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Part Two



  

Outline for Today

● Recap from Last Time
● Review of B-trees, 2-3-4 trees, and red/black trees.

● Order Statistic Trees
● BSTs with indexing.

● Augmented Binary Search Trees
● Building new data structures out of old ones.

● Dynamic 1D Closest Points
● Applications to hierarchical clustering.

● Join and Split Operations
● Two powerful BST primitives.



  

Review from Last Time



  

B-Trees

B-tree of order 2
(2-3-4 Tree)

B-tree of order 2
(2-3-4 Tree)
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● A B-tree of order b is a multiway search tree with the following 
properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root has at most 2b – 1 keys.

● All root-null paths pass through the same number of nodes.



  

Red/Black Trees

● A red/black tree is a 
BST with the 
following properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
through the same 
number of black nodes.
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Data Structure Isometries

● Red/black trees are an isometry of 2-3-4 
trees; they represent the structure of
2-3-4 trees in a diferent way.

● Accordingly, red/black trees have height 
O(log n).

● After inserting or deleting an element 
from a red/black tree, the tree invariants 
can be fxed up in time O(log n) by 
applying rotations and color fips that 
simulate a 2-3-4 tree.



  

Tree Rotations
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New Stuf!



  

Dynamic Problems



  

Dynamic Problems

● The “classic” algorithms model goes something like this:

Given some input X, compute some interesting 
function f(X).

● This assumes that X is specifed up-front and doesn’t 
change over time.

● These questions typically become more interesting when 
they’re made dynamic and the model looks more like this:

Given some input X that changes over time, maintain 
a data structure that makes it easy to compute f(X) at 

any instant in time.
● Many data structures can essentially be thought of as 

solutions to dynamic versions of classical algorithms 
problems.



  

Dynamic Order Statistics



  

Order Statistics

● In a set S of totally ordered values, the kth order 
statistic is the kth smallest value in the set.

● The 0th order statistic is the minimum value.
● The 1st order statistic is the second-smallest value.
● The (n – 1)st order statistic is the maximum value.

● In the static case (when the data set is given to you in 
advance), algorithms like quickselect and median-of-
medians give (possibly randomized) O(n)-time solutions 
to order statistics.

● Goal: Solve this problem eficiently when the data set 
is changing – that is, the underlying set of elements can 
have insertions and deletions intermixed with queries.



  

Finding Order Statistics
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Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

5

6

7

8

9

11

1094

Problem: After inserting a 
new value, we may have to 
update Θ(n) values.

Problem: After inserting a 
new value, we may have to 
update Θ(n) values.



  

An Observation

● The exact index of each number is a 
global property of the tree.
● Depends on all other nodes and their 

positions.
● Could we fnd a local property that lets 

us fnd order statistics?
● That is, something that depends purely on 

nearby nodes.



  

Finding Order Statistics
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If new nodes are added to the 
left subtree, these numbers 
don't need to be updated.

If new nodes are added to the 
left subtree, these numbers 
don't need to be updated.



  

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

0

1

2

4

3



  

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

0

1

2

4

3



  

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

0

1

2

1

0



  

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

0

1

2

1

0



  

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0



  

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

Each node is annotated 
with the number of 

children in its left subtree.

Each node is annotated 
with the number of 

children in its left subtree.



  

Finding Order Statistics
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Finding Order Statistics
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Finding Order Statistics
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Finding Order Statistics
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Since the number just holds the number 
of nodes in its left subtree, we only need 

to increment the value for nodes that 
have the new node in its left subtree.

