Fibonacci Heaps



Outline for Today

* Review from Last Time

* Quick refresher on binomial heaps and lazy
binomial heaps.

« The Need for decrease-key
 An important operation in many graph algorithms.
 Fibonacci Heaps

* A data structure efficiently supporting decrease-
Key.

 Representational Issues

 Some of the challenges in Fibonacci heaps.



Review: (Lazy) Binomial Heaps



Building a Priority Queue

* Group nodes into “packets” with the following
properties:

Size must be a power of two.
Can efficiently fuse packets of the same size.

Can efficiently find the minimum element of
each packet.

Can efficiently “fracture” a packet of 2% nodes
into packets of 1, 2, 4, 8, ..., 2¥! nodes.



Binomial Trees

A binomial tree of order k is a type of tree
recursively defined as follows:

A binomial tree of order k is a single node whose
children are binomial trees of order O, 1, 2, ..., k- 1.

e Here are the first few binomial trees:

@



Binomial Trees

A heap-ordered binomial tree is a binomial
tree whose nodes obey the heap property: all
nodes are less than or equal to their
descendants.

 We will use heap-ordered binomial trees to
implement our “packets.”

5 ?@



The Binomial Heap

A binomial heap is a collection of heap-ordered
binomial trees stored in ascending order of size.

* Operations defined as follows:

« meld(pqi, pqgz): Use addition to combine all the trees.
- Fuses O(log n) trees. Total time: O(log n).

« pg.enqueue(v, k): Meld pg and a singleton heap of (v, k).
- Total time: O(log n).

 pq.find-min(): Find the minimum of all tree roots.
- Total time: O(log n).

 pq.extract-min(): Find the min, delete the tree root,
then meld together the queue and the exposed children.

- Total time: O(log n).



Lazy Binomial Heaps

* A lazy binomial heap is a variation on a
standard binomial heap in which melds are
done lazily by concatenating tree lists
together.

* Tree roots are stored in a doubly-linked list.

 An extra pointer is required that points to
the minimum element.

» extract-min eagerly coalesces binomial
trees together and runs in amortized time
O(log n).



The Overall Analysis

« Set (D) to be the number of trees in D.

 The amortized costs of the operations on a
lazy binomial heap are as follows:

 enqueue: O(1)
 meld: O(1)
o find-min: O(1)
* extract-min: O(log n)
* Details are in the previous lecture.

» Let's quickly review extract-min's analysis.



Analyzing Extract-Min

Suppose we perform an extract-min on a binomial heap
with T trees in it.

Initially, we expose the children of the minimum element.
This increases the number of trees to T' + O(log n).

The runtime for coalescing these trees is O(T + log n).

When we're done merging, there will be O(log n) trees
remaining, so A® = -T + O(log n).

Amortized cost is
O(T + )+ O() - (-7 + O(log n))
=O(T)-0(1)-T+ 0O(1) - O(log n)
= 0O(log n).



A Detalil in the Analysis

* The amortized cost of an extract-min is

O( + T) + O(1) - (-T + O(log n))
@here do these O(log n) terms come from?
e First : Removing the minimum element might

expose O(log n) children, since the maximum order of a
tree is O(log n).

 Second O(log n): Maximum number of trees after a
coalesce is O(log n).

 Key idea: This O(log n) term arises because the
number of nodes in an order-k binomial tree
grows exponentially with k.



The Need for decrease-key



Review: Dijkstra's Algorithm

* Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.
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* Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.




Dijkstra and Priority Queues

» At each step of Dijkstra's algorithm, we need
to do the following:

 Find the node at v minimum distance from s.

 Update the candidate distances of all the nodes
connected to v. (Distances only decrease in this
step.)

» This first step sounds like an extract-min
on a priority queue.

« How would we implement the second step?



Review: Prim's Algorithm

* Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

* Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Prim and Priority Queues

* At each step of Prim's algorithm, we need to
do the following:

 Find the node v outside of the spanning tree with
the lowest-cost connection to the tree.

 Update the candidate distances from v to nodes
outside the set S.

» This first step sounds like an extract-min
on a priority queue.

« How would we implement the second step?



The decrease-key Operation

* Some priority queues support the operation
pq.decrease-key(v, k), which works as
follows:

Given a pointer to an element v in pq, lower
its key (priority) to k. It is assumed that k is
less than the current priority of v.

* This operation is crucial in efficient
implementations of Dijkstra's algorithm and
Prim's MST algorithm.



