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Outline for Today

● Amortized Analysis
● Analyzing data structures over the long term.

● Cartesian Trees Revisited
● Why could we construct them in time O(n)?

● The Two-Stack Queue
● A simple and elegant queue implementation.

● 2-3-4 Trees
● A better analysis of 2-3-4 tree insertions and 

deletions.



  

Two Worlds

● Data structures have diferent requirements 
in diferent contexts.
● In real-time applications, each operation on a 

given data structure needs to be fast and snappy.
● In long data processing pipelines, we care more 

about the total time used than we do the cost of 
any one operation.

● In many cases, we can get better 
performance in the long-run than we can on 
a per-operation basis.
● Good intuition: “economy of scale.”



  

Key Idea: Design data structures that 
trade per-operation eficiency for

overall eficiency.



  

Claims We’d Like to Make

● “The total runtime of this algorithm is O(n log n), 
even though there are Θ(n) steps and each step, 
in the worst case, takes time Θ(n).”

● “If you perform m operations on this data 
structure, although each operation could take 
time Θ(n), the average cost of an operation is 
O(1).”

● “Operations on this data structure can take up to 
Θ(n2) time to complete, but if you pretend that 
each operation takes time O(log n), you’ll never 
overestimate the total amount of work done.”



  

What We Need

● First, we need a mathematical framework 
for analyzing algorithms and data structures 
when the costs of individual operations vary.

● Next, we need a set of design techniques 
for building data structures that nicely ft 
into this framework.

● Today is mostly about the frst of these 
ideas. We’ll explore design techniques all 
next week.
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The Goal

● Suppose we have a data structure and perform 
a series of m operations op₁, op₂, …, opₘ.
● These operations might be the same operation, or 

they might be diferent.
● Let t(opₖ) denote the time required to perform 

operation opₖ.
● Goal: Bound this expression, which represents 

the total runtime across all operations:

T=∑
i=1

m

t (opi)



  

Amortized Analysis

● An amortized analysis is a diferent way of 
bounding the runtime of a sequence of operations.

● Idea: Assign to each operation opᵢ a new cost a(opᵢ), 
called the amortized cost, such that the following is 
true for any sequence of m operations:

∑
i=1

m

t (opi) ≤ ∑
i=1

m

a(opi)

t

a

Question: How do 
you choose amortized 

costs?

Question: How do 
you choose amortized 

costs?



  

Where We’re Going

● There are three standard techniques for 
assigning amortized costs to operations:
● The aggregate method directly assigns each 

operation its average cost.
● The banker’s method places credits on the 

data structure, which are redeemable for 
units of work.

● The potential method assigns a potential 
function to the data structure, which can be 
charged to pay for future work or released to 
pay for recent work.
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The Aggregate Method

● In the aggregate method, we assign each 
operation a cost of

a(opᵢ) = T*(m) / m

where T*(m) is the maximum amount of work 
done by any series of m operations.

● We essentially pretend that each operation’s 
runtime is the the average cost of all operations 
performed.
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Cartesian Trees

● A Cartesian tree is a binary tree derived from an 
array and defned as follows:

● The empty array has an empty Cartesian tree.
● For a nonempty array, the root stores the minimum 

value. Its left and right children are Cartesian trees 
for the subarrays to the left and right of the 
minimum.
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The Runtime Analysis

● In a sequence of operations that adds n elements to a 
Cartesian tree, adding an individual node to a Cartesian 
tree might take time Θ(n).

● However, the net time spent adding new nodes across 
the whole tree is O(n).

● Why is this?
● Every node pushed at most once.
● Every node popped at most once.
● Work done is proportional to the number of pushes and pops.
● Total runtime is O(n).

● The amortized cost of adding a node is O(n) / n = O(1).



  

Where We’re Going

● There are three standard techniques for 
assigning amortized costs to operations:
● The aggregate method directly assigns each 

operation its average cost.
● The banker’s method places credits on the 

data structure, which are redeemable for 
units of work.

