

Amortized Analysis

Outline for Today

● Amortized Analysis
● Analyzing data structures over the long term.

● Cartesian Trees Revisited
● Why could we construct them in time O(n)?

● The Two-Stack Queue
● A simple and elegant queue implementation.

● 2-3-4 Trees
● A better analysis of 2-3-4 tree insertions and

deletions.

Two Worlds

● Data structures have diferent requirements
in diferent contexts.
● In real-time applications, each operation on a

given data structure needs to be fast and snappy.
● In long data processing pipelines, we care more

about the total time used than we do the cost of
any one operation.

● In many cases, we can get better
performance in the long-run than we can on
a per-operation basis.
● Good intuition: “economy of scale.”

Key Idea: Design data structures that
trade per-operation eficiency for

overall eficiency.

Claims We’d Like to Make

● “The total runtime of this algorithm is O(n log n),
even though there are Θ(n) steps and each step,
in the worst case, takes time Θ(n).”

● “If you perform m operations on this data
structure, although each operation could take
time Θ(n), the average cost of an operation is
O(1).”

● “Operations on this data structure can take up to
Θ(n2) time to complete, but if you pretend that
each operation takes time O(log n), you’ll never
overestimate the total amount of work done.”

What We Need

● First, we need a mathematical framework
for analyzing algorithms and data structures
when the costs of individual operations vary.

● Next, we need a set of design techniques
for building data structures that nicely ft
into this framework.

● Today is mostly about the frst of these
ideas. We’ll explore design techniques all
next week.

Amortized Analysis

The Goal

● Suppose we have a data structure and perform
a series of m operations op₁, op₂, …, opₘ.
● These operations might be the same operation, or

they might be diferent.
● Let t(opₖ) denote the time required to perform

operation opₖ.
● Goal: Bound this expression, which represents

the total runtime across all operations:

T=∑
i=1

m

t (opi)

Amortized Analysis

● An amortized analysis is a diferent way of
bounding the runtime of a sequence of operations.

● Idea: Assign to each operation opᵢ a new cost a(opᵢ),
called the amortized cost, such that the following is
true for any sequence of m operations:

∑
i=1

m

t (opi) ≤ ∑
i=1

m

a(opi)

t

a

Question: How do
you choose amortized

costs?

Question: How do
you choose amortized

costs?

Where We’re Going

● There are three standard techniques for
assigning amortized costs to operations:
● The aggregate method directly assigns each

operation its average cost.
● The banker’s method places credits on the

data structure, which are redeemable for
units of work.

● The potential method assigns a potential
function to the data structure, which can be
charged to pay for future work or released to
pay for recent work.

Where We’re Going

There are three standard techniques for
assigning amortized costs to operations:
● The aggregate method directly assigns each

operation its average cost.

The banker’s method places credits on the
data structure, which are redeemable for
units of work.

The potential method assigns a potential
function to the data structure, which can be
charged to pay for future work or released to
pay for recent work.

The Aggregate Method

● In the aggregate method, we assign each
operation a cost of

a(opᵢ) = T*(m) / m

where T*(m) is the maximum amount of work
done by any series of m operations.

● We essentially pretend that each operation’s
runtime is the the average cost of all operations
performed.

The Aggregate Method

● In the aggregate method, we assign each
operation a cost of

a(opᵢ) = T*(m) / m

where T*(m) is the maximum amount of work
done by any series of m operations.

● We essentially pretend that each operation’s
runtime is the the average cost of all operations
performed.

Cartesian Trees Revisited

Cartesian Trees

● A Cartesian tree is a binary tree derived from an
array and defned as follows:

● The empty array has an empty Cartesian tree.
● For a nonempty array, the root stores the minimum

value. Its left and right children are Cartesian trees
for the subarrays to the left and right of the
minimum.

