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Outline for Today

● Static Optimality
● Balanced BSTs aren't necessarily optimal!

● Splay Trees
● A self-adjusting binary search tree.

● Properties of Splay Trees
● Why is splaying worthwhile?

● Dynamic Optimality (ITA)
● An open problem in data structures.



  

Static Optimality



  

Balanced BSTs

● Balanced BSTs guarantee tree operations run in worst-
case time O(log n).

● Claim: If the elements in the tree aren't accessed 
uniformly, then a balanced BST might not actually be 
the ideal BST.
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Static Optimality

● Let S = { x₁, x₂, …, xₙ } be a set with access 
probabilities p₁, p₂, …, pₙ.

● If T is a BST whose keys are the keys in S, then let XT 
be a random variable equal to the number of nodes in 
T that are touched when performing a lookup, 
assuming the key to look up is sampled from the 
above probability distribution.

● Goal: Construct a binary search tree T* such that 
E[XT*] is minimal.

● T* is called a statically optimal binary search tree.



  

Static Optimality

● Theorem: There is an O(n2)-time dynamic 
programming algorithm for constructing statically 
optimal binary search trees.

● Knuth, 1971. (See CLRS)
● Theorem: Weight-balanced trees whose weights 

are the element access probabilities have an 
expected lookup cost with a factor of 1.5 of a 
statically-optimal tree.

● Mehlhorn, 1975.
● You can build a weight-balanced tree for a set of 

keys in time O(n) using a clever divide-and-
conquer algorithm. You'll see this in PS4.



  

Finding a Lower Bound

● Suppose we design a BST data structure where the cost 
of any lookup is O(log n).

● You’d intuitively know that, at least from the perspective 
of worst-case eficiency, you couldn’t improve on the cost 
of a lookup by more than a constant factor.

● Why is this?
● Justifcation: Every BST with n elements has a worst-

case lookup time of Ω(log n), since some element has to 
be at depth at least Ω(log n).

● An O(log n) upper bound matches this lower bound, and 
therefore can’t be improved.



  

Finding a Lower Bound

● Right now, we have an Ω(log n) lower 
bound on the worst-case cost of a lookup 
in a BST.

● Question: Can we fnd some sort of 
lower bound on the expected cost of a 
lookup in a BST?
● Here, the expectation is taken over the 

access probabilities.



  

Static Optimality



  

Static Optimality

Intuition: Try to 
place nodes with 

higher access 
probabilities higher 

up in the tree.

Intuition: Try to 
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higher access 
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Static Optimality

Anything with access 
probability ¹/₄ or above 
probably shouldn’t be 

below this point.
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Idea: If a key has access 
probability 2-k, it should 
probably go at level k or 

higher.
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Static Optimality

The cost of looking up 
some key xᵢ is roughly 
equal to the depth of 

the key xᵢ: -lg pᵢ.
  

So it's reasonable to 
suspect that the 

expected lookup cost to 
roughly work out to
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So it's reasonable to 
suspect that the 

expected lookup cost to 
roughly work out to

The cost of looking up 
some key xᵢ is roughly 
equal to the depth of 

the key xᵢ: -lg pᵢ.
  

So it's reasonable to 
suspect that the 

expected lookup cost to 
roughly work out to

∑
i=1

n

−pi lgpi .



  

Shannon Entropy

● Consider a discrete probability distribution with elements 
x₁, …, xₙ, where element xᵢ has access probability pᵢ.

● The Shannon entropy of this probability distribution, 
denoted Hₚ (or just H, where p is implicit) is the quantity

Hp = ∑
i=1

n

−pi lgpi .

If we have n elements with equal 
access probability (pᵢ = ¹/ₙ), then

Hp = ∑
i=1

n

−pi lgpi   

= ∑
i=1

n
1
n (−lg 1

n )
= ∑

i=1

n 1
n

lgn      

= lgn            

If we have one element accessed 
100% of the time (p₁ = 1) and all 
other elements are never 
accessed (pᵢ = 0), then

Hp = ∑
i=1

n

−pi lgpi         

= −lg1 + ∑
i=2

n

0lg0

= 0                      



  

Static Optimality

● Consider a discrete probability distribution with elements 
x₁, …, xₙ, where element xᵢ has access probability pᵢ.

● The Shannon entropy of this probability distribution, 
denoted Hₚ (or just H, where p is implicit) is the quantity

● Theorem: The expected lookup cost in any binary search 
tree for keys x₁, …, xₙ with access probabilities p₁, …, pₙ 
is Ω(1 + H).

● Theorem: For any set of keys xᵢ with access probabilities 
pᵢ, there is a BST that whose expected lookup time is 
Θ(1 + H).