● The potential method assigns a potential 
function to the data structure, which can be 
charged to pay for future work or released to 
pay for recent work.
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The Banker's Method

● In the banker's method, operations can place credits on the 
data structure or spend credits that have already been placed.

● Placing a credit on the data structure takes time O(1).

● Spending a credit previously placed on the data structure 
takes time -O(1). (Yes, that’s negative time!)

● The amortized cost of an operation is then

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● There aren’t any real credits anywhere. They’re just an 
accounting trick.

t

a

+   –   +   +   +   –   –   
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The Banker's Method

● If we never spend credits we don't have: 

 
● The sum of the amortized costs upper-

bounds the sum of the true costs.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(addedi−removedi))    

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)

= ∑
i=1

k

t (opi) + O(1)⋅netCredits                 

≥ ∑
i=1

k

t (opi)                                               



  

The Banker's Method

● If we never spend credits we don't have: 

 
● The sum of the amortized costs upper-

bounds the sum of the true costs.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(addedi−removedi))    

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)

= ∑
i=1

k

t (opi) + O(1)⋅netCredits                 

≥ ∑
i=1

k

t (opi)                                               



  

The Banker's Method

● If we never spend credits we don't have: 

 
● The sum of the amortized costs upper-

bounds the sum of the true costs.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(addedi−removedi))    

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)

= ∑
i=1

k

t (opi) + O(1)⋅netCredits                 

≥ ∑
i=1

k

t (opi)                                               



  

The Banker's Method

● If we never spend credits we don't have: 

 
● The sum of the amortized costs upper-

bounds the sum of the true costs.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(addedi−removedi))    

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)

= ∑
i=1

k

t (opi) + O(1)⋅netCredits                 

≥ ∑
i=1

k

t (opi)                                               



  

The Banker's Method

● If we never spend credits we don't have: 

 
● The sum of the amortized costs upper-

bounds the sum of the true costs.

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(addedi−removedi))    

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)

= ∑
i=1

k

t (opi) + O(1)⋅netCredits                 

≥ ∑
i=1

k

t (opi)                                               



  

Constructing Cartesian Trees

271 137 159 314 42



  

Constructing Cartesian Trees

271 137 159 314 42

271



  

Constructing Cartesian Trees

271 137 159 314 42

271

271



  

Constructing Cartesian Trees

271 137 159 314 42

271

271

$



  

Constructing Cartesian Trees

271 137 159 314 42

271

271

$

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Work done: 1 push
Credits Added: $1

Amortized Cost: 2



  

Constructing Cartesian Trees

271 137 159 314 42

271

271

$



  

Constructing Cartesian Trees

271 137 159 314 42

271

271

$

137



  

Constructing Cartesian Trees

271 137 159 314 42

271

$

137



  

Constructing Cartesian Trees

271 137 159 314 42

271

137



  

Constructing Cartesian Trees

271 137 159 314 42

271

137



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

Work done: 1 push, 1 pop
Credits Removed: $1

Credits Added: $1

Amortized Cost: 2

Work done: 1 push, 1 pop
Credits Removed: $1

Credits Added: $1

Amortized Cost: 2



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Work done: 1 push
Credits Added: $1

Amortized Cost: 2



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314

314

$



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314

314

$

Work done: 1 push
Credits Added: $1

Amortized Cost: 2

Work done: 1 push
Credits Added: $1

Amortized Cost: 2



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314

314

$



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314

314

$

42



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

31442



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

31442



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

31442



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42

42

$



  

Constructing Cartesian Trees

271 137 159 314 42

271

137

159

314

42

42

$

Work done: 1 push, 3 pops
Credits Removed: $3

Credits Added: $1

Amortized Cost: 2

Work done: 1 push, 3 pops
Credits Removed: $3

Credits Added: $1

Amortized Cost: 2



  

The Banker's Method

● Using the banker's method, the cost of an 
insertion is

   = t(op) + O(1) · (addedᵢ – removedᵢ)

   = 1 + k + O(1) · (1 – k)

   = 1 + k + 1 – k

   = 2

   = O(1)
● Each insertion has amortized cost O(1).
● Any n insertions will take time O(n).
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An Observation

● We defned the amortized cost of an operation to 
be

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● Equivalently, this is

a(opᵢ) = t(opᵢ) + O(1) · Δcreditsᵢ  

● Some observations:

● It doesn't matter where these credits are placed 
or removed from.