261 268 161 167 166 14 55 22 43 116 5 3 9 7

161

261 166

167268

3

7

9

5

6

11

14

22

4355

Constructing Cartesian Trees

271 137 159 314 42

Constructing Cartesian Trees

271 137 159 314 42

271

Constructing Cartesian Trees

271 137 159 314 42

271

271

Constructing Cartesian Trees

271 137 159 314 42

271

271

137

Constructing Cartesian Trees

271 137 159 314 42

271

137

Constructing Cartesian Trees

271 137 159 314 42

271

137

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

314

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

314

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

314

314

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

314

314

42

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

31442

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

31442

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

31442

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42

42

The Runtime Analysis

● In a sequence of operations that adds n elements to a
Cartesian tree, adding an individual node to a Cartesian
tree might take time Θ(n).

● However, the net time spent adding new nodes across
the whole tree is O(n).

● Why is this?
● Every node pushed at most once.
● Every node popped at most once.
● Work done is proportional to the number of pushes and pops.
● Total runtime is O(n).

● The amortized cost of adding a node is O(n) / n = O(1).

Where We’re Going

● There are three standard techniques for
assigning amortized costs to operations:
● The aggregate method directly assigns each

operation its average cost.
● The banker’s method places credits on the

data structure, which are redeemable for
units of work.

● The potential method assigns a potential
function to the data structure, which can be
charged to pay for future work or released to
pay for recent work.

Where We’re Going

There are three standard techniques for
assigning amortized costs to operations:

The aggregate method directly assigns each
operation its average cost.

● The banker’s method places credits on the
data structure, which are redeemable for
units of work.

The potential method assigns a potential
function to the data structure, which can be
charged to pay for future work or released to
pay for recent work.

The Banker's Method

● In the banker's method, operations can place credits on the
data structure or spend credits that have already been placed.

● Placing a credit on the data structure takes time O(1).

● Spending a credit previously placed on the data structure
takes time -O(1). (Yes, that’s negative time!)

● The amortized cost of an operation is then

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● There aren’t any real credits anywhere. They’re just an
accounting trick.

t

a

+ – + + + – –

The Banker's Method

In the banker's method, operations can place credits on the
data structure or spend credits that have already been placed.

Placing a credit on the data structure takes time O(1).

Spending a credit previously placed on the data structure
takes time -O(1). (Yes, that’s negative time!)

The amortized cost of an operation is then

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● There aren’t any real credits anywhere. They’re just an
accounting trick.

t

a

+ – + + + – –

The Banker's Method

● If we never spend credits we don't have:

● The sum of the amortized costs upper-

bounds the sum of the true costs.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(addedi−removedi))

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)

= ∑
i=1

k

t (opi) + O(1)⋅netCredits

≥ ∑
i=1

k

t (opi)

The Banker's Method

● If we never spend credits we don't have:

● The sum of the amortized costs upper-

bounds the sum of the true costs.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(addedi−removedi))

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)

= ∑
i=1

k

t (opi) + O(1)⋅netCredits

≥ ∑
i=1

k

t (opi)

The Banker's Method

● If we never spend credits we don't have:

● The sum of the amortized costs upper-

bounds the sum of the true costs.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(addedi−removedi))

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)

= ∑
i=1

k

t (opi) + O(1)⋅netCredits

≥ ∑
i=1

k

t (opi)

The Banker's Method

● If we never spend credits we don't have:

● The sum of the amortized costs upper-

bounds the sum of the true costs.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(addedi−removedi))

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)

= ∑
i=1

k

t (opi) + O(1)⋅netCredits

≥ ∑
i=1

k

t (opi)

The Banker's Method

● If we never spend credits we don't have:

● The sum of the amortized costs upper-

bounds the sum of the true costs.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(addedi−removedi))

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)

= ∑
i=1

k

t (opi) + O(1)⋅netCredits

≥ ∑
i=1

k

t (opi)

Constructing Cartesian Trees

271 137 159 314 42

Constructing Cartesian Trees

271 137 159 314 42

271

Constructing Cartesian Trees

271 137 159 314 42

271

271

Constructing Cartesian Trees

271 137 159 314 42

271

271

$

Constructing Cartesian Trees

271 137 159 314 42

271

271

$

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Constructing Cartesian Trees