Dijkstra and decrease-key

* Dijkstra's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
* O(n) total extract-mins, and

 O(m) total decrease-keys.

* Dijkstra's algorithm runtime is
onT, +nT_ +mT, )



Prim and decrease-key

* Prim's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
* O(n) total extract-mins, and

 O(m) total decrease-keys.

* Prim's algorithm runtime is

O(n Tenq +nT .+ m Tdec)



Standard Approaches

* In a binary heap, enqueue, extract-min,
and decrease-key can be made to work
in time O(log n) time each.

* Cost of Dijkstra's / Prim's algorithm:
OonT, +nT  +mT,)

= O(nlogn + nlogn+ mlog n)
= O(m log n)



Standard Approaches

* In a binomial heap, n enqueues takes
time O(n), each extract-min takes time
O(log n), and each decrease-key takes
time O(log n).

* Cost of Dijkstra's / Prim's algorithm:
OonT, +nT  +mT,)

= O(n + nlogn + m log n)
= O(m log n)



Where We're Going

« The Fibonacci heap has these runtimes:
 enqueue: O(1)
 meld: O(1)
* find-min: O(1)
* extract-min: O(log n), amortized.
* decrease-key: O(1), amortized.

* Cost of Prim's or Dijkstra's algorithm:
O(N Tong + N Toy + M Teeo)
= 0O(n + nlogn+ m)
= O(m + n log n)

« This is theoretically optimal for a comparison-based priority
queue in Dijkstra's or Prim's algorithms.



The Challenge of decrease-key



A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

 Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

min
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The Challenge

* Goal: Implement decrease-key in
amortized time O(1).
 Why is this hard?

 Lowering a node's priority might break the
heap property.

* Correcting the imbalance O(log n) layers
deep in a tree might take time O(log n).

« We will need to change our approach.



A Crazy Idea
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A Crazy Idea

 To implement decrease-key efficiently:

 Lower the key of the specified node.

 If its key is greater than or equal to its
parent's key, we're done.

 Otherwise, cut that node from its parent and
hoist it up to the root list, optionally
updating the min pointer.

* Time required: O(1).

* This requires some changes to the tree
representation; more details later.



Analyzing our Approach

(or: The Madness in the Method)



Tree Sizes and Orders

* Recall: The order of a binomial tree is
the number of children of the root.

 In a true binomial tree, a binomial tree of
order k has exactly 2% nodes.

 Concern: If trees can be cut from their
parents, a tree of order k might have
many fewer than 2% nodes.



The Problem




The Problem
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The Problem

k+1 4 3

Number of nodes: O(k?)
Number of trees: @(n'/?)



The Problem

* Recall: The amortized cost of an
extract-min is only O(log n) if each tree
of order k has an exponential number of
nodes in it.

 With our “damaged” binomial trees, this
is no longer the case, and the amortized
cost of an extract-min grows to O(n'?).

e We've lost our runtime bounds!



Time-Out for Announcements!



Problem Sets

e Problem Set Three was due at the start of class
today.

« Want to use late days? Feel free to submit it by Saturday
at 2:30PM.

 Problem Set Two has been graded. Feedback is
now available up on GradeScope.

 The next problem set goes out on Tuesday. We
recommend using the interstitial time to think
about your project proposal.

 Proposals are due next Thursday at 2:30PM.

* Looking for a team? Use the “Search for Teammates”
features up on Piazza!



Back to CS1606!



The Problem

* This problem arises because we have lost
one of the guarantees of binomial trees:

A binomial tree of order k has 2% nodes.

« When we cut low-hanging trees, the root
node won't learn that these trees are
missing.

« However, communicating this
information up from the leaves to the
root might take time O(log n)!



The Tradeoff

* If we don't impose any structural
constraints on our trees, then trees of
large order may have too few nodes.

* Leads to having lots of short, small trees,
wrecking our runtime bounds for extract-min.

» If we impose too many structural
constraints on our trees, then we have to
spend too much time fixing up trees.

* Leads to decrease-key taking too long.
« How can we strike a balance?



The Compromise

« Every non-root node is allowed to lose at most one child.

e [f a non-root node loses two children, we cut it from its
parent. (This might trigger more cuts.)

« We will mark nodes in the heap that have lost children
to keep track of this fact.
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The Compromise

« Every non-root node is allowed to lose at most one child.

e [f a non-root node loses two children, we cut it from its
parent. (This might trigger more cuts.)

