build a suffix array for
T1$1T12%2.)

 Then build a table mapping each
index in the string to its index in
the suffix array.
* Query:

Do an RMQ over the LCP array
at the appropriate indices.

81

S1

52

S2

11

E$1

4,

e$z

41

ensesS1

12

ensesS:2

01

nonsenseSi

51

nseS1

22

nses:

21

nsenseSi

11

onsenseS1

61

seS1

32

seS:

ONNOOWWREROARROO

31

senseS1

02

tenseS:

nonsensesS:

N =

nses:

An Application: Longest Palindromic
Substring

Palindromes

* A palindrome is a string that's the same
forwards and backwards.

* A palindromic substring of a string T is
a substring of T that's a palindrome.

* Surprisingly, of great importance in
computational biology.

Palindromes

* A palindrome is a string that's the same
forwards and backwards.

* A palindromic substring of a string T is
a substring of T that's a palindrome.

* Surprisingly, of great importance in
computational biology.

Palindromes

* A palindrome is a string that's the same
forwards and backwards.

* A palindromic substring of a string T is
a substring of T that's a palindrome.

* Surprisingly, of great importance in
computational biology.

@ acu G
O u G ac

Palindromes

* A palindrome is a string that's the same
forwards and backwards.

* A palindromic substring of a string T is
a substring of T that's a palindrome.

* Surprisingly, of great importance in
computational biology.

O afcuc
eucne

Longest Palindromic Substring

 The longest palindromic subsiring
problem is the following:

Given a string T, find the longest
substring of T that is a palindrome.

 How might we solve this problem?

An Initial Idea

* To deal with the issues of strings going
forwards and backwards, start off by
forming T and T%, the reverse of T.

* Initial Idea: Find the longest common
substring of T and T%.

» Unfortunately, this doesn't work:
e T = abcdba
« TR = abdcba
 Longest common substring: ab / ba
* Longest palindromic substring: a/b/c/d

Palindrome Centers and Radii

* For now, let's focus on even-length
palindromes.

 An even-length palindrome substring ww# of a
string T has a center and radius:

 Center: The spot between the duplicated center
character.

* Radius: The length of the string going out in
each direction.

 Idea: For each center, find the largest
corresponding radius.

Palindrome Centers and Radii

Palindrome Centers and Radii

Palindrome Centers and Radii

achabccb

Palindrome Centers and Radii

Palindrome Centers and Radii

Palindrome Centers and Radii

wE bccbaccabba

Palindrome Centers and Radii

wE bccbaccabba

Palindrome Centers and Radii

wE bccbaccabba

Palindrome Centers and Radii

wE bccbaccabba

Palindrome Centers and Radii

wE bccbaccabba

Palindrome Centers and Radii

wE bccbaccabba

Palindrome Centers and Radii

wE bccbaccabba

Palindrome Centers and Radii

wE bccbaccabba

An Algorithm

e In time O(m), construct T&-.

 Preprocess T and Tr in time O(m) to support LCE
queries.

« For each spot between two characters in T, find
the longest palindrome centered at that location
by executing LCE queries on the corresponding
locations in T and TR.

 Each query takes time O(1) if it just reports the
length.

« Total time: O(m).
* Report the longest string found this way.

 Total time: O(m).

Next Time

* Constructing Suffix Trees

« How on earth do you build suffix trees in
time O(m)?

 Constructing Suffix Arrays
« Start by building suffix arrays in time O(m)...
* Constructing LCP Arrays

* ... and adding in LCP arrays in time O(m).