271 137 159 314 42

271

271

$

Constructing Cartesian Trees

271 137 159 314 42

271

271

$

137

Constructing Cartesian Trees

271 137 159 314 42

271

$

137

Constructing Cartesian Trees

271 137 159 314 42

271

137

Constructing Cartesian Trees

271 137 159 314 42

271

137

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

Work done: 1 push, 1 pop
Credits Removed: $1

Credits Added: $1

Amortized Cost: 2

Work done: 1 push, 1 pop
Credits Removed: $1

Credits Added: $1

Amortized Cost: 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314

314

$

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314

314

$

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314

314

$

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314

314

$

42

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

31442

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

31442

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

31442

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42

42

$

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42

42

$

Work done: 1 push, 3 pops
Credits Removed: $3

Credits Added: $1

Amortized Cost: 2

Work done: 1 push, 3 pops
Credits Removed: $3

Credits Added: $1

Amortized Cost: 2

The Banker's Method

● Using the banker's method, the cost of an
insertion is

 = t(op) + O(1) · (addedᵢ – removedᵢ)

 = 1 + k + O(1) · (1 – k)

 = 1 + k + 1 – k

 = 2

 = O(1)
● Each insertion has amortized cost O(1).
● Any n insertions will take time O(n).

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314

Pop 159

Pop 137

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314

Pop 159

Pop 137

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314

Pop 159

Pop 137

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314Pop 159Pop 137

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314Pop 159Pop 137

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314Pop 159Pop 137

Each operation here is being
“charged” for two units of work,

even if didn't actually do two
units of work.

Each operation here is being
“charged” for two units of work,

even if didn't actually do two
units of work.

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314

Pop 159

Pop 137

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314

Pop 159

Pop 137

$
$

$ $

$

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314

Pop 159

Pop 137
$

$ $

$

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314

Pop 159

Pop 137
$ $

$

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314Pop 159Pop 137
$

$

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314Pop 159Pop 137

$

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 42

Pop 314Pop 159Pop 137

$

Each credit placed can be used to
“move” a unit of work from one

operation to another.

Each credit placed can be used to
“move” a unit of work from one

operation to another.

An Observation

● We defned the amortized cost of an operation to
be

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● Equivalently, this is

a(opᵢ) = t(opᵢ) + O(1) · Δcreditsᵢ

● Some observations:

● It doesn't matter where these credits are placed
or removed from.

● The total number of credits added and removed
doesn't matter; all that matters is the diference
between these two.

Where We’re Going

● There are three standard techniques for
assigning amortized costs to operations:
● The aggregate method directly assigns each

operation its average cost.
● The banker’s method places credits on the

data structure, which are redeemable for
units of work.

● The potential method assigns a potential
function to the data structure, which can be
charged to pay for future work or released to
pay for recent work.

Where We’re Going

There are three standard techniques for
assigning amortized costs to operations:

The aggregate method directly assigns each
operation its average cost.

The banker’s method places credits on the
data structure, which are redeemable for
units of work.

● The potential method assigns a potential
function to the data structure, which can be
charged to pay for future work or released to
pay for recent work.

The Potential Method

● In the potential method, we defne a potential function Φ
that maps a data structure to a non-negative real value.

● Each operation may change this potential.

● If we denote by Φᵢ the potential of the data structure just before
operation i, then we can defne a(opᵢ) as

a(opᵢ) = t(opᵢ) + O(1) · (Φᵢ₊₁ – Φᵢ)

● Intuitively, operations that increase the potential have amortized
cost greater than their true cost, and operations that decrease
the potential have amortized cost less than their true cost.

t

a

+1 -1 +1 +1 0 0 -2 +1

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(Φi+1−Φi))

= ∑
i=1

k

t (opi) + O(1)⋅∑
i=1

k

(Φi+1−Φi)

= ∑
i=1

k

t (opi) + O(1)⋅(Φk+1−Φ1)

The Potential Method

● Assuming that Φᵢ₊₁ – Φ₁ ≥ 0, this means
that the sum of the amortized costs
upper-bounds the sum of the real costs.

