# Balanced Trees <br> Part One 

## Balanced Trees

- Balanced search trees are among the most useful and versatile data structures.
- Many programming languages ship with a balanced tree library.
- C++: std::map / std::set
- Java: TreeMap / TreeSet
- Python: OrderedDict
- Many advanced data structures are layered on top of balanced trees.
- We'll see them used to build $y$-Fast Tries later in the quarter. (They're really cool, trust me!)


## Where We're Going

- B-Trees
- A simple type of balanced tree developed for block storage.
- Red/Black Trees
- The canonical balanced binary search tree.
- Augmented Search Trees
- Adding extra information to balanced trees to supercharge the data structure.
- Two Advanced Operations
- The split and join operations.


## Outline for Today

- BST Review
- Refresher on basic BST concepts and runtimes.
- Overview of Red/Black Trees
- What we're building toward.
- B-Trees and 2-3-4- Trees
- A simple balanced tree in depth.
- Intuiting Red/Black Trees
- A much better feel for red/black trees.


## A Quick BST Review

## Binary Search Trees

- A binary search tree is a binary tree with the following properties:
- Each node in the BST stores a key, and optionally, some auxiliary information.
- The key of every node in a BST is strictly greater than all keys to its left and strictly smaller than all keys to its right.
- The height of a binary search tree is the length of the longest path from the root to a leaf, measured in the number of edges.
- A tree with one node has height 0 .
- A tree with no nodes has height -1 , by convention.


## Runtime Analysis

- The time complexity of all these operations is $\mathrm{O}(h)$, where $h$ is the height of the tree.
- Represents the longest path we can take.
- In the best case, $h=\mathrm{O}(\log n)$ and all operations take time $O(\log n)$.
- In the worst case, $h=\Theta(n)$ and some operations will take time $\Theta(n)$.
- Challenge: How do you efficiently keep the height of a tree low?

A Glimpse of Red/Black Trees

## Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.



## Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.


## Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.


## Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in
 the tree passes through the same number of black nodes.


## Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.


## Red/Black Trees

- Theorem: Any red/black tree with $n$ nodes has height $O(\log n)$.
- We could prove this now, but there's a much simpler proof of this we'll see later on.
- Given a fixed red/black tree, lookups can be done in time $\mathrm{O}(\log n)$.


## Mutating Red/Black Trees



## Mutating Red/Black Trees



## Mutating Red/Black Trees



How do we fix up the black-height property?

## Fixing Up Red/Black Trees

- The Good News: After doing an insertion or deletion, can locally modify a red/black tree in time $\mathrm{O}(\log n)$ to fix up the red/black properties.
- The Bad News: There are a lot of cases to consider and they're not trivial.
- Some questions:
- How do you memorize / remember all the different types of rotations?
- How on earth did anyone come up with red/black trees in the first place?

B-Trees

## Generalizing BSTs

- In a binary search tree, each node stores a single key.
- That key splits the "key space" into two pieces, and each subtree stores the keys in those halves.


Values less than two
Values greater than two

## Generalizing BSTs

- In a multiway search tree, each node stores an arbitrary number of keys in sorted order.

- In a node with $k$ keys splits the "key space" into $k+1$ pieces, and each subtree stores the keys in those pieces.


## One Solution: B-Trees

- A B-tree of order $\boldsymbol{b}$ is a multiway search tree with the following properties:
- All leaf nodes are stored at the same depth.
- All non-root nodes have between $b-1$ and $2 b-1$ keys.
- The root node has been 1 and $2 b-1$ keys.
- All root-null paths through the tree pass through the same number of nodes.



## One Solution: B-Trees

- A B-tree of order $\boldsymbol{b}$ is a multiway search tree with the following properties:
- All leaf nodes are stored at the same depth.
- All non-root nodes have between $b-1$ and $2 b-1$ keys.
- The root node has been 1 and $2 b-1$ keys.
- All root-null paths through the tree pass through the same number of nodes.



## B-tree of order 7

## 2-3-4 Trees

- A 2-3-4 tree is a B-tree of order 2. The rules for 2-3-4 trees are really simple:
- All leaf nodes are stored at the same depth.
- All nodes have between 1 and 3 keys (between 2 and 4 children).
- All root-null paths through the tree pass through the same number of nodes.
- These fellas will make a number of appearances later on. Stay tuned!



## The Tradeoff

- Because B-tree nodes can have multiple keys, when performing a search, insertion, or deletion, we have to spend more work inside each node.
- Insertion and deletion can be expensive for large $b$, we might have to shuffle thousands or millions of keys over!
- Why would you use a B-tree?


## Memory Tradeoffs

- There is an enormous tradeoff between speed and size in memory.
- SRAM (the stuff registers are made of) is fast but very expensive:
- Can keep up with processor speeds in the GHz.
- As of 2010, cost is \$5/MB. (Anyone know a good source for a more recent price?)
- Good luck buying 1TB of the stuff!
- Hard disks are cheap but very slow:
- As of 2018, you can buy a 4TB hard drive for about $\$ 100$.
- As of 2018, good disk seek times for magnetic drives are measured in ms (about two to four million times slower than a processor cycle!)


