

Balanced Trees
Part One

Balanced Trees

● Balanced search trees are among the most
useful and versatile data structures.

● Many programming languages ship with a
balanced tree library.
● C++: std::map / std::set
● Java: TreeMap / TreeSet
● Python: OrderedDict

● Many advanced data structures are layered on
top of balanced trees.
● We'll see them used to build y-Fast Tries later in

the quarter. (They’re really cool, trust me!)

Where We're Going

● B-Trees
● A simple type of balanced tree developed for

block storage.
● Red/Black Trees

● The canonical balanced binary search tree.
● Augmented Search Trees

● Adding extra information to balanced trees to
supercharge the data structure.

● Two Advanced Operations
● The split and join operations.

Outline for Today

● BST Review
● Refresher on basic BST concepts and runtimes.

● Overview of Red/Black Trees
● What we're building toward.

● B-Trees and 2-3-4- Trees
● A simple balanced tree in depth.

● Intuiting Red/Black Trees
● A much better feel for red/black trees.

A Quick BST Review

Binary Search Trees

● A binary search tree is a binary tree with the
following properties:

● Each node in the BST stores a key, and optionally,
some auxiliary information.

● The key of every node in a BST is strictly greater
than all keys to its left and strictly smaller than all
keys to its right.

● The height of a binary search tree is the length of
the longest path from the root to a leaf, measured
in the number of edges.

● A tree with one node has height 0.
● A tree with no nodes has height -1, by convention.

73

137

42

60

271

161 314

Searching a BST

73

137

42

60

271

161 314

Searching a BST

73

137

42

60

271

161 314

Searching a BST

73

137

42

60

271

161 314

Searching a BST

73

137

42

60

271

161 314

Searching a BST

73

137

42

60

271

161 314

Searching a BST

73

137

42

60

271

161 314

Searching a BST

73

137

42

60

271

161 314

Searching a BST

73

137

42

60

271

161 314

Searching a BST

73

137

42

60

271

161 314

Searching a BST

Inserting into a BST

Inserting into a BST

73

137

42

60

271

161 314

Inserting into a BST

73

137

42

60

271

161 314

Inserting into a BST

73

137

42

60

271

161 314

Inserting into a BST

73

137

42

60

271

161 314

Inserting into a BST

73

137

42

60

271

161 314

Inserting into a BST

73

137

42

60

271

161 314

166

Inserting into a BST

73

137

42

60

271

161 314

166

Deleting from a BST

Deleting from a BST

73

137

42

60

271

161 314

166

Deleting from a BST

73

137

42

60

271

161 314

166

Deleting from a BST

73

137

42

60

271

161 314

166

Deleting from a BST

73

137

42

60

271

161 314

166

Deleting from a BST

73

137

42

60

271

161 314

166

Deleting from a BST

73

137

42

271

161 314

166

Deleting from a BST

73

137

42

271

161 314

166

Case 1: If the node has
just no children, just
remove it.

Case 1: If the node has
just no children, just
remove it.

Deleting from a BST

73

137

42

271

161 314

166

Deleting from a BST

73

137

42

271

161 314

166

Deleting from a BST

137

42

271

161 314

166

Deleting from a BST

137

42

271

161 314

166

Deleting from a BST

137

42 271

161 314

166

Deleting from a BST

137

42 271

161 314

166

Case 2: If the node has
just one child, remove
it and replace it with
its child.

Case 2: If the node has
just one child, remove
it and replace it with
its child.

Deleting from a BST

137

42 271

161 314

166

Deleting from a BST

137

42 271

161 314

166

Deleting from a BST

42 271

161 314

166

Deleting from a BST

42 271

161 314

166

Deleting from a BST

42 271

161 314

166

Deleting from a BST

137

42 271

161 314

166

Deleting from a BST

137

42 271

161 314

166

Deleting from a BST

137

42 271

161 314

166

Deleting from a BST

161

42 271

161 314

166

Deleting from a BST

161

42 271

314

166

Deleting from a BST

161

42 271

314166

Deleting from a BST

161

42 271

314166

Case 3: If the node has two
children, fnd its inorder
successor (which has zero or
one child), replace the node's
key with its successor's key,
then delete its successor.

