

Balanced Trees
Part One

Balanced Trees

● Balanced search trees are among the most
useful and versatile data structures.

● Many programming languages ship with a
balanced tree library.
● C++: std::map / std::set
● Java: TreeMap / TreeSet
● Python: OrderedDict

● Many advanced data structures are layered on
top of balanced trees.
● We'll see them used to build y-Fast Tries later in

the quarter. (They’re really cool, trust me!)

Where We're Going

● B-Trees
● A simple type of balanced tree developed for

block storage.
● Red/Black Trees

● The canonical balanced binary search tree.
● Augmented Search Trees

● Adding extra information to balanced trees to
supercharge the data structure.

● Two Advanced Operations
● The split and join operations.

Outline for Today

● BST Review
● Refresher on basic BST concepts and runtimes.

● Overview of Red/Black Trees
● What we're building toward.

● B-Trees and 2-3-4- Trees
● A simple balanced tree in depth.

● Intuiting Red/Black Trees
● A much better feel for red/black trees.

A Quick BST Review

Binary Search Trees

● A binary search tree is a binary tree with the
following properties:

● Each node in the BST stores a key, and optionally,
some auxiliary information.

● The key of every node in a BST is strictly greater
than all keys to its left and strictly smaller than all
keys to its right.

● The height of a binary search tree is the length of
the longest path from the root to a leaf, measured
in the number of edges.

● A tree with one node has height 0.
● A tree with no nodes has height -1, by convention.

Runtime Analysis

● The time complexity of all these operations
is O(h), where h is the height of the tree.
● Represents the longest path we can take.

● In the best case, h = O(log n) and all
operations take time O(log n).

● In the worst case, h = Θ(n) and some
operations will take time Θ(n).

● Challenge: How do you eficiently keep
the height of a tree low?

A Glimpse of Red/Black Trees

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

110

107

106

166

161 261

140

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

53

31

59 97

58

26 41

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

53

31

59 97

58

26 41

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

5

2

8

7

1 4

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

5

2

8

7

1 4

Red/Black Trees

● Theorem: Any red/black tree with n
nodes has height O(log n).
● We could prove this now, but there's a much

simpler proof of this we'll see later on.
● Given a fxed red/black tree, lookups can

be done in time O(log n).

Mutating Red/Black Trees

17

3 11 23 37

7 31

13
What are we

supposed to do with
this new node?

What are we
supposed to do with

this new node?

Mutating Red/Black Trees

17

3 11 23 37

7 31

Mutating Red/Black Trees

17

3 11 23

7 37

How do we fx up the
black-height property?

How do we fx up the
black-height property?

Fixing Up Red/Black Trees

● The Good News: After doing an insertion or
deletion, can locally modify a red/black tree in
time O(log n) to fx up the red/black properties.

● The Bad News: There are a lot of cases to
consider and they're not trivial.

● Some questions:
● How do you memorize / remember all the

diferent types of rotations?
● How on earth did anyone come up with

red/black trees in the frst place?

B-Trees

Generalizing BSTs

● In a binary search tree, each node stores a single key.

● That key splits the “key space” into two pieces, and
each subtree stores the keys in those halves.

2

-1 4

-2 0 63

Values less than two Values greater than two

Generalizing BSTs

● In a multiway search tree, each node stores an
arbitrary number of keys in sorted order.

● In a node with k keys splits the “key space” into
k + 1 pieces, and each subtree stores the keys in
those pieces.

2

43

5 19 31 71 83

3 7 11 13 17 23 29 37 41 47 53 67 73 79 89 9759 61

46

45

One Solution: B-Trees
● A B-tree of order b is a multiway search tree with the following

properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root node has been 1 and 2b – 1 keys.

● All root-null paths through the tree pass through the same number of nodes.

2

43

5 19 31 71 83

3 7 11 13 17 23 29 37 41 47 53 67 73 79 89 9759 61

B-tree of
order 3

B-tree of
order 3

One Solution: B-Trees

B-tree of
order 7

B-tree of
order 7

1 3 6 10 11 14 19 20 21 23 24 28 29 33 44 48 57 62 77 91

16 36

● A B-tree of order b is a multiway search tree with the following
properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root node has been 1 and 2b – 1 keys.

● All root-null paths through the tree pass through the same number of nodes.

2-3-4 Trees

1 2 4 6 7 8 10 12 14 15 17 18 19 21 22 24 26

3 9 11 16 20 25

5 13 23

● A 2-3-4 tree is a B-tree of order 2. The rules for 2-3-4 trees are really
simple:

● All leaf nodes are stored at the same depth.

● All nodes have between 1 and 3 keys (between 2 and 4 children).