● Typically, Φ₁ = 0, so Φᵢ₊₁ – Φ₁ ≥ 0 holds.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(Φi+1−Φi))

= ∑
i=1

k

t (opi) + O(1)⋅∑
i=1

k

(Φi+1−Φi)

= ∑
i=1

k

t (opi) + O(1)⋅(Φk+1−Φ1)

The Potential Method

● Assuming that Φᵢ₊₁ – Φ₁ ≥ 0, this means
that the sum of the amortized costs
upper-bounds the sum of the real costs.

● Typically, Φ₁ = 0, so Φᵢ₊₁ – Φ₁ ≥ 0 holds.

The Potential Method

● Assuming that Φᵢ₊₁ – Φ₁ ≥ 0, this means
that the sum of the amortized costs
upper-bounds the sum of the real costs.

● Typically, Φ₁ = 0, so Φᵢ₊₁ – Φ₁ ≥ 0 holds.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(Φi+1−Φi))

= ∑
i=1

k

t (opi) + O(1)⋅∑
i=1

k

(Φi+1−Φi)

= ∑
i=1

k

t (opi) + O(1)⋅(Φk+1−Φ1)

The Potential Method

● Assuming that Φₖ₊₁ – Φ₁ ≥ 0, this means
that the sum of the amortized costs
upper-bounds the sum of the real costs.

● Typically, Φ₁ = 0, so Φₖ₊₁ – Φ₁ ≥ 0 holds.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(Φi+1−Φi))

= ∑
i=1

k

t (opi) + O(1)⋅∑
i=1

k

(Φi+1−Φi)

= ∑
i=1

k

t (opi) + O(1)⋅(Φk+1−Φ1)

Constructing Cartesian Trees

271 137 159 314 42

Φ = 0

Constructing Cartesian Trees

271 137 159 314 42

271

Φ = 0

Constructing Cartesian Trees

271 137 159 314 42

271

271Φ = 1

Constructing Cartesian Trees

271 137 159 314 42

271

271

Work done: 1 push
ΔΦ: +1

Amortized Cost: 2

Work done: 1 push
ΔΦ: +1

Amortized Cost: 2

Φ = 1

Constructing Cartesian Trees

271 137 159 314 42

271

271Φ = 1

Constructing Cartesian Trees

271 137 159 314 42

271

271

137

Φ = 1

Constructing Cartesian Trees

271 137 159 314 42

271

137

Φ = 0

Constructing Cartesian Trees

271 137 159 314 42

271

137

Φ = 0

Constructing Cartesian Trees

271 137 159 314 42

271

137

137Φ = 1

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

Work done: 1 push, 1 pop
ΔΦ: 0

Amortized Cost: 2

Work done: 1 push, 1 pop
ΔΦ: 0

Amortized Cost: 2

Φ = 1

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

Work done: 1 push, 1 pop
ΔΦ: 0

Amortized Cost: 2

Work done: 1 push, 1 pop
ΔΦ: 0

Amortized Cost: 2

Φ = 1

Notice that Φ went

1 → 0 → 1

All that matters is the
net change.

Notice that Φ went

1 → 0 → 1

All that matters is the
net change.

Constructing Cartesian Trees

271 137 159 314 42

271

137

137Φ = 1

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

Φ = 1

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

Φ = 1

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159Φ = 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

Work done: 1 push
ΔΦ: +1

Amortized Cost: 2

Work done: 1 push
ΔΦ: +1

Amortized Cost: 2

Φ = 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159Φ = 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

314

Φ = 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

314

Φ = 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

314

314Φ = 3

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

314

314

Work done: 1 push
Credits Added: ΔΦ: +1

Amortized Cost: 2

Work done: 1 push
Credits Added: ΔΦ: +1

Amortized Cost: 2

Φ = 3

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

314

314Φ = 3

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

314

314

42

Φ = 3

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

31442

Φ = 2

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

31442

Φ = 1

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

31442

Φ = 0

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42

Φ = 0

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42

42Φ = 1

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42

42

Work done: 1 push, 3 pops
ΔΦ: -2

Amortized Cost: 2

Work done: 1 push, 3 pops
ΔΦ: -2

Amortized Cost: 2

Φ = 1

The Potential Method

● Using the potential method, the cost of an
insertion into a Cartesian tree can be
computed as

= t(op) + ΔΦ

= 1 + k + O(1) · (1 – k)

= 1 + k + 1 – k

= 2

= O(1)
● So the amortized cost of an insertion is O(1).
● Therefore, n total insertions takes time O(n).

