

Splay Trees

Outline for Today

● Static Optimality
● Balanced BSTs aren't necessarily optimal!

● Splay Trees
● A self-adjusting binary search tree.

● Properties of Splay Trees
● Why is splaying worthwhile?

● Dynamic Optimality (ITA)
● An open problem in data structures.

Static Optimality

Balanced BSTs

● Balanced BSTs guarantee tree operations run in worst-
case time O(log n).

● Claim: If the elements in the tree aren't accessed
uniformly, then a balanced BST might not actually be
the ideal BST.

1

2

3

4

5

6

7

Balanced BSTs

● Balanced BSTs guarantee tree operations run in worst-
case time O(log n).

● Claim: If the elements in the tree aren't accessed
uniformly, then a balanced BST might not actually be
the ideal BST.

1

2

3

4

5

6

7

Balanced BSTs

● Balanced BSTs guarantee tree operations run in worst-
case time O(log n).

● Claim: If the elements in the tree aren't accessed
uniformly, then a balanced BST might not actually be
the ideal BST.

2

5

4

3

6

7

1

Balanced BSTs

● Balanced BSTs guarantee tree operations run in worst-
case time O(log n).

● Claim: If the elements in the tree aren't accessed
uniformly, then a balanced BST might not actually be
the ideal BST.

2

5

4

3

6

7

1

Balanced BSTs

● Balanced BSTs guarantee tree operations run in worst-
case time O(log n).

● Claim: If the elements in the tree aren't accessed
uniformly, then a balanced BST might not actually be
the ideal BST.

2

5

4

3

6

7

1

Balanced BSTs

● Balanced BSTs guarantee tree operations run in worst-
case time O(log n).

● Claim: If the elements in the tree aren't accessed
uniformly, then a balanced BST might not actually be
the ideal BST.

7

1

4

4

2

5

6

3

Balanced BSTs

● Balanced BSTs guarantee tree operations run in worst-
case time O(log n).

● Claim: If the elements in the tree aren't accessed
uniformly, then a balanced BST might not actually be
the ideal BST.

7

1

4

4

2

5

6

3

Static Optimality

● Let S = { x₁, x₂, …, xₙ } be a set with access
probabilities p₁, p₂, …, pₙ.

● If T is a BST whose keys are the keys in S, then let XT
be a random variable equal to the number of nodes in
T that are touched when performing a lookup,
assuming the key to look up is sampled from the
above probability distribution.

● Goal: Construct a binary search tree T* such that
E[XT*] is minimal.

● T* is called a statically optimal binary search tree.

Static Optimality

● Theorem: There is an O(n2)-time dynamic
programming algorithm for constructing statically
optimal binary search trees.

● Knuth, 1971. (See CLRS)
● Theorem: Weight-balanced trees whose weights

are the element access probabilities have an
expected lookup cost with a factor of 1.5 of a
statically-optimal tree.

● Mehlhorn, 1975.
● You can build a weight-balanced tree for a set of

keys in time O(n) using a clever divide-and-
conquer algorithm. You'll see this in PS4.

Finding a Lower Bound

● Suppose we design a BST data structure where the cost
of any lookup is O(log n).

● You’d intuitively know that, at least from the perspective
of worst-case eficiency, you couldn’t improve on the cost
of a lookup by more than a constant factor.

● Why is this?
● Justifcation: Every BST with n elements has a worst-

case lookup time of Ω(log n), since some element has to
be at depth at least Ω(log n).

● An O(log n) upper bound matches this lower bound, and
therefore can’t be improved.

Finding a Lower Bound

● Right now, we have an Ω(log n) lower
bound on the worst-case cost of a lookup
in a BST.

● Question: Can we fnd some sort of
lower bound on the expected cost of a
lookup in a BST?
● Here, the expectation is taken over the

access probabilities.

Static Optimality

Static Optimality

Intuition: Try to
place nodes with

higher access
probabilities higher

up in the tree.

Intuition: Try to
place nodes with

higher access
probabilities higher

up in the tree.

Static Optimality

Anything with access
probability ¹/₄ or above
probably shouldn’t be

below this point.

Anything with access
probability ¹/₄ or above
probably shouldn’t be

below this point.

Static Optimality

Anything with access
probability ¹/₈ or above
probably shouldn’t be

below this point.

Anything with access
probability ¹/₈ or above
probably shouldn’t be

below this point.

Static Optimality

Idea: If a key has access
probability 2-k, it should
probably go at level k or

higher.

Idea: If a key has access
probability 2-k, it should
probably go at level k or

higher.

Static Optimality

Idea: If a key has access
probability 2-k, it should
probably go at level k or

higher.

Idea: If a key has access
probability 2-k, it should
probably go at level k or

higher.

A key with access
probability pᵢ ends
up roughly at level
-lg pᵢ in the tree.

A key with access
probability pᵢ ends
up roughly at level
-lg pᵢ in the tree.

Static Optimality

The cost of looking up
some key xᵢ is roughly
equal to the depth of

the key xᵢ: -lg pᵢ.