Case 3: If the node has two
children, fnd its inorder
successor (which has zero or
one child), replace the node's
key with its successor's key,
then delete its successor.

Runtime Analysis

● The time complexity of all these operations
is O(h), where h is the height of the tree.
● Represents the longest path we can take.

● In the best case, h = O(log n) and all
operations take time O(log n).

● In the worst case, h = Θ(n) and some
operations will take time Θ(n).

● Challenge: How do you eficiently keep
the height of a tree low?

A Glimpse of Red/Black Trees

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

110

107

106

166

161 261

140

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

53

31

59 97

58

26 41

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

53

31

59 97

58

26 41

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

5

2

8

7

1 4

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

5

2

8

7

1 4

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

5

2

8

7

1 4

Red/Black Trees

● Theorem: Any red/black tree with n
nodes has height O(log n).
● We could prove this now, but there's a much

simpler proof of this we'll see later on.
● Given a fxed red/black tree, lookups can

be done in time O(log n).

Mutating Red/Black Trees

17

3 11 23 37

7 31

Mutating Red/Black Trees

17

3 11 23 37

7 31

Mutating Red/Black Trees

17

3 11 23 37

7 31

Mutating Red/Black Trees

17

3 11 23 37

7 31

Mutating Red/Black Trees

17

3 11 23 37

7 31

Mutating Red/Black Trees

17

3 11 23 37

7 31

13

Mutating Red/Black Trees

17

3 11 23 37

7 31

13

Mutating Red/Black Trees

17

3 11 23 37

7 31

13

Mutating Red/Black Trees

17

3 11 23 37

7 31

13
What are we

supposed to do with
this new node?

What are we
supposed to do with

this new node?

Mutating Red/Black Trees

Mutating Red/Black Trees

17

3 11 23 37

7 31

Mutating Red/Black Trees

17

3 11 23 37

7 31

Mutating Red/Black Trees

17

3 11 23 37

7 31

Mutating Red/Black Trees

17

3 11 23 37

7 31

Mutating Red/Black Trees

17

3 11 23 37

7 37

Mutating Red/Black Trees

17

3 11 23

7 37

Mutating Red/Black Trees

17

3 11 23

7 37

How do we fx up the
black-height property?

How do we fx up the
black-height property?

Fixing Up Red/Black Trees

● The Good News: After doing an insertion or
deletion, can locally modify a red/black tree in
time O(log n) to fx up the red/black properties.

● The Bad News: There are a lot of cases to
consider and they're not trivial.

● Some questions:
● How do you memorize / remember all the

diferent types of rotations?
● How on earth did anyone come up with

red/black trees in the frst place?

B-Trees

Generalizing BSTs

● In a binary search tree, each node stores a single key.

● That key splits the “key space” into two pieces, and
each subtree stores the keys in those halves.

2

-1 4

-2 0 63

Values less than two Values greater than two

Generalizing BSTs

● In a multiway search tree, each node stores an
arbitrary number of keys in sorted order.

● In a node with k keys splits the “key space” into
k + 1 pieces, and each subtree stores the keys in
those pieces.

2

43

5 19 31 71 83

3 7 11 13 17 23 29 37 41 47 53 67 73 79 89 9759 61

46

45

One Solution: B-Trees
● A B-tree of order b is a multiway search tree with the following

properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root node has been 1 and 2b – 1 keys.

● All root-null paths through the tree pass through the same number of nodes.

2

43

5 19 31 71 83

3 7 11 13 17 23 29 37 41 47 53 67 73 79 89 9759 61

B-tree of
order 3

B-tree of
order 3

One Solution: B-Trees

B-tree of
order 7

B-tree of
order 7

1 3 6 10 11 14 19 20 21 23 24 28 29 33 44 48 57 62 77 91

16 36

● A B-tree of order b is a multiway search tree with the following
properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root node has been 1 and 2b – 1 keys.

● All root-null paths through the tree pass through the same number of nodes.