Amortization in Practice:
The Two-Stack Queue

The Two-Stack Queue

Out In

The Two-Stack Queue

1
Out In

The Two-Stack Queue

1
Out In

2

The Two-Stack Queue

1
Out In

2

3

The Two-Stack Queue

1
Out In

2

3

4

The Two-Stack Queue

1
Out In

2

3

4

The Two-Stack Queue

1
Out In

2

3

4

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1
In

23

4
Out

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

1

In

2

3

4
Out

The Two-Stack Queue

1

In

2

3

4
Out

The Two-Stack Queue

1

In

2

3

4
Out

The Two-Stack Queue

1

In

2

3

4
Out

The Two-Stack Queue

In

2

3

4
Out

11

The Two-Stack Queue

In

2

3

4
Out

1

The Two-Stack Queue

In

3

4
Out

1 21 2

The Two-Stack Queue

3

4
Out

5
In

1 2

The Two-Stack Queue

3

4
Out

5
In

6

1 2

The Two-Stack Queue

3

4
Out

5
In

6

1 2

The Two-Stack Queue

4
Out

5
In

6

1 2 3

The Two-Stack Queue

4
Out

5
In

6

7

1 2 3

The Two-Stack Queue

4

Out

5
In

6

7

1 2 3

The Two-Stack Queue

Out

5
In

6

7

1 2 3 41 2 3 4

The Two-Stack Queue

Out

5
In

6

7

1 2 3 4

The Two-Stack Queue

Out

5
In

6

7

1 2 3 4

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

The Two-Stack Queue

In

6

7
Out

1 2 3 4 5

The Two-Stack Queue

● Maintain two stacks, an In stack and an
Out stack.

● To enqueue an element, push it onto the
In stack.

● To dequeue an element:
● If the Out stack is empty, pop everything of

the In stack and push it onto the Out stack.
● Pop the Out stack and return its value.

An Aggregate Analysis

● Claim: The amortized cost of popping an
element is O(1).

● Proof:
● Every value is pushed onto a stack at most

twice: once for in, once for out.
● Every value is popped of of a stack at most

twice: once for in, once for out.
● Each push/pop takes time O(1).
● Net runtime: O(n).
● Amortized cost: O(n) / n = O(1).

The Banker's Method

● Let's analyze this data structure using the
banker's method.

● Some observations:
● All enqueues take worst-case time O(1).
● Each dequeue can be split into a “light” or

“heavy” dequeue.
● In a “light” dequeue, the out stack is nonempty.

Worst-case time is O(1).
● In a “heavy” dequeue, the out stack is empty.

Worst-case time is O(n).