Hp = ∑
i=1

n

−pi lgpi .



  

Weaknesses of Static Optimality

● Statically optimal BSTs are fantastic if the 
lookups are sampled randomly from a fxed 
distribution.

● However, what if you don't know anything 
about the particular access pattern you're going 
to have?

● Question 1: Is it possible to build a BST with 
O(1 + H) expected lookup time if the 
probability distribution isn't known in advance?



  

Weaknesses of Static Optimality

● Just knowing the access probabilities doesn't 
guarantee that you can build a good BST.

● Example: Suppose you’re working at Yelp and want 
to support restaurant searches worldwide.

● There’s some baseline probability distribution about 
which places get more lookups (New York City) than 
others (Barrow, AK).

● However, there’s also a time-sensitivity: some areas 
will be “hotter” for searches than others based on 
wherever people are looking for lunches or dinners.

● Question 2: Can we build a BST that adapts to access 
patterns beyond just the global access probabilities?



  

Challenge: Can we build a BST that meets 
the static optimality requirements, but is 

also sensitive to access patterns?

And can we do it without advance 
knowledge of the access pattern?



  

The Intuition

● If we don't know the access probabilities 
in advance, we can't build a fxed BST 
and then “hope” it works correctly.

● Instead, we'll have to restructure the 
BST as operations are performed.

● For now, let's focus on lookups; we'll 
handle insertions and deletions later on.



  

Refresher: Tree Rotations

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

Rotate Left
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An Initial Idea

● Begin with an arbitrary BST.
● After looking up an element, repeatedly 

rotate that element with its parent until it 
becomes the root.

● Intuition: 
● Recently-accessed elements will be up near 

the root of the tree, lowering access time.
● Unused elements stay low in the tree.



  

The Problem
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started!



  

The Problem

● The “rotate to root” method might result 
in n accesses taking time Θ(n2).

● Why?
● The cost of looking up a key x depends 

on the length of the access path to x.
● Rotating x up to the root doesn’t always 

improve that access path.
● Future lookups deep down near where x 

used to be will still be slow.



  

A More Balanced Approach

● In 1983, Daniel Sleator and Robert 
Tarjan invented an operation called 
splaying.

● Splaying rotates an element to the root 
of the tree, but does so in a way that's 
more “fair” to other nodes in the tree.

● Each splay works by applying one of 
three templates to determine which 
rotations to apply.



  

Case 1: Zig-Zag

x

p

g

>p

>g
<x

>x
<p

<g

x

g p

<g
>g
<x

>x
<p >p

First, rotate x with p.
Then, rotate x with g.

Continue moving x up the tree.

First, rotate x with p.
Then, rotate x with g.

Continue moving x up the tree.



  

Case 2: Zig-Zig

x

p

g

>p
<g
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g

>g
>p
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First, rotate p with g.
Then, rotate x with p.

Continue moving x up the tree.

First, rotate p with g.
Then, rotate x with p.

Continue moving x up the tree.



  

Case 3: Zig

x

r

>p

<x
>x
<p

x

r

<x

>x
<p >p

Rotate x with r
x is now the root.

Rotate x with r
x is now the root.

(Assume r is the 
tree root)

(Assume r is the 
tree root)



  

A

B

C

D

E

F

G



  

A

B

C

D

E

F

G



  

A

B

C

D

E

F

G



  

A

B

C

D

E

F

G



  

A

B

C

D

E

F

G



  

A

B

C

D

E

F

G



  

A

B

C

D

E

F

G



  

A

B

D

E

F

GC



  

A

B

E

F

G

C

D



  

A

B

E

F

G

C

D



  

FC

D

A

B

E

G



  

B

C

D

E

F

A G



  

C

D

E

F

G

A

B



  

A

B

C

D

E

F

G



  

A

B

C

D

E

F

G



  

A

B

C

G

D

E

F



  

A

B

C

F

G

D

E



  

A

B

C

G

D

E

F



  

A

B

C

G

D

E

F



  

A

C

D F

B

G

E



  

A

C

D

FB

E

G



  

A

C

D

E

F

B G



  

A

B

C

D

E

F

G



  

Splaying, Empirically

● After a few splays, we went from a totally 
degenerate tree to a reasonably-balanced 
tree.

● Splaying nodes that are deep in the tree 
tends to correct the tree shape.

● Why is this?
● Is this a coincidence?



  

Why Splaying Works

● Claim: After doing a splay at x, the 
average depths of any nodes on the 
access path to x are halved.

● This helps eliminate long access paths, 
making lookups of elements near x faster 
in the future.
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>x
<p

<x

The average depth of x, 
p, and g is unchanged.