Since the number just holds the number 
of nodes in its left subtree, we only need 

to increment the value for nodes that 
have the new node in its left subtree.
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Rotations and Order Statistics

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right



  

Rotations and Order Statistics

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

na

nb



  

Rotations and Order Statistics

B

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

na

nb

A



  

Rotations and Order Statistics

B

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

na

nb na

A



  

Rotations and Order Statistics

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

na

nb na



  

Rotations and Order Statistics

B

A

>B

<A >A
<B

A

>B

<A

>A
<B

Rotate Right

na

nb na

B



  

Rotations and Order Statistics

B

A

>B

<A >A
<B

A

>B

<A

>A
<B

Rotate Right

na

nb na

Bnb – na – 1



  

Rotations and Order Statistics

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

na

nb na

nb – na – 1



  

Rotations and Order Statistics



  

Rotations and Order Statistics

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Left



  

Rotations and Order Statistics

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Left

nb

na



  

Rotations and Order Statistics

B

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Left

nb

na

A



  

Rotations and Order Statistics

B

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Left

nb

na

Ana



  

Rotations and Order Statistics

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Left

nb

na

na



  

Rotations and Order Statistics

B

A

>B

<A >A
<B

A

>B

<A

>A
<B

Rotate Left

nb

na

Bna



  

Rotations and Order Statistics

B

A

>B

<A >A
<B

A

>B

<A

>A
<B

Rotate Left

nb

na

B

nb + na + 1

na



  

Rotations and Order Statistics

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Left

nb

na

na

nb + na + 1



  

Finding Order Statistics
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Order Statistic Trees

● The tree we just saw is called an order 
statistics tree.

● Structurally, it's a red/black tree where each 
node a count of the nodes in the left subtree.

● Only O(log n) values must be updated on an 
insertion or deletion and each can be 
updated in time O(1).

● Supports all BST operations plus select 
(fnd kth order statistic) and rank (tell index 
of value) in time O(log n).



  

Generalizing our Idea



  

The General Pattern

● This data structure works in the appropriate 
time bounds because values only change on 
an insertion or deletion
● along the root-leaf access path, and
● during rotations.

● Red/black trees have height O(log n) and 
require only O(log n) rotations per insertion 
or deletion.

● We can augment red/black trees with any 
attributes we'd like as long as they obey 
these properties.



  

Augmented Red/Black Trees

● Let f(node) be a function with the following properties:

● f can be computed in time O(1).
● f can be computed at a node based purely on that 

node's key and the values of f computed at node's 
children.

● Theorem: The values of f can be cached in the nodes 
of a red/black tree without changing the asymptotic 
runtime of insertions or deletions.

● Proof sketch: After inserting or deleting a node, the 
only values that need to change are along the root-leaf 
access path, plus values at nodes that were rotated. 
There are only O(log n) of these.



  

Augmented Red/Black Trees

f can be computed at a node based purely on the key in that node 
and the values of f in it that node's children.
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Augmented Red/Black Trees

f can be computed at a node based purely on the key in that node 
and the values of f in it that node's children.



  

Order Statistics

● Note: The approach we took for building order 
statistic trees does not fall into this framework.

● Example: The values below denote the number 
of nodes in the indicated nodes' left subtrees. 
What is the correct value of x?

137 42

x



  

Order Statistics via Augmentation

● Have each node store two quantities:

● numLeft, the number of nodes in the left subtree.
● numRight, the number of nodes in the right subtree.

● Can compute this information at a node in time O(1) 
based on subtree values:

● n.numLeft = n.left.numLeft + n.left.numRight + 1
● n.numRight = n.right.numLeft + n.right.numRight + 1

● This fts into our framework, so we know that red/black 
trees can be augmented this way without needing to 
reason about tree rotations.

● Useful if we want to show feasibility; we can always 
optimize later if we need to.



  

Example: Hierarchical Clustering



  

1D Hierarchical Clustering
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This tree is called 
a dendrogram.

This tree is called 
a dendrogram.



  

Analyzing the Runtime

● How eficient is this algorithm?
● Number of rounds: Θ(n).
● Work to fnd closest pair: O(n).
● Total runtime: Θ(n2).

● Can we do better?
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Dynamic 1D Closest Points

● The dynamic 1D closest points 
problem is the following:

Maintain a set of real numbers 
undergoing insertion and deletion while 
eficiently supporting queries of the form 

“what is the closest pair of points?” 
● Can we build a better data structure for 

this?



  

Dynamic 1D Closest Points

k

max min



  

A Tree Augmentation

● Augment each node to store the following:
● The maximum value in the tree.
● The minimum value in the tree.
● The closest pair of points in the tree.