The Two-Stack Queue

Out In

The Two-Stack Queue

1
Out In

$

The Two-Stack Queue

1
Out In

2

$

$

The Two-Stack Queue

1
Out In

2

3

$

$

$

The Two-Stack Queue

1
Out In

2

3

4

$

$

$

$

The Two-Stack Queue

1
Out In

2

3

4

$

$

$

$

The Two-Stack Queue

1
Out In

2

3

4

$

$

$

$

The Two-Stack Queue

1
In

2

3

4
Out

$

$

$

$

The Two-Stack Queue

1
In

2

3

4
Out

$

$

$

The Two-Stack Queue

1
In

2

3

4
Out

$

$

$

The Two-Stack Queue

1
In

2

3

4
Out

$

$

$

The Two-Stack Queue

1
In

23

4
Out

$

$

$

The Two-Stack Queue

1
In

23

4
Out

$

$

The Two-Stack Queue

1
In

2

3

4
Out

$

$

The Two-Stack Queue

1
In

2

3

4
Out

$

$

The Two-Stack Queue

1
In

2

3

4
Out

$

$

The Two-Stack Queue

1
In

2

3

4
Out

$

The Two-Stack Queue

1

In

2

3

4
Out

$

The Two-Stack Queue

1

In

2

3

4
Out

$

The Two-Stack Queue

1

In

2

3

4
Out

$

The Two-Stack Queue

1

In

2

3

4
Out

The Two-Stack Queue

1

In

2

3

4
Out

The Two-Stack Queue

In

2

3

4
Out

11

The Two-Stack Queue

In

2

3

4
Out

1

The Two-Stack Queue

In

3

4
Out

1 21 2

The Two-Stack Queue

3

4
Out

5
In

1 2

$

The Two-Stack Queue

3

4
Out

5
In

6

1 2

$

$

The Two-Stack Queue

3

4
Out

5
In

6

1 2

$

$

The Two-Stack Queue

4
Out

5
In

6

1 2 3

$

$

The Two-Stack Queue

4
Out

5
In

6

7

1 2 3

$

$

$

The Two-Stack Queue

4

Out

5
In

6

7

1 2 3

$

$

$

The Two-Stack Queue

Out

5
In

6

7

1 2 3 41 2 3 4

$

$

$

The Two-Stack Queue

Out

5
In

6

7

1 2 3 4

$

$

$

The Two-Stack Queue

Out

5
In

6

7

1 2 3 4

$

$

$

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

$

$

$

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

$

$

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

$

$

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

$

$

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

$

$

The Two-Stack Queue

5
In

6

7
Out

1 2 3 4

$

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

$

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

$

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

$

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

The Two-Stack Queue

5

In

6

7
Out

1 2 3 4

The Two-Stack Queue

In

6

7
Out

1 2 3 4 5

The Banker's Method

● Enqueue:
● O(1) work, plus one credit added.
● Amortized cost: O(1).

● “Light” dequeue:
● O(1) work, plus no change in credits.
● Amortized cost: O(1).

● “Heavy” dequeue:
● Θ(k) work, where k is the number of entries that started

in the “in” stack.
● k credits spent.
● By choosing the amount of work in a credit

appropriately, amortized cost is O(1).

The Potential Method

● Defne Φ(D) to be the height of the in stack.
● Enqueue:

● Does O(1) work and increases Φ by one.
● Amortized cost: O(1).

● “Light” dequeue:
● Does O(1) work and leaves Φ unchanged.
● Amortized cost: O(1).

● “Heavy” dequeue:
● Does Θ(k) work, where k is the number of entries moved from

the “in” stack.
● ΔΦ = -k.
● By choosing the amount of work stored in each unit of potential

correctly, amortized cost becomes O(1).

Time-Out for Announcements!

Problem Sets

● Problem Set Two solutions are now up on
the course website.
● The TAs are hard at work grading everything.

We’ll try to get everything back as soon as
possible!

● Problem Set Three is due next Thursday,
May 3rd, at 2:30PM.
● Have questions? Stop by ofice hours or ask

them on Piazza!

Grace Hopper Conference

● Applications are now open for CS
department funding to attend next year’s
Grace Hopper Conference
● (September 26 – 28, Houston, TX)

● Phenomenal opportunity for anyone
interested.

● Apply online using this link.

https://docs.google.com/forms/d/e/1FAIpQLSercH2G2sUhT0jnT2t3_Up-OWW9ASh3zhvVQWXReYodvDoi1g/viewform?usp=sf_link

Back to CS166!

Another Example: 2-3-4 Trees

2-3-4 Trees

● Inserting or deleting values from a 2-3-4
trees takes time O(log n).

● Why is that?
● We do some amount of work fnding the insertion

or deletion point, which is Θ(log n).
● We also do some amount of work “fxing up” the

tree by doing insertions or deletions.
● What is the cost of that second amount of

work?

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

61

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

41

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

41

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split
nodes and propagate upward.

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

41

Observation: The only case
where an insertion propagates
upward is when there are four
keys in a node.

Observation: The only case
where an insertion propagates
upward is when there are four
keys in a node.