« We will mark nodes in the heap that have lost children

to keep track of this fact.
1 % 2 3 0
5




The Compromise

* To cut node v from its parent p:

e Unmark v.
 Cut v from p.

* If p is not already marked and is not the root
of a tree, mark it.

» If p was already marked, recursively cut p
from its parent.



The Compromise

e If we do a few
decrease-keys, then
the tree won't lose @

“too many” nodes.
* If we do many e @ @
decrease-keys, the a @ a

information slowly
propagates to the @
root.



Dr. Strange Runtime Analysis

Or: How I Learned to Stop Worrying and Love the Cut



Two Extremes

If we never do any decrease-keys, then the
trees in our data structure are all binomial
trees.

Each tree of order k has 2% nodes in it, so the
tree sizes grow exponentially and the runtime
of an extract-min is O(log n).

On the other hand, suppose that all trees in the
binomial heap have lost the maximum possible
number of nodes.

In that case, how many nodes will each tree
have?



Maximally-Damaged Trees

I

We can't cut any nodes
from this tree without
making the root node

have order O.




Maximally-Damaged Trees

@ 9 We can't cut any of the
o

root's children without
o Q decreasing its order.
0 -

—

However, we can cut this
node, leaving the root
node with two children.




Maximally-Damaged Trees
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Maximally-Damaged Trees

As before, we can't cut any
of the root's children
without decreasing its order.

L R R L

However, any nodes below
the second layer are fair
game to be eliminated.




Maximally-Damaged Trees
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We can't cut this node
without triggering a
cascading cut, so
we're done.




Maximally-Damaged Trees
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Maximally-Damaged Trees
RPIYT
o0 @ o o0 O ¢
0
We can start chopping away
at these nodes! I




Maximally-Damaged Trees

BTy

000

A maximally-damaged tree of
order k is a node whose children

are maximally-damaged trees of
orders

0,0,1,2,3, .. k-2.




Maximally-Damaged Trees

1 2 3
Y
o o o

Claim: The minimum
number of nodes in a
tree of order k is Fx+2




Maximally-Damaged Trees

« Theorem: The number of nodes in a maximally-
damaged tree of order k is Fx+2.

 Proof: Induction.

0 1 e k+1 ...
O g g @
0 0 1 k2 bk

----------------------------------------
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Maximally-Damaged Trees

« Theorem: The number of nodes in a maximally-
damaged tree of order k is Fx+2.

 Proof: Induction.

0 1 e k+1 ...
O g g @
0 0 1 k2 bk

----------------------------------------



(p-bonacci Numbers

 Fact: For n = 2, we have Fn = @"?, where ¢ is
the golden ratio:

¢ = 1.61803398875...

e Claim: In our modified data structure, the
amortized cost of an extract-min is O(log n).

 Proof: In a tree of order k, there are at least
Frx+2 = @* nodes. Therefore, a tree of order k
has exponentially many nodes in it, so the
previous analysis still holds. N



Fibonacci Heaps

A Fibonacci heap is a lazy binomial heap
where decrease-key is implemented using
the earlier cutting-and-marking scheme.

* Operation runtimes:
 enqueue: O(1)
« meld: O(1)
o find-min: O(1)
* extract-min: O(log n) amortized
* decrease-key: Up next!



Analyzing decrease-key

 When performing a decrease-key, the
runtime depends on the number of total cuts
made.

 These cuts only “cascade” if we cut from a node
whose parent is already marked.

 The runtime of decrease-key is specifically
O(C), where C is the number of cuts made.

« What is the amortized cost of a decrease-
key?



Refresher: Our Choice of ®

* In our amortized analysis of lazy binomial
heaps, we set ® to be the number of trees in
the heap.

« With this choice of ®, we obtained these
amortized time bounds:

 enqueue: O(1)

« meld: O(1)

e find-min: O(1)

* extract-min: O(log n)



Rethinking our Potential

 Intuitively, a cascading cut only occurs if we have a
long chain of marked nodes.

 Those nodes were only marked because of previous
decrease-key operations.

* Idea: Backcharge the work required to do the
cascading cut to each preceding decrease-key that
contributed to it.

» Specifically, change ® as follows:
® = #trees + #marked

* Note: Since only decrease-key interacts with marked
nodes, our amortized analysis of all previous
operations is still the same.



The (New) Amortized Cost

« Using our new @, a decrease-key makes C cuts, it

e Marks one new node (+1),
« Unmarks C nodes (-C), and
 Adds C trees to the root list (+C).