2-3-4 Trees

1 2 4 6 7 8 10 12 14 15 17 18 19 21 22 24 26

3 9 11 16 20 25

5 13 23

● A 2-3-4 tree is a B-tree of order 2. The rules for 2-3-4 trees are really
simple:

● All leaf nodes are stored at the same depth.

● All nodes have between 1 and 3 keys (between 2 and 4 children).

● All root-null paths through the tree pass through the same number of
nodes.

● These fellas will make a number of appearances later on. Stay tuned!

The Tradeof

● Because B-tree nodes can have multiple
keys, when performing a search,
insertion, or deletion, we have to spend
more work inside each node.

● Insertion and deletion can be expensive –
for large b, we might have to shufe
thousands or millions of keys over!

● Why would you use a B-tree?

Memory Tradeofs

● There is an enormous tradeof between speed and size
in memory.

● SRAM (the stuf registers are made of) is fast but very
expensive:

● Can keep up with processor speeds in the GHz.
● As of 2010, cost is $5/MB. (Anyone know a good source

for a more recent price?)
● Good luck buying 1TB of the stuf!

● Hard disks are cheap but very slow:

● As of 2018, you can buy a 4TB hard drive for about $100.
● As of 2018, good disk seek times for magnetic drives are

measured in ms (about two to four million times slower
than a processor cycle!)

The Memory Hierarchy

● Idea: Try to get the best of all worlds by
using multiple types of memory.

The Memory Hierarchy

● Idea: Try to get the best of all worlds by
using multiple types of memory.

256B - 8KB

16KB – 64KB

1MB - 4MB

4GB – 256GB

1TB+

Lots

0.25 – 1ns

1ns – 5ns

5ns – 25ns

25ns – 100ns

3 – 10ms

10 – 2000ms

L2 Cache

Main Memory

Hard Disk

Network (The Cloud)

Registers

L1 Cache

Why B-Trees?

● Because B-trees have a huge branching factor, they're
great for on-disk storage.

● Disk block reads/writes are glacially slow.
● The high branching factor minimizes the number of blocks

to read during a lookup.
● Extra work scanning inside a block ofset by these

savings.

● Major use cases for B-trees and their variants (B+-trees,
H-trees, etc.) include

● databases (huge amount of data stored on disk);
● file systems (ext4, N4T,S, Re,S); and, recently,
● in-memory data structures (due to cache efects).

The Height of a B-Tree

● What is the maximum possible height of a B-tree of
order b?

1

b – 1

b – 1 b – 1

b – 1 b – 1

…

…… …

b – 1

b – 1 b – 1

b – 1 b – 1

…

…… …

1

2(b - 1)

2b(b - 1)

2b2(b - 1)

2bh-1(b - 1)

…

b – 1 b – 1 b – 1…

…

The Height of a B-Tree

● Theorem: The maximum height of a B-tree of order
b containing n nodes is logb ((n + 1) / 2).

● Proof: N4umber of nodes n in a B-tree of height h is
guaranteed to be at least

= 1 + 2(b – 1) + 2b(b – 1) + 2b2(b – 1) + … + 2bh-1(b – 1)

= 1 + 2(b – 1)(1 + b + b2 + … + bh-1)

= 1 + 2(b – 1)((bh – 1) / (b – 1))

= 1 + 2(bh – 1) = 2bh – 1.

Solving n = 2bh – 1 yields h = logb ((n + 1) / 2). ■

● Corollary: B-trees of order b have height Θ(logb n).

● Doing a search in a B-tree involves
● searching the root node for the key, and
● if it's not found, recursively exploring the correct child.

● Using binary search within a given node, can find the key or
the correct child in time O(log number-of-keys).

● Repeat this process O(tree-height) times.
● Time complexity is

 = O(log number-of-keys · tree-height)

 = O(log b · logb n)

 = O(log b · (log n / log b))

 = O(log n)
● Requires reading O(logb n) blocks; this more directly

accounts for the total runtime.

Searching in a B-Tree

Searching in a B-Tree

● Doing a search in a B-tree involves
● searching the root node for the key, and
● if it's not found, recursively exploring the correct child.

● Using binary search within a given node, can find the key or
the correct child in time O(log number-of-keys).