2-3-4 Tree Deletions

1 6

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

21

2-3-4 Tree Deletions

1 6

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

21

2-3-4 Tree Deletions

6

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

21

2-3-4 Tree Deletions

6

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

21

2-3-4 Tree Deletions

6

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

21

2-3-4 Tree Deletions

6

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

21

2-3-4 Tree Deletions

?

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

21

2-3-4 Tree Deletions

? 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

2111

2-3-4 Tree Deletions

16 26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

2111

2-3-4 Tree Deletions

16 26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

2111

2-3-4 Tree Deletions

16 26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

2111

2-3-4 Tree Deletions

16 26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

21?

2-3-4 Tree Deletions

? 26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

2116

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

2116

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

2116

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

21

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

21

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

21

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

?

2-3-4 Tree Deletions

? 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

26

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

26

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

26

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

2-3-4 Tree Deletions

36

46

? 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

2-3-4 Tree Deletions

?

46

41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

36

2-3-4 Tree Deletions

?

46

41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

36

2-3-4 Tree Deletions

?

46

41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

36

2-3-4 Tree Deletions

?

41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

36

46

2-3-4 Tree Deletions

41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

36

46

?

2-3-4 Tree Deletions

41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

36

46

2-3-4 Tree Deletions

41 61

56

51

● Most deletions from a 2-3-4 tree require no
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to
propagate the deletion upward in the tree.

36

46

Observation: The only case
where a deletion propagates
upward is when there are
two sibling nodes that each
have one key.

Observation: The only case
where a deletion propagates
upward is when there are
two sibling nodes that each
have one key.

2-3-4 Tree Fixup

● Claim: The fxup work on 2-3-4 trees is
amortized O(1).

● We'll prove this in three steps:
● First, we'll prove that in any sequence of m

insertions, the amortized fxup work is O(1).
● Next, we'll prove that in any sequence of m

deletions, the amortized fxup work is O(1).
● Finally, we'll show that in any sequence of

insertions and deletions, the amortized fxup
work is O(1).

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

61

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

61

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

$

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

$

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

$

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

41

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future

splits.

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

41

2-3-4 Tree Insertions

● Using the banker's method, we get that pure
insertions have O(1) amortized fxup work.

● Could also do this using the potential
method.
● Defne Φn to be the number of 4-nodes.
● Each “light” insertion might introduce a new 4-

node, requiring amortized O(1) work.
● Each “heavy” insertion splits k 4-nodes and

decreases the potential by k for O(1) amortized
work.

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

21

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

21

$

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

?

$

2-3-4 Tree Deletions

? 36

46

31 41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

26

$

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

26

$

$

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

26

$

$

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

$

$

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

$$

$

2-3-4 Tree Deletions

36

46

? 41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

$$

$

2-3-4 Tree Deletions

?

46

41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

36

$$

$

2-3-4 Tree Deletions

?

46

41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

36

$$

$

2-3-4 Tree Deletions

?

46

41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

36

$$

$

2-3-4 Tree Deletions

?

41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

36

46 $

$

2-3-4 Tree Deletions

41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

36

46

?

$

$

2-3-4 Tree Deletions

41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

36

46 $

2-3-4 Tree Deletions

41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children

are 2-nodes (call them “tiny triangles.”)

36

46

2-3-4 Tree Deletions

● Using the banker's method, we get that pure
deletions have O(1) amortized fxup work.

● Could also do this using the potential method.
● Defne Φn to be the number of 2-nodes with two

2-node children (call these “tiny triangles.”)
● Each “light” deletion might introduce two tiny

triangles: one at the node where the deletion
ended and one right above it. Amortized time is
O(1).

● Each “heavy” deletion combines k tiny triangles
and decreases the potential by at least k.
Amortized time is O(1).

Combining the Two

● We've shown that pure insertions and pure
deletions require O(1) amortized fxup time.

● What about interleaved insertions and
deletions?

● Initial idea: Use a potential function that's the
sum of the two previous potential functions.

● Φn is the number of 4-nodes plus the number of
tiny triangles.