● Claim: Each of these properties can be 
computed in time O(1) from the left and right 
subtrees.

● These properties can be augmented into a 
red/black tree so that insertions and deletions 
take time O(log n) and “what is the closest pair 
of points?” can be answered in time O(1).
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        Min: ?

        Max: ?

    Closest: ?, ?
42

        Min: -17

        Max: 67

  Closest: 15, 21

271
        Min: 142

        Max: 415

Closest: 300, 310
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Dynamic 1D Closest Points
137

        Min: -17

        Max: 415

Closest: 137, 142
42

        Min: -17

        Max: 67

  Closest: 15, 21

271
        Min: 142

        Max: 415

Closest: 300, 310



  

Some Other Questions

● How would you augment this tree so that 
you can eficiently (in time O(1)) compute 
the appropriate weighted averages?

● Trickier: Is this the fastest possible 
algorithm for this problem?
● What if you’re guaranteed that the keys are 

all integers in some nice range?



  

A Helpful Intuition



  

Divide-and-Conquer

● Initially, it can be tricky to come up with the 
right tree augmentations.

● Useful intuition: Imagine you're writing a 
divide-and-conquer algorithm over the 
elements and have O(1) time per “conquer” 
step.

< k > kk
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Time-Out for Announcements!



  

Problem Sets

● Problem Set Two was due today at 2:30PM.
● With late days, the deadline is Thursday at 

2:30PM.
● Problem Set Three goes out now. It's due 

next Thursday, May 3rd, at 2:30PM.
● Explore advanced tree operations, augmented 

search trees, and data structure isometries!
● As always, feel free to ask questions on Piazza 

or to stop by ofice hours.



  

Back to CS166!



  

Joining and Splitting Trees



  

Joining Trees

● The operation join(T₁, k, T₂) takes as input

a BST T₁;

a key k, where k is greater than all keys in T₁; and

a BST T₂, where k is less than all keys in T₂; then

destructively modifes T₁ and T₂ to produce a new BST 
containing all keys in T₁ and T₂ and the key k.



  

Joining Trees

● The operation join(T₁, k, T₂) takes as input

a BST T₁;

a key k, where k is greater than all keys in T₁; and

a BST T₂, where k is less than all keys in T₂; then

destructively modifes T₁ and T₂ to produce a new BST 
containing all keys in T₁ and T₂ and the key k.

T₁ T₂
k



  

Joining Trees

● The operation join(T₁, k, T₂) takes as input

a BST T₁;
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a BST T₂, where k is less than all keys in T₂; then

destructively modifes T₁ and T₂ to produce a new BST 
containing all keys in T₁ and T₂ and the key k.
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Splitting Trees

● The operation split(T, k) takes as input

a BST T, and

a key k, then

destructively modifes BST T and forms BSTs T₁ and T₂ 
such that all keys in T₁ are less than or equal to k and 
all keys in T₂ are greater than k.

T

k



  

Splitting Trees

● The operation split(T, k) takes as input

a BST T, and

a key k, then

destructively modifes BST T and forms BSTs T₁ and T₂ 
such that all keys in T₁ are less than or equal to k and 
all keys in T₂ are greater than k.

T₁

k

T₂



  

The Runtimes

● Both of these operations can be implemented 
in time O(n) by completely rebuilding the trees 
from scratch.
● Good exercise: determine how to do this.

● Amazingly, using augmented red/black trees:
● join(T₁, k, T₂) can be made to run in time

Θ(1 + |bh₁ – bh₂|), where bh₁ and bh₂ are the 
number of black nodes on any root-null path in T₁ 
and T₂, respectively, and 

● split(T, k) can be made to run in time O(log n).
● How is this possible?



  

Joining 2-3-4 Trees

● The isometry between 2-3-4 trees and 
red/black trees is very useful here.

● Let's see how to join two 2-3-4 trees and 
a key together.

● Based on what we fnd, we'll develop an 
eficient algorithm for joining red/black 
trees.