## The Memory Hierarchy

- Idea: Try to get the best of all worlds by using multiple types of memory.

| Registers | $256 \mathrm{~B}-8 \mathrm{~KB}$ | $0.25-1 \mathrm{~ns}$ |
| :---: | :---: | :---: | :---: |
| L1 Cache | $16 \mathrm{~KB}-64 \mathrm{~KB}$ | $1 \mathrm{~ns}-5 \mathrm{~ns}$ |
| L2 Cache | $1 \mathrm{MB}-4 \mathrm{MB}$ | $5 \mathrm{~ns}-25 \mathrm{~ns}$ |
| Main Memory | $4 \mathrm{~GB}-256 \mathrm{~GB}$ | $25 \mathrm{~ns}-100 \mathrm{~ns}$ |
| Hard Disk | $1 \mathrm{~TB}+$ | $3-10 \mathrm{~ms}$ |
| Network (The Cloud) | Lots | $10-2000 \mathrm{~ms}$ |

## Why B-Trees?

- Because B-trees have a huge branching factor, they're great for on-disk storage.
- Disk block reads/writes are glacially slow.
- The high branching factor minimizes the number of blocks to read during a lookup.
- Extra work scanning inside a block offset by these savings.
- Major use cases for B-trees and their variants (B+-trees, H-trees, etc.) include
- databases (huge amount of data stored on disk);
- file systems (ext4, NTFS, ReFS); and, recently,
- in-memory data structures (due to cache effects).


## The Height of a B-Tree

- What is the maximum possible height of a B-tree of order $b$ ?



## The Height of a B-Tree

- Theorem: The maximum height of a B-tree of order $b$ containing $n$ nodes is $\log _{b}((n+1) / 2)$.
- Proof: Number of nodes $n$ in a B-tree of height $h$ is guaranteed to be at least

$$
\begin{aligned}
& 1+2(\boldsymbol{b}-\mathbf{1})+2 \boldsymbol{b}(\boldsymbol{b}-\mathbf{1})+2 \boldsymbol{b}^{2}(\boldsymbol{b}-\mathbf{1})+\ldots+2 \boldsymbol{b}^{h-1}(\boldsymbol{b}-\mathbf{1}) \\
= & 1+2(\boldsymbol{b}-\mathbf{1})\left(1+\boldsymbol{b}+\boldsymbol{b}^{2}+\ldots+\boldsymbol{b}^{h-1}\right) \\
= & 1+2(\boldsymbol{b}-\mathbf{1})\left(\left(\boldsymbol{b}^{h}-1\right) /(\boldsymbol{b}-\mathbf{1})\right) \\
= & 1+2\left(\boldsymbol{b}^{h}-1\right)=2 \boldsymbol{b}^{h}-1 .
\end{aligned}
$$

Solving $n=2 b^{h}-1$ yields $h=\log _{b}((n+1) / 2)$. $\square$

- Corollary: B-trees of order $b$ have height $\Theta\left(\log _{b} n\right)$.


## Searching in a B-Tree

- Doing a search in a B-tree involves
- searching the root node for the key, and
- if it's not found, recursively exploring the correct child.



## Searching in a B-Tree

- Doing a search in a B-tree involves
- searching the root node for the key, and
- if it's not found, recursively exploring the correct child.
- Using binary search within a given node, can find the key or the correct child in time O(log number-of-keys).
- Repeat this process $\mathrm{O}($ tree-height) times.
- Time complexity is

$$
\begin{aligned}
& \mathrm{O}(\log \text { number-of-keys } \cdot \text { tree-height }) \\
= & \mathrm{O}\left(\log b \cdot \log _{b} n\right) \\
= & \mathrm{O}(\log b \cdot(\log n / \log b)) \\
= & \mathbf{O}(\log \boldsymbol{n})
\end{aligned}
$$

- Requires reading $\mathbf{O}\left(\mathbf{l o g}_{\boldsymbol{b}} \boldsymbol{n}\right)$ blocks; this more directly accounts for the total runtime.


## The Trickier Cases

- What happens if you insert a key into a node that's too full?
- Idea: Split the node in two and propagate upward.
- Here's a 2-3-4 tree (each node has 1 to 3 keys).



## The Trickier Cases

- What happens if you insert a key into a node that's too full?
- Idea: Split the node in two and propagate upward.
- Here's a 2-3-4 tree (each node has 1 to 3 keys).



## The Trickier Cases

- What happens if you insert a key into a node that's too full?
- Idea: Split the node in two and propagate upward.
- Here's a 2-3-4 tree (each node has 1 to 3 keys).



## The Trickier Cases

- What happens if you insert a key into a node that's too full?
- Idea: Split the node in two and propagate upward.
- Here's a 2-3-4 tree (each node has 1 to 3 keys).