() ()# + #Φn =

A Potential Issue

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

() ()# + #Φn =

A Potential Issue

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

() ()# + #Φn =

A Potential Issue

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

() ()# + #Φn =

A Potential Issue

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

= 6

() ()# + #Φn =

A Potential Issue

6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

611 2

() ()# + #Φn =

A Potential Issue

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

() ()# + #Φn =

A Potential Issue

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

() ()# + #Φn =

A Potential Issue

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

() ()# + #Φn =

A Potential Issue

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

() ()# + #Φn =

A Potential Issue

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

() ()# + #Φn =

A Potential Issue

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

() ()# + #Φn =

A Potential Issue

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

() ()# + #Φn =

A Potential Issue

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

() ()# + #Φn =

A Potential Issue

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

() ()# + #Φn =

A Potential Issue

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

() ()# + #Φn =

A Potential Issue

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

() ()# + #Φn =

A Potential Issue

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

() ()# + #Φn =

A Potential Issue

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

() ()# + #Φn =

= 5

A Potential Issue

1 6

11

16 91

86

81

56

76

71

66

612

3

21 41

() ()# + #Φn =

= 5

31

26 36 53

51

46

These two “tiny
triangles” are new!

These two “tiny
triangles” are new!

A Problem

● When doing a “heavy” insertion that splits multiple 4-
nodes, the resulting nodes might produce new “tiny
triangles.”

● Symptom: Our potential doesn't drop nearly as much
as it should, so we can't pay for future operations.
Amortized cost of the operation works out to Θ(log n),
not O(1) as we hoped.

● Root Cause: Splitting a 4-node into a 2-node and a 3-
node might introduce new “tiny triangles,” which in
turn might cause future deletes to become more
expensive.

The Solution

● 4-nodes are troublesome for two separate reasons:
● They cause chained splits in an insertion.
● After an insertion, they might split and produce a

tiny triangle.
● Idea: Charge each 4-node for two diferent costs:

the cost of an expensive insertion, plus the
(possible) future cost of doing an expensive
deletion.

() ()2# + #Φn =

Unlocking our Potential

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

() ()2# + #Φn =

Unlocking our Potential

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

() ()2# + #Φn =

Unlocking our Potential

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

() ()2# + #Φn =

Unlocking our Potential

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

() ()2# + #Φn =

= 9

Unlocking our Potential

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

() ()2# + #Φn =

Unlocking our Potential

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

() ()2# + #Φn =

Unlocking our Potential

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

() ()2# + #Φn =

Unlocking our Potential

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

() ()2# + #Φn =

Unlocking our Potential

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

() ()2# + #Φn =

Unlocking our Potential

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

() ()2# + #Φn =

Unlocking our Potential

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

() ()2# + #Φn =

Unlocking our Potential

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

() ()2# + #Φn =

Unlocking our Potential

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

() ()2# + #Φn =

Unlocking our Potential

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

() ()2# + #Φn =

Unlocking our Potential

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

() ()2# + #Φn =

Unlocking our Potential

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

() ()2# + #Φn =

Unlocking our Potential

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

() ()2# + #Φn =

Unlocking our Potential

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

= 5

() ()2# + #Φn =

The Solution

● This new potential function ensures that
if an insertion chains up k levels, the
potential drop is at least k (and possibly
up to 2k).

● Therefore, the amortized fxup work for
an insertion is O(1).

● Using the same argument as before,
deletions require amortized O(1) fxups.

Why This Matters

● Via the isometry, red/black trees have
O(1) amortized fxup per insertion or
deletion.

● In practice, this makes red/black trees
much faster than other balanced trees on
insertions and deletions, even though
other balanced trees can be better
balanced.

More to Explore

● A finger tree is a variation on a B-tree in which
certain nodes are pointed at by “fngers.”
Insertions and deletions are then done only around
the fngers.

● Because the only cost of doing an insertion or
deletion is the fxup cost, these trees have
amortized O(1) insertions and deletions.

● They're often used in purely functional settings to
implement queues and deques with excellent
runtimes.

● Liked the previous analysis? Consider looking into
this for your fnal project!

Next Time

● Binomial Heaps
● A simple and versatile heap data structure

based on binary arithmetic.
● Lazy Binomial Heaps

● Rejiggering binomial heaps for fun and
proft.