● All root-null paths through the tree pass through the same number of
nodes.

● These fellas will make a number of appearances later on. Stay tuned!

The Tradeof

● Because B-tree nodes can have multiple
keys, when performing a search,
insertion, or deletion, we have to spend
more work inside each node.

● Insertion and deletion can be expensive –
for large b, we might have to shufe
thousands or millions of keys over!

● Why would you use a B-tree?

Memory Tradeofs

● There is an enormous tradeof between speed and size
in memory.

● SRAM (the stuf registers are made of) is fast but very
expensive:

● Can keep up with processor speeds in the GHz.
● As of 2010, cost is $5/MB. (Anyone know a good source

for a more recent price?)
● Good luck buying 1TB of the stuf!

● Hard disks are cheap but very slow:

● As of 2018, you can buy a 4TB hard drive for about $100.
● As of 2018, good disk seek times for magnetic drives are

measured in ms (about two to four million times slower
than a processor cycle!)

The Memory Hierarchy

● Idea: Try to get the best of all worlds by
using multiple types of memory.

256B - 8KB

16KB – 64KB

1MB - 4MB

4GB – 256GB

1TB+

Lots

0.25 – 1ns

1ns – 5ns

5ns – 25ns

25ns – 100ns

3 – 10ms

10 – 2000ms

L2 Cache

Main Memory

Hard Disk

Network (The Cloud)

Registers

L1 Cache

Why B-Trees?

● Because B-trees have a huge branching factor, they're
great for on-disk storage.

● Disk block reads/writes are glacially slow.
● The high branching factor minimizes the number of blocks

to read during a lookup.
● Extra work scanning inside a block ofset by these

savings.

● Major use cases for B-trees and their variants (B+-trees,
H-trees, etc.) include

● databases (huge amount of data stored on disk);
● file systems (ext4, N4T,S, Re,S); and, recently,
● in-memory data structures (due to cache efects).

The Height of a B-Tree

● What is the maximum possible height of a B-tree of
order b?

1

b – 1

b – 1 b – 1

b – 1 b – 1

…

…… …

b – 1

b – 1 b – 1

b – 1 b – 1

…

…… …

1

2(b - 1)

2b(b - 1)

2b2(b - 1)

2bh-1(b - 1)

…

b – 1 b – 1 b – 1…

…

The Height of a B-Tree

● Theorem: The maximum height of a B-tree of order
b containing n nodes is logb ((n + 1) / 2).

● Proof: N4umber of nodes n in a B-tree of height h is
guaranteed to be at least

= 1 + 2(b – 1) + 2b(b – 1) + 2b2(b – 1) + … + 2bh-1(b – 1)

= 1 + 2(b – 1)(1 + b + b2 + … + bh-1)

= 1 + 2(b – 1)((bh – 1) / (b – 1))

= 1 + 2(bh – 1) = 2bh – 1.

Solving n = 2bh – 1 yields h = logb ((n + 1) / 2). ■

● Corollary: B-trees of order b have height Θ(logb n).

● Doing a search in a B-tree involves
● searching the root node for the key, and
● if it's not found, recursively exploring the correct child.

● Using binary search within a given node, can find the key or
the correct child in time O(log number-of-keys).

● Repeat this process O(tree-height) times.
● Time complexity is

 = O(log number-of-keys · tree-height)

 = O(log b · logb n)

 = O(log b · (log n / log b))

 = O(log n)
● Requires reading O(logb n) blocks; this more directly

accounts for the total runtime.

Searching in a B-Tree

Searching in a B-Tree

● Doing a search in a B-tree involves
● searching the root node for the key, and
● if it's not found, recursively exploring the correct child.

● Using binary search within a given node, can find the key or
the correct child in time O(log number-of-keys).

● Repeat this process O(tree-height) times.
● Time complexity is

 = O(log number-of-keys · tree-height)

 = O(log b · logb n)

 = O(log b · (log n / log b))

 = O(log n)
● Requires reading O(logb n) blocks; this more directly

accounts for the total runtime.

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

61

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612 3

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 21 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 31

41

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

21

The Trickier Cases

● What happens if you insert a key into a node that's
too full?

● Idea: Split the node in two and propagate upward.

● Here's a 2-3-4 tree (each node has 1 to 3 keys).

1 6

11 31

16 91

86

26 36 81

56

56

51

46

76

71

66

612

3

21

41 Note: B-trees grow
upward, not downward.

Note: B-trees grow
upward, not downward.

Inserting into a B-Tree

● To insert a key into a B-tree:
● Search for the key, insert at the last-visited leaf node.
● If the leaf is too big (contains 2b keys):

– Split the node into two nodes of size b each.
– Remove the largest key of the first block and make it the

parent of both blocks.
– Recursively add that node to the parent, possibly triggering

more upward splitting.