● Repeat this process O(tree-height) times.
● Time complexity is

 = O(log number-of-keys · tree-height)

 = O(log b · logb n)

 = O(log b · (log n / log b))

 = O(log n)
● Requires reading O(logb n) blocks; this more directly

accounts for the total runtime.

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 23 29 37 41 67 73 79 89 976159

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 23 29 37 41 67 73 79 89 976159

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 23 29 37 41 67 73 79 89 976159

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 23 29 37 41 67 73 79 89 976159

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 23 29 37 41 67 73 79 89 976159

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 23 29 37 41 67 73 79 89 976159

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 23 29 37 41 67 73 79 89 976159

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 23 29 37 41 67 73 79 89 97615912

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 23 29 37 41 67 73 79 89 97615912 13

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 12 23 29 37 41 67 73 79 89 976113 14 59

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 12 23 29 37 41 67 73 79 89 976113 14 59

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 12 23 29 37 41 67 73 79 89 976113 14 59

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

5 19 31 71 83

3 7 11 12 23 29 37 41 67 73 79 89 976113 14 59

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

7 19 31 71 83

3 7 11 12 23 29 37 41 67 73 79 89 976113 14 59

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

7 19 31 71 83

3 11 12 23 29 37 41 67 73 79 89 976113 14 59

B-Trees are Simple

● Because nodes in a B-tree can store multiple keys,
most insertions or deletions are straightforward.

● Here's a B-tree with b = 3 (nodes have between 2
and 5 keys):

2

43

7 19 31 71 83

3 11 12 23 29 37 41 67 73 79 89 976113 14 59

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

61

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612 3

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612 3

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

21

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

21

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

21

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 31

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

21

41

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 31

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

21

41

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 31

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

21

41 Note: B-trees grow
upward, not downward.

Note: B-trees grow
upward, not downward.

Inserting into a B-Tree

● To insert a key into a B-tree:
● Search for the key, insert at the last-visited leaf node.
● If the leaf is too big (contains 2b keys):

– Split the node into two nodes of size b each.
– Remove the largest key of the first block and make it the

parent of both blocks.
– Recursively add that node to the parent, possibly triggering

more upward splitting.

● Time complexity:
● O(b) work per level and O(logb n) levels.

● Total work: O(b logb n)

● In terms of blocks read: O(logb n)

The Trickier Cases

1 6

11 26 36

46

16 31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21

The Trickier Cases

1 6

11 26 36

46

16 31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21

The Trickier Cases

6

11 26 36

46

16 31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21

The Trickier Cases

6

11 26 36

46

16 31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21

The Trickier Cases

6

11 26 36

46

16 31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21

The Trickier Cases

6

11 26 36

46

16 31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21

The Trickier Cases

6

? 26 36

46

16 31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111

The Trickier Cases

6

16 26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111

The Trickier Cases

16 26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111

The Trickier Cases

16 26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111

The Trickier Cases

? 26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111 16

The Trickier Cases

26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2111 16

The Trickier Cases

26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2116

The Trickier Cases

26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2116

The Trickier Cases

26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

2116

The Trickier Cases

26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21

The Trickier Cases

26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21

The Trickier Cases

26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21

The Trickier Cases

26 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21

The Trickier Cases

? 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21 26

The Trickier Cases

36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21 26

The Trickier Cases

36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

26

The Trickier Cases

36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

26

The Trickier Cases

36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

26

The Trickier Cases

36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

The Trickier Cases

36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

The Trickier Cases

36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

The Trickier Cases

?

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

36

The Trickier Cases

?

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

36

The Trickier Cases

?

46

41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

36

The Trickier Cases

?

41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

36

46

The Trickier Cases

41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

36

46

?

The Trickier Cases

41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

36

46

Deleting from a B-Tree

● If not in a leaf, replace the key with its successor from a leaf
and delete out of a leaf.

● To delete a key from a node:

● If the node has more than b – 1 keys, or if the node is the root,
just remove the key.

● Otherwise, find a sibling node whose shared parent is p.