The average depth of x, 
p, and g is unchanged.

These subtrees decrease 
in height by one or two.

These subtrees decrease 
in height by one or two.
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The average height of x, p, 
and g decreases by ¹/₃.

The average height of x, p, 
and g decreases by ¹/₃.

These subtrees have their 
height decreased by one.

These subtrees have their 
height decreased by one.



  

x

r
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<x
>x
<p

x

r
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>x
<p >p

There is no net 
change in the 

height of x or r.

There is no net 
change in the 

height of x or r.

The nodes in this subtree have 
their height decreased by one.

The nodes in this subtree have 
their height decreased by one.



  

An Intuition for Splaying

● Each rotation done only slightly penalizes each 
other part of the tree (say, adding +1 or +2 
depth).

● Each splay rapidly cuts down the height of each 
node on the access path.

● Slow growth in height, combined with rapid drop 
in height, is a hallmark of amortized eficiency.

● Claim: The original “rotate-to-root” idea from 
before doesn't do this, which partially explains 
why it's not a good strategy.
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The Wonderful World of Splaying



  

Some Claims

● Claim 1: The amortized cost of splaying 
a node up to the root is O(log n).

● Claim 2: The amortized cost of splaying 
a node up to the root can be o(log n) if 
the access pattern is non-uniform.

● We'll prove these results later today.



  

Making Things Easy

● Splay trees provide make it extremely 
easy to perform the following operations:
● lookup
● insert
● delete
● predecessor / successor
● join
● split

● Let's see why.



  

Lookups

● To do a lookup in a 
splay tree:
● Search for that 

item as usual.
● If it's found, splay 

it up to the root.
● Otherwise, splay 

the last-visited 
node to the root.
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Insertions

● To insert a node 
into a splay tree:
● Insert the node as 

usual.
● Splay it up to the 

root.
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Insertions

● To insert a node 
into a splay tree:
● Insert the node as 
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Join

● To join two trees T₁ and T₂, where all 
keys in T₁ are less than the keys in T₂:
● Splay the max element of T₁ to the root.
● Make T₂ a right child of T₁.

T₁ T₂
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Split

● To split T at a key k:
● Splay the successor of k up to the root.
● Cut the link from the root to its left child.

T



  

Split

● To split T at a key k:
● Splay the successor of k up to the root.
● Cut the link from the root to its left child.

T



  

Split

● To split T at a key k:
● Splay the successor of k up to the root.
● Cut the link from the root to its left child.

T₁ T₂



  

Split

● To split T at a key k:
● Splay the successor of k up to the root.
● Cut the link from the root to its left child.

T₁ T₂



  

Delete

● To delete a key k from the tree:
● Splay k to the root.
● Delete k.
● Join the two resulting subtrees.
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Delete

● To delete a key k from the tree:
● Splay k to the root.
● Delete k.
● Join the two resulting subtrees.

T'



  

The Runtime

● Claim: All of these operations require 
amortized time O(log n).

● Rationale: Each has runtime bounded 
by the cost of O(1) splays, which takes 
total amortized time O(log n).

● Contrast this with red/black trees:
● No need to store any kind of balance 

information.
● Only three rules to memorize.



  

So... just how fast are splay trees?



  

Time-Out for Announcements!



  

The Stanford Women in Computer Science EXEC 
Applicaton is CURRENTLY LIVE

Interested in being an infuental promoter of women in computer science?
 

Want to shape the future of Stanford's computer science community? 

How about meetng some of the most talented CS students at Stanford? 

You've come to the right place! ALL genders welcome to apply!
 
 

Check out our chair positons for next year's program and make sure to apply by
Friday, May 11 at 11:59pm!

 
If you have questons, please don't hesitate to reach out to Lauren Zhu (laurenz@stanford.edu) 

and Makena Low (makenal@stanford.edu).

https://quip.com/bSLHAbO3TIie
https://goo.gl/forms/wbehCSvKDhRTWLAU2
mailto:laurenz@stanford.edu
mailto:makenal@stanford.edu


  

Problem Set Four

● Problem Set Four goes out today. It's due 
next Thursday at 2:30PM.
● Play around with amortized analyses, binomial 

heaps, Fibonacci heaps, and splay trees!
● Problem Set Three solutions are now up 

on the course website.
● Have questions? Feel free to stop by ofice 

hours or to ask on Piazza!



  

Final Project Logistics

● As a reminder, the fnal project proposal 
is due this Thursday at 2:30PM.

● No late days may be used here. We’d 
like to get our matchmaking done as 
early as possible.