« Amortized cost is
OC) + 0Q1) - AD
=0C)+0(1)-1-C+0)
=0(C)+0(1) -1
= O(C) + O(1)
= 0(C)
« Hmmm... that didn't work.



The Trick

 Each decrease-key makes extra work
for two future operations, since

« future decrease-keys have to do cascading
cuts.

e future extract-mins now have more trees to
coalesce, and

 We can make this explicit in our potential
function:

® = #trees + 2-#marked



The (Final) Amortized Cost

* Using our new @, a decrease-key makes C cuts, it

« Marks one new node (+2),
 Unmarks C nodes (-2C), and
 Adds C trees to the root list (+C).

« Amortized cost is
OC) + 0(1) - AD
=0C)+0(1)-2-2C+0C)
= O(C) + 0(1) - (2 )
= O(C) + O(1)
= 0(1)
 We now have amortized O(1) decrease-key!



The Story So Far

* The Fibonacci heap has the following
amortized time bounds:

 enqueue: O(1)

e find-min: O(1)

meld: O(1)

* decrease-key: O(1) amortized

* extract-min: O(log n) amortized
» This is about as good as it gets!



The Catch: Representation Issues



Representing Trees

* The trees in a Fibonacci heap must be
able to do the following:

 During a merge: Add one tree as a child of
the root of another tree.

* During a cut: Cut a node from its parent in
time O(1).

e Claim: This is trickier than it looks.



Representing Irees
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Representing Trees

As D 4

66 o HEEN

Finding this
pointer might take
time ©(log n)!




The Solution

The parent
Each node stores a stores a pointer
pointer to its parent. to an arbitrary
child.

The children of each
node are in a circularly,
doubly-linked list.




The Solution

To cut a node from its parent, if it
isn't the representative child, just
splice it out of its linked list.




The Solution

If it is the representative, change
the parent's representative child to
be one of the node's siblings.




Awful Linked Lists

 Trees are stored as follows:

« Each node stores a pointer to some child.
« Each node stores a pointer to its parent.
 Each node is in a circularly-linked list of its siblings.

« Awtul, but the following possible are now
possible in time O(1):

 Cut a node from its parent.
e Add another child node to a node.

* This is the main reason Fibonacci heaps are so
complex.



Fibonacci Heap Nodes

 Each node in a Fibonacci heap stores

* A pointer to its parent.

* A pointer to the next sibling.

» A pointer to the previous sibling.
* A pointer to an arbitrary child.

* A bit for whether it's marked.
 Its order.

 Its key.

* Its element.



In Practice

* In practice, Fibonacci heaps are slower
than other heaps with worse asymptotic
performance.

« Why?

« Huge memory requirements per node.
 High constant factors on all operations.
* Poor locality of reference and caching.



In Theory

 That said, Fibonacci heaps are worth
knowing about for several reasons:

* Clever use of a two-tiered potential function
shows up in lots of data structures.

 Implementation of decrease-key tforms the
basis for many other advanced priority
queues.

* Gives the theoretically optimal comparison-
based implementation of Prim's and
Dijkstra's algorithms.



More to Explore

« Since the development of Fibonacci heaps, there have been a
number of other priority queues with similar runtimes.

* In 1986, a powerhouse team (Fredman, Sedgewick, Sleator,
and Tarjan) invented the pairing heap. It’s much simpler
than a Fibonacci heap, is fast in practice, but its runtime
bounds are unknown!

* In 2011, Haeupler, Sen, and Tajran developed the rank-
pairing heap, which matches the amortized time bounds of
Fibonacci heaps but with significantly fewer structural
guarantees.

 In 2012, Brodal et al. invented the strict Fibonacci heap
was developed. It has the same time bounds as a Fibonacci
heap, but in a worst-case rather than amortized sense.

« All of these would make for great final project topics!



Summary

* decrease-key is a useful operation in many
graph algorithms.

 Implement decrease-key by cutting a node from
its parent and hoisting it up to the root list.

 To make sure trees of high order have lots of
nodes, add a marking scheme and cut nodes that
lose two or more children.

* Represent the data structure using Awful Linked
Lists.

 Can prove that the number of nodes in each tree
grows exponentially with ¢ by looking at
maximally-damaged trees.



Next Time

* Splay Trees

 Amortized-efficient balanced trees.
* Static Optimality

* Is there a single best BST for a set of data?
 Dynamic Optimality

* Is there a single best BST for a set of data if
that BST can change over time?
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