● If that sibling has more than b – 1 keys, move the max/min key
from that sibling into p's place and p down into the current
node, then remove the key.

● Otherwise, fuse the node and its sibling into a single node by
adding p into the block, then recursively remove p from the
parent node.

● Work done is O(b logb n): O(b) work per level times
O(logb n) total levels. Requires O(logb n) block reads/writes.

Time-Out for Announcements!

Problem Sets

● Problem Set One solutions are now
available up on the course website.
● We’re working on getting them graded – stay

tuned!
● Problem Set Two is due next Tuesday.

● Have questions? Ask them on Piazza or stop
by our ofice hours!

Back to CS166!

So... red/black trees?

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

110

107

106

166

161 261

140

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

110

107106

166

161 261140

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

19

3

11

23 37

7 31

17

13

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

19

3 11 23 37

7

311713

Data Structure Isometries

● Red/black trees are an isometry of 2-3-4
trees; they represent the structure of 2-3-4
trees in a diferent way.

● Many data structures can be designed and
analyzed in the same way.

● Huge advantage: Rather than memorizing
a complex list of red/black tree rules, just
think about what the equivalent operation
on the corresponding 2-3-4 tree would be
and simulate it with color fips and rotations.

The Height of a Red/Black Tree

Theorem: Any red/black tree with n nodes has
height O(log n).

Proof: Contract all red nodes into their
parent nodes to convert the red/black
tree into a 2-3-4 tree. This decreases
the height of the tree by at most a
factor of two. The resulting 2-3-4 tree has
height O(log n), so the original red/black
tree has height 2 · O(log n) = O(log n). ■

Exploring the Isometry

● Nodes in a 2-3-4 tree are classifed into
types based on the number of children
they can have.
● 2-nodes have one key (two children).
● 3-nodes have two keys (three children).
● 4-nodes have three keys (four children).

● How might these nodes be represented?

Exploring the Isometry

k₁

k₁ k₂

k₁ k₂ k₃

k₁

k₁

k₂ k₁

k₂

k₁ k₃

k₂

Using the Isometry

19

3 23

7 31

17

13

Using the Isometry

19

3 23

7

311713

Using the Isometry

19

3 23

7

311713

5

Using the Isometry

19

3 23

7

3117135

Using the Isometry

19

3 23

7

3117135

Using the Isometry

19

3 23

7 31

17

13

5

Using the Isometry

19

3 23

7 31

17

13

Using the Isometry

19

3 23

7 31

17

13

5

Using the Isometry

19

3 23

7 31

17

13

Using the Isometry

19

3 23

7 31

17

13

5

Using the Isometry

19

3 23

7 31

17

13

5

Using the Isometry

19

3 23

7

3117135

Using the Isometry

19

3 23

7

3117135

37

Using the Isometry

19

3 23

7

3117135 37

Using the Isometry

19

3 23

7

3117135 37

Using the Isometry

19

3 23

7 31

17

13

5

37

Using the Isometry

19

3 23

7 31

17

13

5

Using the Isometry

19

3 23

7 31

17

13

5

37

Using the Isometry

19

3 23

7 31

17

13

5

Using the Isometry

19

3 23

7 31

17

13

5

37

Using the Isometry

19

3 23

7 31

17

13

5

37

Red/Black Tree Insertion

● Rule #1: When inserting a node, if its
parent is black, make the node red and
stop.

● Justifcation: This simulates inserting a
key into an existing 2-node or 3-node.

Using the Isometry

19

3 23

7 31

17

13

5

37

Using the Isometry

19

3 23

7

3117135 37

Using the Isometry

19

3 23

7

3117135 37

4

Using the Isometry

19

3 23

7

3117135 374

Using the Isometry

19

3 23

7

3117135 374

Using the Isometry

19

4 23

7 31

17

13

5

37

3

Using the Isometry

19

3 23

7 31

17

13

5

37

Using the Isometry

19

4 23

7 31

17

13

5

37

3

Using the Isometry

19

3 23

7 31

17

13

5

37

Using the Isometry

19

3 23

7 31

17

13

5

37

4

Using the Isometry

19

4 23

7 31

17

13

5

37

3

Using the Isometry

19

4 23

7 31

17

13

5

37

3 We need to

1. Change the colors of the
 nodes, and
2. Move the nodes around in
 the tree.

We need to

1. Change the colors of the
 nodes, and
2. Move the nodes around in
 the tree.

Tree Rotations

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

Rotate Left

3

5

4

3 5

4

3

5

4

3 5

4

apply
rotation

change
colors

 apply
 rotation

This applies any time we're
inserting a new node into
the middle of a “3-node.”