  

Joining 2-3-4 Trees
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Joining 2-3-4 Trees

● To join(T₁, k, T₂):
● Assume that T₁ is the taller of the two trees; 

if not, do the following, but mirrored.
● Walk down the right spine of T₁ until a node 
v is found whose height is the height of T₂.

● Add k as a fnal key of v's parent with T₂ as a 
right child.

● Continue as if you were inserting k into v's 
parent – possibly split the node and 
propagate upward, etc.



  

Analyzing the Runtime

● Assume all 2-3-4 tree nodes are annotated with 
their heights.

● What is the runtime of join(T₁, k, T₂)?
● Runtime is Θ(1 + |h₁ – h₂|).

T₁
T₂

h₁
h₂

h₁ – h₂
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Joining 2-3-4 Trees

● Defne the black height of a node to 
be the number of black nodes on any 
root-null path starting at that node.

● To join(T₁, k, T₂):

● Assume that T₁ is the tree with larger 
black height; if not, do the following, 
but mirrored.

● Walk down the right spine of T₁ until a 
black node v is found whose black 
height is the black height of T₂.

● Insert a new node with key k, left child 
v, and right child T₂ 

● Make this new node the right child of 
v's old parent.

● Continue as if you had just inserted k.
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Joining 2-3-4 Trees

● Defne the black height of a node to 
be the number of black nodes on any 
root-null path starting at that node.

● To join(T₁, k, T₂):

● Assume that T₁ is the tree with larger 
black height; if not, do the following, 
but mirrored.

● Walk down the right spine of T₁ until a 
black node v is found whose black 
height is the black height of T₂.

● Insert a new node with key k, left child 
v, and right child T₂ 

● Make this new node the right child of 
v's old parent.

● Continue as if you had just inserted k.

T₂

v

k

Keep applying 
fxup rules to k.

Keep applying 
fxup rules to k.



  

Runtime Analysis

● Need to augment the red/black tree to store the black 
height of each node.

● This fts into our augmentation framework – can be 
computed from the black heights of the left and right 
children and from the node's own color.

● Via the isometry with 2-3-4 trees, the runtime is 
O(1 + |bh₁ – bh₂|).

● This is O(log n₁ + log n₂) in the worst-case.



  

Joining Two Trees

● What if you want to join two red/black 
trees but don't have a key to join them 
with?

● Delete the minimum value from the 
second tree in time O(log n), then use 
that to join the two trees.



  

Implementing split Eficiently



  

Splitting Trees is Hard

● Challenge 1: The 
split procedure 
might cut the 
existing tree into 
lots of smaller 
pieces.

Challenge 2: 
Cutting a 
red/black tree into 
two pieces doesn't 
necessarily give 
you two red/black 
trees.
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An Observation

● Suppose we want 
to perform a split 
on some key k.

● Begin by 
searching for k. 
If we fnd it, 
search for its 
inorder 
successor.

● Cut all links 
found along the 
way.
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An Observation

● Notice that 
we're left with a 
collection of 
pennants, trees 
whose roots 
have just one 
child.
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roots.

● The trees below 
them are almost 
red/black trees, 
but their roots 
might be red.

● Let's recolor all 
the roots black.



  

An Observation

● We now have a 
bunch of 
red/black trees 
hanging of of 
pennants.

● Key idea: Find 
a way to join 
these trees back 
together to form 
the two trees 
we want.



  

Fleshing Out the Algorithm
p₁

p₂

p₃

p₄

p₅

p₆

● Do a search for the inorder 
successor of k, cutting each 
link followed.

● For each pennant, color its 
child black. We now have a 
collection of red/black trees 
hanging of of random nodes.

● Categorize each hanging tree 
as of type L or type R 
depending on whether it's a 
left or right child of its 
pennant.
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● Do a search for the inorder 
successor of k, cutting each 
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● For each pennant, color its 
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Fleshing Out the Algorithm
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃ 

R₂p₆

● Observation 1: Look at any 
two consecutive L trees or R 
trees and the root of the 
pennant of the frst tree. 
Then the key in the pennant 
root is strictly between all the 
values of those two trees.
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● Observation 1: Look at any 
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trees and the root of the 
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root is strictly between all the 
values of those two trees.
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● Observation 1: Look at any 
two consecutive L trees or R 
trees and the root of the 
pennant of the frst tree. 
Then the key in the pennant 
root is strictly between all the 
values of those two trees.
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● Observation 1: Look at any 
two consecutive L trees or R 
trees and the root of the 
pennant of the frst tree. 
Then the key in the pennant 
root is strictly between all the 
values of those two trees.