● The total number of credits added and removed 
doesn't matter; all that matters is the diference 
between these two.



  

Where We’re Going

● There are three standard techniques for 
assigning amortized costs to operations:
● The aggregate method directly assigns each 

operation its average cost.
● The banker’s method places credits on the 

data structure, which are redeemable for 
units of work.

● The potential method assigns a potential 
function to the data structure, which can be 
charged to pay for future work or released to 
pay for recent work.
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The Potential Method

● In the potential method, we defne a potential function Φ 
that maps a data structure to a non-negative real value.

● Each operation may change this potential.

● If we denote by Φᵢ the potential of the data structure just before 
operation i, then we can defne a(opᵢ) as

a(opᵢ) = t(opᵢ) + O(1) · (Φᵢ₊₁ – Φᵢ)

● Intuitively, operations that increase the potential have amortized 
cost greater than their true cost, and operations that decrease 
the potential have amortized cost less than their true cost.

t

a

+1 -1 +1 +1 0 0 -2 +1



  

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi)+O(1)⋅(Φi+1−Φi))       

= ∑
i=1

k

t (opi) + O(1)⋅∑
i=1

k

(Φi+1−Φi)  

= ∑
i=1

k

t (opi) + O(1)⋅(Φk+1−Φ1)      

The Potential Method

● Assuming that Φᵢ₊₁ – Φ₁ ≥ 0, this means 
that the sum of the amortized costs 
upper-bounds the sum of the real costs.

● Typically, Φ₁ = 0, so Φᵢ₊₁ – Φ₁ ≥ 0 holds.
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1 → 0 → 1
 

All that matters is the 
net change.
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The Potential Method

● Using the potential method, the cost of an 
insertion into a Cartesian tree can be 
computed as

= t(op) + ΔΦ

= 1 + k + O(1) · (1 – k)

= 1 + k + 1 – k

= 2

= O(1)
● So the amortized cost of an insertion is O(1).
● Therefore, n total insertions takes time O(n).



  

Amortization in Practice:
The Two-Stack Queue
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The Two-Stack Queue

● Maintain two stacks, an In stack and an 
Out stack.

● To enqueue an element, push it onto the 
In stack.

● To dequeue an element:
● If the Out stack is empty, pop everything of 

the In stack and push it onto the Out stack.
● Pop the Out stack and return its value.



  

An Aggregate Analysis

● Claim: The amortized cost of popping an 
element is O(1).

● Proof:
● Every value is pushed onto a stack at most 

twice: once for in, once for out.
● Every value is popped of of a stack at most 

twice: once for in, once for out.
● Each push/pop takes time O(1).
● Net runtime: O(n).
● Amortized cost: O(n) / n = O(1).



  

The Banker's Method

● Let's analyze this data structure using the 
banker's method.

● Some observations:
● All enqueues take worst-case time O(1).
● Each dequeue can be split into a “light” or 

“heavy” dequeue.
● In a “light” dequeue, the out stack is nonempty. 

Worst-case time is O(1).
● In a “heavy” dequeue, the out stack is empty. 

Worst-case time is O(n).
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The Banker's Method

● Enqueue:
● O(1) work, plus one credit added.
● Amortized cost: O(1).

● “Light” dequeue:
● O(1) work, plus no change in credits.
● Amortized cost: O(1).

● “Heavy” dequeue:
● Θ(k) work, where k is the number of entries that started 

in the “in” stack.
● k credits spent.
● By choosing the amount of work in a credit 

appropriately, amortized cost is O(1).



  

The Potential Method

● Defne Φ(D) to be the height of the in stack.
● Enqueue:

● Does O(1) work and increases Φ by one.
● Amortized cost: O(1).