By making observations like
these, we can determine

how to update a red/black
tree after an insertion.

This applies any time we're
inserting a new node into
the middle of a “3-node.”

By making observations like
these, we can determine

how to update a red/black
tree after an insertion.

Using the Isometry

19

3 23

7 31

17

13

5

37

Using the Isometry

19

3 23

7 31

17

13

5

37

4

Using the Isometry

19

3 23

7 31

17

13

5

37

4

Using the Isometry

19

3 23

7 31

17

13

5

37

4

Using the Isometry

19

3 23

7 31

17

13

5

37

4

Using the Isometry

19

3

23

7 31

17

13

5

374

Using the Isometry

19

3

23

7 31

17

13

5

374

Using the Isometry

19

3

23

7 31

17

13

5

374

15

Using the Isometry

19

3

23

7 31

17

13

5

374

15

Using the Isometry

19

3

23

7 31

17

13

5

374

15

Using the Isometry

19

3

23

7 31

17

13

5

374

15

Using the Isometry

19

3

23

7 31

17135

374 15

Using the Isometry

19

3

23

7 31

17135

374 15

Using the Isometry

19

3 23

7

3117135 374 15

Using the Isometry

19

3 23

7

3117135 374 15

16

Using the Isometry

19

3 23

7

3117135 374 15 16

Using the Isometry

19

3 23

7

3117135 374

15

16

Using the Isometry

19

3 23

7

3117135 374

15

16

Using the Isometry

19

3 23

7

3117135 374

15

16

Using the Isometry

19

3 23

7

3117135 374

15

16

Two steps:

1. Split the “5-node” into a “2-node” and
 a “3-node.”
2. Insert the new parent of the two nodes
 into the parent node.

Two steps:

1. Split the “5-node” into a “2-node” and
 a “3-node.”
2. Insert the new parent of the two nodes
 into the parent node.

1713

15

16

1713 15 16

1713

15

16
1713

15

16

change
colors

Using the Isometry

19

3

23

7 31

17135

374 15

Using the Isometry

19

3

23

7 31

17135

374 15

16

Using the Isometry

19

3

23

7 31

17135

374 15

16

Using the Isometry

19

3

23

7 31

17135

374 15

16

Using the Isometry

19

3

23
7

31

17

13

5

37

4

15

16

Using the Isometry

19

3

23
7

31

17

13

5

37

4

15

16

Using the Isometry

19

3 23

7

311713

5 37

4

15

16

Using the Isometry

19

3 23

7

311713

5 37

4

15

16

Building Up Rules

● All of the crazy insertion rules on red/black trees
make perfect sense if you connect it back to 2-3-4
trees.

● There are lots of cases to consider because there
are many diferent ways you can insert into a
red/black tree.

● Main point: Simulating the insertion of a key into
a node takes time O(1) in all cases. Therefore,
since 2-3-4 trees support O(log n) insertions,
red/black trees support O(log n) insertions.

● The same is true of deletions.

My Advice

● Do know how to do B-tree insertions and deletions.

● You can derive these easily if you remember to split and
join nodes.

● Do remember the rules for red/black trees and B-trees.

● These are useful for proving bounds and deriving results.

● Do remember the isometry between red/black trees
and 2-3-4 trees.

● Gives immediate intuition for all the red/black tree
operations.

● Don't memorize the red/black rotations and color fips.

● This is rarely useful. If you're coding up a red/black tree,
just fip open CLRS and translate the pseudocode. ☺

Next Time

● Augmented Trees
● Building data structures on top of balanced

BSTs.
● Splitting and Joining Trees

● Two powerful operations on balanced trees.