● There’s a huge list of potential topics up 
on the course website. Feel free to read 
over it for inspiration!



  

Back to CS166!



  

The Tricky Part: Formalizing This



  

Analyzing BSTs

● Let's assume that every element xᵢ in our BST 
has some associated weight wᵢ.

● We'll assume that access probabilities are 
proportional to weights, though we won't assume 
the weights sum to 1. (This is just for 
mathematical simplicity.)

● Let W denote the sum w₁ + w₂ + … + wₙ.
● Imagine we have some fxed BST T containing 

the keys x₁, …, xₙ. Let sᵢ denote the sum of all the 
weights of the keys in the subtree rooted at xᵢ. 
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Every blue edge throws away half of 
the total weight remaining.

 

We begin with W total weight. If we're 
searching for xᵢ, the weight at the last 

node visited must be at least wᵢ.
 

You can only throw away half the total 
weight log (W / wᵢ) times before the 

total weight drops to wᵢ. 
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decomposition and is used 
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of data structures.
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We need a potential function Φ 
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The Net Result

● Theorem: Using the potential function from 
before, the amortized cost of splaying key xᵢ is

1 + 3 lg (W / wᵢ) = Θ(1 + log (W / wᵢ)),

where W = w₁ + w₂ + … + wₙ.
● The math behind this theorem is nontrivial and not 

at all interesting. It's just hard math gymnastics. 
Check Sleator and Tarjan's paper for details!

● This theorem holds for any choice of weights wᵢ 
assigned to the nodes, so it's useful for proving a 
number of nice results about splay trees.

● There's a subtle catch, though...



  

An Important Detail

● Recall: When using the potential method, the 
sum of the amortized costs relates to the sum 
of the real costs as follows:

 

 
● Therefore:

● The actual cost is bounded by the sum of the 
amortized costs, plus the drop in potential.

∑
i=1

m

a(opi) = ∑
i=1

m

t (opi) + O(1)⋅(Φm+1−Φ1)

∑
i=1

m

a(opi) + O(1)⋅(Φ1−Φm+1) = ∑
i=1

m

t (opi)



  

An Important Detail

● Previously, when we've analyzed amortized-
eficient data structures, our potential function 
started at 0 and ended nonnegative.

● With our current choice of

 
if we're given a tree and then start splaying, 
our initial potential is nonzero, and our fnal 
potential might be lower than initial.

● This means that if we perform m operations on 
an n-element splay tree, we need to factor 
Φ₁ - Φₘ₊₁ into the total cost. 

Φ = ∑
i=1

n

lg si



  

Analyzing Splay Trees

● To analyze the cost of splay tree 
operations, we'll proceed in three steps:
● First, assign the weights to the nodes in a way 

that correlates weights and access patterns.
● Second, use the amortized cost from before to 

determine the cost of each splay.
● Finally, factor in the potential drop to account 

for the “startup cost.”
● The net result can be used to bound the 

cost of splaying.



  

Theorem (Balance Theorem): The cost of performing m
operations on an n-node splay tree is O(m log n + n log n).

Proof: The runtime of each operation is bounded by the cost of
O(1) splays, so we'll bound the overall runtime by bounding
the costs of the splays involved.

Assign each key xᵢ weight wᵢ = 1. The amortized cost of 
performing a splay at a key xᵢ is then

         = 1 + 3 lg (W / wᵢ) 
         = 1 + 3 lg (n / 1)
         = O(log n).

 To bound the total drop in potential, note that in the worst
case any key xᵢ may initially be in a subtree of total weight
n and end in a subtree of total weight 1. Therefore, the
maximum possible potential drop is

    
 So the total cost of performing m operations on an n-node

splay tree is O(m log n + n log n), as required. ■
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A Stronger Result

● Recall: A statically optimal binary search 
tree has expected lookup cost Θ(1 + H), 
where H is the Shannon entropy of the 
access probability distribution.

● Claim: In a sense, splay trees achieve 
this statically optimal bound.



  

Static Optimality Theorem: Let S = { x₁, …, xₙ } be a
set of keys stored in a splay tree. Suppose a series of
lookups is performed where

 

· every node is accessed at least once, and
· all lookups are successful.

 

 Then the amortized cost of each access is O(1 + H),
where H is the Shannon entropy of the access
distribution.



  

Proof: Assign each key xᵢ weight pᵢ, where pᵢ is the fraction of
the lookups that access xᵢ. The amortized cost of a lookup of
xᵢ is therefore at most

1 + 3 lg (W / wᵢ) = 1 + 3 lg (1 / pᵢ) = 1 – 3 lg pᵢ.   