● “Light” dequeue:
● Does O(1) work and leaves Φ unchanged.
● Amortized cost: O(1).

● “Heavy” dequeue:
● Does Θ(k) work, where k is the number of entries moved from 

the “in” stack.
● ΔΦ = -k.
● By choosing the amount of work stored in each unit of potential 

correctly, amortized cost becomes O(1).



  

Time-Out for Announcements!



  

Problem Sets

● Problem Set Two solutions are now up on 
the course website.
● The TAs are hard at work grading everything. 

We’ll try to get everything back as soon as 
possible!

● Problem Set Three is due next Thursday, 
May 3rd, at 2:30PM.
● Have questions? Stop by ofice hours or ask 

them on Piazza!



  

Grace Hopper Conference

● Applications are now open for CS 
department funding to attend next year’s 
Grace Hopper Conference
● (September 26 – 28, Houston, TX)

● Phenomenal opportunity for anyone 
interested.

● Apply online using this link.

https://docs.google.com/forms/d/e/1FAIpQLSercH2G2sUhT0jnT2t3_Up-OWW9ASh3zhvVQWXReYodvDoi1g/viewform?usp=sf_link


  

Back to CS166!



  

Another Example: 2-3-4 Trees



  

2-3-4 Trees

● Inserting or deleting values from a 2-3-4 
trees takes time O(log n).

● Why is that?
● We do some amount of work fnding the insertion 

or deletion point, which is Θ(log n).
● We also do some amount of work “fxing up” the 

tree by doing insertions or deletions.
● What is the cost of that second amount of 

work?



  

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no 
fxup – we just insert an extra key into a leaf.

● Some insertions require some fxup to split 
nodes and propagate upward.
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Observation: The only case 
where an insertion propagates 
upward is when there are four 
keys in a node.

Observation: The only case 
where an insertion propagates 
upward is when there are four 
keys in a node.



  

2-3-4 Tree Deletions
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● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

21



  

2-3-4 Tree Deletions

1 6

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

21



  

2-3-4 Tree Deletions

6

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

21



  

2-3-4 Tree Deletions

6

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

21



  

2-3-4 Tree Deletions

6

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

21



  

2-3-4 Tree Deletions

6

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

21



  

2-3-4 Tree Deletions

?

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

21



  

2-3-4 Tree Deletions

? 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

2111



  

2-3-4 Tree Deletions

16 26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

2111



  

2-3-4 Tree Deletions

16 26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

2111



  

2-3-4 Tree Deletions

16 26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

2111



  

2-3-4 Tree Deletions

16 26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

21?



  

2-3-4 Tree Deletions

? 26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

2116



  

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

2116



  

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

2116



  

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

21



  

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

21



  

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

21



  

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

?



  

2-3-4 Tree Deletions

? 36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

26



  

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

26



  

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

26



  

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.



  

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.



  

2-3-4 Tree Deletions

36

46

? 41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.



  

2-3-4 Tree Deletions

?

46

41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

36



  

2-3-4 Tree Deletions

?

46

41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

36



  

2-3-4 Tree Deletions

?

46

41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

36



  

2-3-4 Tree Deletions

?

41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

36

46



  

2-3-4 Tree Deletions

41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

36

46

?



  

2-3-4 Tree Deletions

41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

36

46



  

2-3-4 Tree Deletions

41 61

56

51

● Most deletions from a 2-3-4 tree require no 
fxup; we just delete a key from a leaf.

● Some deletions require fxup work to 
propagate the deletion upward in the tree.

36

46

Observation: The only case 
where a deletion propagates 
upward is when there are 
two sibling nodes that each 
have one key.

Observation: The only case 
where a deletion propagates 
upward is when there are 
two sibling nodes that each 
have one key.



  

2-3-4 Tree Fixup

● Claim: The fxup work on 2-3-4 trees is 
amortized O(1).