● Observation 2: There are at 
most two trees of each black 
height hanging of of the 
pennants.
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Fleshing Out the Algorithm

p₁ p₂
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p₅
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All keys here are less 
than or equal to k.

All keys here are 
greater than k.
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Fleshing Out the Algorithm

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

Key idea: join all the L trees back 
together and all the R trees back 

together, using the nodes at the root of 
the pennants as the joining key. 

Because the height diferences are low, 
the runtime works out to O(log n).

Key idea: join all the L trees back 
together and all the R trees back 

together, using the nodes at the root of 
the pennants as the joining key. 

Because the height diferences are low, 
the runtime works out to O(log n).
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● Suppose there is one tree of each black height in L.
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order of black heights?
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Analyzing the Runtime

● Suppose there is one tree of each black height in L.

● What is the runtime of joining the trees in reverse 
order of black heights?

● Each join takes time O(1 + |bh₁ – bh₂|) = O(1).

● At most O(log n) joins (the access path has length 
O(log n))

● Runtime is O(log n).
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● Suppose there are trees of very diferent black heights.

● What is the runtime of joining the trees in reverse 
order of black heights?



  

Analyzing the Runtime

● Suppose there are trees of very diferent black heights.

● What is the runtime of joining the trees in reverse 
order of black heights?

0 2 5



  

Analyzing the Runtime

● Suppose there are trees of very diferent black heights.

● What is the runtime of joining the trees in reverse 
order of black heights?

0 2 5



  

Analyzing the Runtime

● Suppose there are trees of very diferent black heights.

● What is the runtime of joining the trees in reverse 
order of black heights?

2 5



  

Analyzing the Runtime

● Suppose there are trees of very diferent black heights.

● What is the runtime of joining the trees in reverse 
order of black heights?

2 5



  

Analyzing the Runtime

● Suppose there are trees of very diferent black heights.

● What is the runtime of joining the trees in reverse 
order of black heights?

6



  

Analyzing the Runtime

● Suppose there are trees of very diferent black heights.

● What is the runtime of joining the trees in reverse 
order of black heights?

● Each join takes time O(1 + bhₛ₊₁ – bhₛ)

● Summing across all joins:
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The Split Algorithm

● Split the tree into L pennants and R 
pennants, as before.

● Iterate across the pennants in ascending 
order of heights, joining each of the 
corresponding trees together using the 
pennant node as the join key. This takes time 
O(log n).

● There will be O(1) leftover pennant nodes. 
Insert them in time O(log n) into the proper 
trees.

● Net runtime: O(log n).



  

An Application: Flexible Sequences



  

Sequence Data Structures

● The two major data structures you're probably used to 
seeing for sequences are dynamic arrays and linked lists.

● In a dynamic array:
● Lookups take time O(1).
● Insertions and deletions take time O(n).
● Concatenations take time O(n).

● In a linked list:
● Lookups take time O(n).
● Insertions and deletions take time O(1) if you know where to 

insert and O(n) otherwise.
● Concatenations take time O(1).



  

Flexible Sequences

● Imagine we store a sequence as a modifed order 
statistic tree.

● We ignore the relative order of the elements and 
instead use the indices to guide BST lookups.

● Now, insertions, lookups, and deletions all take 
time O(log n).

● Armed with split and join, we can also concatenate 
and split sequences in time O(log n) each.

● After flling in the details, you can now manage a 
sequence of elements with O(log n) insertions, 
deletions, lookups, concatenations, and splits!



  

Next Time

● Amortized Analysis
● Lying about runtime costs in an honest 

manner.
● Frameworks for Amortization

● How can we think about assigning costs?
● Revisiting Earlier Structures

● Queues, Cartesian trees, and 2-3-4 trees. 