## The Trickier Cases

- What happens if you insert a key into a node that's too full?
- Idea: Split the node in two and propagate upward.
- Here's a 2-3-4 tree (each node has 1 to 3 keys).



## Inserting into a B-Tree

- To insert a key into a B-tree:
- Search for the key, insert at the last-visited leaf node.
- If the leaf is too big (contains $2 b$ keys):
- Split the node into two nodes of size $b$ each.
- Remove the largest key of the first block and make it the parent of both blocks.
- Recursively add that node to the parent, possibly triggering more upward splitting.
- Time complexity:
- $\mathrm{O}(b)$ work per level and $\mathrm{O}\left(\log _{b} n\right)$ levels.
- Total work: $\mathbf{O}\left(\boldsymbol{b} \log _{b} \boldsymbol{n}\right)$
- In terms of blocks read: $\mathbf{O}\left(\log _{b} \boldsymbol{n}\right)$


## The Trickier Cases

- How do you delete from a leaf that has only b-1 keys?
- Idea: Steal keys from an adjacent nodes, or merge the nodes if both are empty.
- Again, a 2-3-4 tree:



## Deleting from a B-Tree

- If not in a leaf, replace the key with its successor from a leaf and delete out of a leaf.
- To delete a key from a node:
- If the node has more than $b-1$ keys, or if the node is the root, just remove the key.
- Otherwise, find a sibling node whose shared parent is $p$.
- If that sibling has more than $b-1$ keys, move the max/min key from that sibling into $p$ 's place and $p$ down into the current node, then remove the key.
- Otherwise, fuse the node and its sibling into a single node by adding $p$ into the block, then recursively remove $p$ from the parent node.
- Work done is $\mathbf{O}\left(\boldsymbol{b} \log _{\boldsymbol{b}} \boldsymbol{n}\right): ~ O(b)$ work per level times $\mathrm{O}\left(\log _{b} n\right)$ total levels. Requires $\mathbf{O}\left(\log _{b} \mathbf{n}\right)$ block reads/writes.


## Time-Out for Announcements!

## Problem Sets

- Problem Set One solutions are now available up on the course website.
- We're working on getting them graded - stay tuned!
- Problem Set Two is due next Tuesday.
- Have questions? Ask them on Piazza or stop by our office hours!

Back to CS166!

## So... red/black trees?

## Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.



## Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.


## Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes



## Red/Black Trees

- A red/black tree is a BST with the following properties:
- Every node is either 3 red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.


## Data Structure Isometries

- Red/black trees are an isometry of 2-3-4 trees; they represent the structure of 2-3-4 trees in a different way.
- Many data structures can be designed and analyzed in the same way.
- Huge advantage: Rather than memorizing a complex list of red/black tree rules, just think about what the equivalent operation on the corresponding 2-3-4 tree would be and simulate it with color flips and rotations.


## The Height of a Red/Black Tree

Theorem: Any red/black tree with $n$ nodes has height $\mathrm{O}(\log n)$.
Proof: Contract all red nodes into their parent nodes to convert the red/black tree into a 2-3-4 tree. This decreases the height of the tree by at most a factor of two. The resulting 2-3-4 tree has height $\mathrm{O}(\log n)$, so the original red/black tree has height $2 \cdot \mathrm{O}(\log n)=\mathrm{O}(\log n)$.

## Exploring the Isometry

- Nodes in a 2-3-4 tree are classified into types based on the number of children they can have.
- 2-nodes have one key (two children).
- 3-nodes have two keys (three children).
- 4-nodes have three keys (four children).
- How might these nodes be represented?


## Exploring the Isometry



## Red/Black Tree Insertion

- Rule \#1: When inserting a node, if its parent is black, make the node red and stop.
- Justification: This simulates inserting a key into an existing 2-node or 3-node.



## Tree Rotations





## Building Up Rules

- All of the crazy insertion rules on red/black trees make perfect sense if you connect it back to 2-3-4 trees.
- There are lots of cases to consider because there are many different ways you can insert into a red/black tree.
- Main point: Simulating the insertion of a key into a node takes time O(1) in all cases. Therefore, since 2-3-4 trees support $O(\log n)$ insertions, red/black trees support $\mathrm{O}(\log n)$ insertions.
- The same is true of deletions.


## My Advice

- Do know how to do B-tree insertions and deletions.
- You can derive these easily if you remember to split and join nodes.
- Do remember the rules for red/black trees and B-trees.
- These are useful for proving bounds and deriving results.
- Do remember the isometry between red/black trees and 2-3-4 trees.
- Gives immediate intuition for all the red/black tree operations.
- Don't memorize the red/black rotations and color flips.
- This is rarely useful. If you're coding up a red/black tree, just flip open CLRS and translate the pseudocode. ©


## Next Time

- Augmented Trees
- Building data structures on top of balanced BSTs.
- Splitting and Joining Trees
- Two powerful operations on balanced trees.