● We'll prove this in three steps:
● First, we'll prove that in any sequence of m 

insertions, the amortized fxup work is O(1).
● Next, we'll prove that in any sequence of m 

deletions, the amortized fxup work is O(1).
● Finally, we'll show that in any sequence of 

insertions and deletions, the amortized fxup 
work is O(1).



  

2-3-4 Tree Insertions

● Suppose we only insert and never delete.
● The fxup work for an insertion is proportional to the 

number of 4-nodes that get split.
● Idea: Place a credit on each 4-node to pay for future 

splits.
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2-3-4 Tree Insertions

● Using the banker's method, we get that pure 
insertions have O(1) amortized fxup work.

● Could also do this using the potential 
method.
● Defne Φn to be the number of 4-nodes.
● Each “light” insertion might introduce a new 4-

node, requiring amortized O(1) work.
● Each “heavy” insertion splits k 4-nodes and 

decreases the potential by k for O(1) amortized 
work.



  

2-3-4 Tree Deletions

26 36

46

31 41 61

56

51

● Suppose we only delete and never insert.
● The fxup work per layer is O(1) and only propagates 

if we combine three 2-nodes together into a 4-node.
● Idea: Place a credit on each 2-node whose children 

are 2-nodes (call them “tiny triangles.”)
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2-3-4 Tree Deletions

● Using the banker's method, we get that pure 
deletions have O(1) amortized fxup work.

● Could also do this using the potential method.
● Defne Φn to be the number of 2-nodes with two 

2-node children (call these “tiny triangles.”)
● Each “light” deletion might introduce two tiny 

triangles: one at the node where the deletion 
ended and one right above it. Amortized time is 
O(1).

● Each “heavy” deletion combines k tiny triangles 
and decreases the potential by at least k. 
Amortized time is O(1).



  

Combining the Two

● We've shown that pure insertions and pure 
deletions require O(1) amortized fxup time.

● What about interleaved insertions and 
deletions?

● Initial idea: Use a potential function that's the 
sum of the two previous potential functions.

● Φn is the number of 4-nodes plus the number of 
tiny triangles.
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A Problem

● When doing a “heavy” insertion that splits multiple 4-
nodes, the resulting nodes might produce new “tiny 
triangles.”

● Symptom: Our potential doesn't drop nearly as much 
as it should, so we can't pay for future operations. 
Amortized cost of the operation works out to Θ(log n), 
not O(1) as we hoped.

● Root Cause: Splitting a 4-node into a 2-node and a 3-
node might introduce new “tiny triangles,” which in 
turn might cause future deletes to become more 
expensive.



  

The Solution

● 4-nodes are troublesome for two separate reasons:
● They cause chained splits in an insertion.
● After an insertion, they might split and produce a 

tiny triangle.
● Idea: Charge each 4-node for two diferent costs: 

the cost of an expensive insertion, plus the 
(possible) future cost of doing an expensive 
deletion.
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The Solution

● This new potential function ensures that 
if an insertion chains up k levels, the 
potential drop is at least k (and possibly 
up to 2k).

● Therefore, the amortized fxup work for 
an insertion is O(1).

● Using the same argument as before, 
deletions require amortized O(1) fxups.



  

Why This Matters

● Via the isometry, red/black trees have 
O(1) amortized fxup per insertion or 
deletion.

● In practice, this makes red/black trees 
much faster than other balanced trees on 
insertions and deletions, even though 
other balanced trees can be better 
balanced.



  

More to Explore

● A finger tree is a variation on a B-tree in which 
certain nodes are pointed at by “fngers.” 
Insertions and deletions are then done only around 
the fngers.

● Because the only cost of doing an insertion or 
deletion is the fxup cost, these trees have 
amortized O(1) insertions and deletions.

● They're often used in purely functional settings to 
implement queues and deques with excellent 
runtimes.

● Liked the previous analysis? Consider looking into 
this for your fnal project!



  

Next Time

● Binomial Heaps
● A simple and versatile heap data structure 

based on binary arithmetic.
● Lazy Binomial Heaps

● Rejiggering binomial heaps for fun and 
proft.