● Time complexity:
● O(b) work per level and O(logb n) levels.

● Total work: O(b logb n)

● In terms of blocks read: O(logb n)

The Trickier Cases

? 36

46

31 41 61

56

51

● How do you delete from a leaf that has only b – 1
keys?

● Idea: Steal keys from an adjacent nodes, or merge
the nodes if both are empty.

● Again, a 2-3-4 tree:

21 26

Deleting from a B-Tree

● If not in a leaf, replace the key with its successor from a leaf
and delete out of a leaf.

● To delete a key from a node:

● If the node has more than b – 1 keys, or if the node is the root,
just remove the key.

● Otherwise, find a sibling node whose shared parent is p.

● If that sibling has more than b – 1 keys, move the max/min key
from that sibling into p's place and p down into the current
node, then remove the key.

● Otherwise, fuse the node and its sibling into a single node by
adding p into the block, then recursively remove p from the
parent node.

● Work done is O(b logb n): O(b) work per level times
O(logb n) total levels. Requires O(logb n) block reads/writes.

Time-Out for Announcements!

Problem Sets

● Problem Set One solutions are now
available up on the course website.
● We’re working on getting them graded – stay

tuned!
● Problem Set Two is due next Tuesday.

● Have questions? Ask them on Piazza or stop
by our ofice hours!

Back to CS166!

So... red/black trees?

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

110

107

106

166

161 261

140

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

110

107106

166

161 261140

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

19

3

11

23 37

7 31

17

13

Red/Black Trees

● A red/black tree is a
BST with the
following properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

19

3 11 23 37

7

311713

Data Structure Isometries

● Red/black trees are an isometry of 2-3-4
trees; they represent the structure of 2-3-4
trees in a diferent way.

● Many data structures can be designed and
analyzed in the same way.

● Huge advantage: Rather than memorizing
a complex list of red/black tree rules, just
think about what the equivalent operation
on the corresponding 2-3-4 tree would be
and simulate it with color fips and rotations.

The Height of a Red/Black Tree

Theorem: Any red/black tree with n nodes has
height O(log n).

Proof: Contract all red nodes into their
parent nodes to convert the red/black
tree into a 2-3-4 tree. This decreases
the height of the tree by at most a
factor of two. The resulting 2-3-4 tree has
height O(log n), so the original red/black
tree has height 2 · O(log n) = O(log n). ■

Exploring the Isometry

● Nodes in a 2-3-4 tree are classifed into
types based on the number of children
they can have.
● 2-nodes have one key (two children).
● 3-nodes have two keys (three children).
● 4-nodes have three keys (four children).

● How might these nodes be represented?

Exploring the Isometry

k₁

k₁ k₂

k₁ k₂ k₃

k₁

k₁

k₂ k₁

k₂

k₁ k₃

k₂

Red/Black Tree Insertion

● Rule #1: When inserting a node, if its
parent is black, make the node red and
stop.

● Justifcation: This simulates inserting a
key into an existing 2-node or 3-node.

Tree Rotations

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

Rotate Left

3

5

4

3 5

4

3

5

4

3 5

4

apply
rotation

change
colors

 apply
 rotation

This applies any time we're
inserting a new node into
the middle of a “3-node.”

By making observations like
these, we can determine

how to update a red/black
tree after an insertion.

This applies any time we're
inserting a new node into
the middle of a “3-node.”

By making observations like
these, we can determine

how to update a red/black
tree after an insertion.

1713

15

16

1713 15 16

1713

15

16
1713

15

16

change
colors

Building Up Rules

● All of the crazy insertion rules on red/black trees
make perfect sense if you connect it back to 2-3-4
trees.

● There are lots of cases to consider because there
are many diferent ways you can insert into a
red/black tree.

● Main point: Simulating the insertion of a key into
a node takes time O(1) in all cases. Therefore,
since 2-3-4 trees support O(log n) insertions,
red/black trees support O(log n) insertions.

● The same is true of deletions.

My Advice

● Do know how to do B-tree insertions and deletions.

● You can derive these easily if you remember to split and
join nodes.

● Do remember the rules for red/black trees and B-trees.

● These are useful for proving bounds and deriving results.

● Do remember the isometry between red/black trees
and 2-3-4 trees.

● Gives immediate intuition for all the red/black tree
operations.

● Don't memorize the red/black rotations and color fips.

● This is rarely useful. If you're coding up a red/black tree,
just fip open CLRS and translate the pseudocode. ☺

Next Time

● Augmented Trees
● Building data structures on top of balanced

BSTs.
● Splitting and Joining Trees

● Two powerful operations on balanced trees.