Since each element is accessed mpᵢ times, the sum of the 
amortized lookup times is given by

  
To bound the total drop in potential, notice that each node 
contributes lg sᵢ to the potential, where sᵢ is the weight of 
the subtree rooted at sᵢ. The maximum value of sᵢ is 1 (when 
all nodes are in the tree) and the minimum value of sᵢ is pᵢ 
(when xᵢ is by itself), so the maximum possible potential 
drop from a single element is given by -lg pᵢ. Therefore, the 
maximum potential drop is

 
So the cost of the m lookups is O(m + mH), and since there 
are m lookups, the amortized cost of each is O(1 + H). ■
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drop from a single element is given by -lg pᵢ. Therefore, the 
maximum potential drop is

 
So the cost of the m lookups is O(m + mH), and since there 
are m lookups, the amortized cost of each is O(1 + H). ■

∑
i=1

n

(mpi(1−3lgpi)) = m∑
i=1

n

(pi − 3pi lgpi) = m + 3mH .

∑
i=1

n

−lgpi ≤ ∑
i=1

n

−mpi lgpi = m∑
i=1

n

−pi lgpi = m H



  

Beating Static Optimality

● On many classes of access sequences, splay trees can 
outperform statically optimal BSTs.

● The sequential access theorem says that

If you look up all n elements in a splay tree in ascending 
order, the amortized cost of each lookup is O(1).

● The working-set theorem says that

If you perform Ω(n log n) successful lookups, the 
amortized cost of each successful lookup is O(1 + log t), 

where t is the number of searches since we last looked up 
the element searched for.

● In the upcoming programming assignment, you'll compare 
the performance of splay trees to (nearly) optimal BSTs. 
See if you notice anything interesting in these cases!



  

An Open Problem: Dynamic Optimality



  

Many Flavors of BSTs

● Over the course of this quarter, we’ve seen a bunch of 
diferent types of BSTs:
● Weight-balanced trees (PS2, PS4)
● Red/black trees
● AVL trees
● Splay trees

● Each tree structure makes a diferent set of tradeofs 
(per-operation eficient vs. amortized eficient, fast 
lookups vs. fast insertions, static vs. dynamic, etc.)

● Question: Is there a single BST data structure that’s the 
“best” possible choice across all BSTs?



  

The Ofine Perfect BST

● Imagine that you’re told, in advance, that you’ll be 
maintaining a binary search tree that will have a 
particular series of operations X performed on it.

● You’re allowed unlimited time to plan out the exact 
sequence of rotations and updates you’re going to 
make on your tree.

● The cost of your solution is the number of primitive 
tree operations performed on your BST (for example, 
following pointers, performing rotations, etc.)

● We’ll denote by OPT(X) the minimum possible cost 
associated with performing your series of operations 
on your BST.



  

Dynamic Optimality

● Suppose you have a binary search tree data 
structure T maintained according to some 
algorithm (e.g. red/black rules, splaying, etc.)

● We say that T is dynamically optimal if the 
cost of performing any series of operations X 
on T is O(OPT(X)).

● For example, red/black trees are not 
dynamically optimal, since the cost of 
performing a low-entropy series of lookups on 
an optimal BST is O(m + mH), whereas it 
could be Θ(m log n) in a red/black tree.



  

The Conjecture

● Conjectured: Splay trees are dynamically 
optimal.
● In other words, there is no known series of 

operations we can perform on a splay tree 
that does any more than a constant factor 
worse than the cost of performing those 
operations on any dynamic search tree!

● We’re probably still a ways of on being able to 
prove or disprove this statement. It’s an active 
area of research!



  

More to Explore

● In 2004, Demaine et al. invented the tango tree, which is at 
most an O(log log n) factor away from dynamic optimality.

● In 2006, Wang et al. developed the multisplay tree, which is 
also at most a factor of O(log log n) from dynamic optimality.

● In 2007, Pettie proved that if a splay tree is used to implement a 
deque, then the amortized cost of each operation is O(α*(n)), 
where α*(n) is the number of times the Ackermann inverse 
function needs to be applied to n to drop it to a constant.

● In 2009, Demaine et al. published “The Geometry of Binary 
Search Trees,” providing a new framework for analyzing 
dynamic optimality.

● In 2012, Bose et al. developed the crazy good chocolate pop 
tart, a type of stack implemented with a binary search tree, and 
used it to build a worst-case eficient version of the splay tree.



  

Next Time

● Randomized Data Structures
● How do we trade worst-case guarantees for 

probabilistic guarantees?
● Count[-Min] Sketches

● Counting in sublinear space.
● Concentration Inequalities

● How do we show that we're near the 
expected value most of the time?
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