So it's reasonable to
suspect that the

expected lookup cost to
roughly work out to

The cost of looking up
some key xᵢ is roughly
equal to the depth of

the key xᵢ: -lg pᵢ.

So it's reasonable to
suspect that the

expected lookup cost to
roughly work out to

Static Optimality

The cost of looking up
some key xᵢ is roughly
equal to the depth of

the key xᵢ: -lg pᵢ.

So it's reasonable to
suspect that the

expected lookup cost to
roughly work out to

The cost of looking up
some key xᵢ is roughly
equal to the depth of

the key xᵢ: -lg pᵢ.

So it's reasonable to
suspect that the

expected lookup cost to
roughly work out to

∑
i=1

n

−pi lgpi .

Shannon Entropy

● Consider a discrete probability distribution with elements
x₁, …, xₙ, where element xᵢ has access probability pᵢ.

● The Shannon entropy of this probability distribution,
denoted Hₚ (or just H, where p is implicit) is the quantity

Hp = ∑
i=1

n

−pi lgpi .

If we have n elements with equal
access probability (pᵢ = ¹/ₙ), then

Hp = ∑
i=1

n

−pi lgpi

= ∑
i=1

n
1
n (−lg 1

n)
= ∑

i=1

n 1
n

lgn

= lgn

If we have one element accessed
100% of the time (p₁ = 1) and all
other elements are never
accessed (pᵢ = 0), then

Hp = ∑
i=1

n

−pi lgpi

= −lg1 + ∑
i=2

n

0lg0

= 0

Static Optimality

● Consider a discrete probability distribution with elements
x₁, …, xₙ, where element xᵢ has access probability pᵢ.

● The Shannon entropy of this probability distribution,
denoted Hₚ (or just H, where p is implicit) is the quantity

● Theorem: The expected lookup cost in any binary search
tree for keys x₁, …, xₙ with access probabilities p₁, …, pₙ
is Ω(1 + H).

● Theorem: For any set of keys xᵢ with access probabilities
pᵢ, there is a BST that whose expected lookup time is
Θ(1 + H).

Hp = ∑
i=1

n

−pi lgpi .

Weaknesses of Static Optimality

● Statically optimal BSTs are fantastic if the
lookups are sampled randomly from a fxed
distribution.

● However, what if you don't know anything
about the particular access pattern you're going
to have?

● Question 1: Is it possible to build a BST with
O(1 + H) expected lookup time if the
probability distribution isn't known in advance?

Weaknesses of Static Optimality

● Just knowing the access probabilities doesn't
guarantee that you can build a good BST.

● Example: Suppose you’re working at Yelp and want
to support restaurant searches worldwide.

● There’s some baseline probability distribution about
which places get more lookups (New York City) than
others (Barrow, AK).

● However, there’s also a time-sensitivity: some areas
will be “hotter” for searches than others based on
wherever people are looking for lunches or dinners.

● Question 2: Can we build a BST that adapts to access
patterns beyond just the global access probabilities?

Challenge: Can we build a BST that meets
the static optimality requirements, but is

also sensitive to access patterns?

And can we do it without advance
knowledge of the access pattern?

The Intuition

● If we don't know the access probabilities
in advance, we can't build a fxed BST
and then “hope” it works correctly.

● Instead, we'll have to restructure the
BST as operations are performed.

● For now, let's focus on lookups; we'll
handle insertions and deletions later on.

Refresher: Tree Rotations

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

Rotate Left

An Initial Approach

D

B

A C

F

E G

An Initial Approach

D

B

A C

F

E G

An Initial Approach

D

B

A C F

E

G

An Initial Approach

D

B

A C

F

E

G

An Initial Approach

D

B

A C

F

E

G

An Initial Approach

D

B

A C

F

E

G

An Initial Approach

D

B

A

C

F

E

G

An Initial Approach

DB

A

C F

E

G

An Initial Approach

D

B

A

C

F

E

G

An Initial Approach

D

B

A

C

F

E

G

An Initial Approach

D

B

A

C

F

E

G

An Initial Approach

DB

A

C F

E

G

An Initial Idea

● Begin with an arbitrary BST.
● After looking up an element, repeatedly

rotate that element with its parent until it
becomes the root.

● Intuition:
● Recently-accessed elements will be up near

the root of the tree, lowering access time.
● Unused elements stay low in the tree.

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

Rotations
Needed: 5

Rotations
Needed: 5

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

Rotations
Needed: 4

Rotations
Needed: 4

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E
Rotations
Needed: 3

Rotations
Needed: 3

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

Rotations
Needed: 2

Rotations
Needed: 2

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

Rotations
Needed: 1

Rotations
Needed: 1

The Problem

A

B

C

D

E

The Problem

A

B

C

D

E

We're right
back where we

started!

We're right
back where we

started!

The Problem

● The “rotate to root” method might result
in n accesses taking time Θ(n2).

● Why?
● The cost of looking up a key x depends

on the length of the access path to x.
● Rotating x up to the root doesn’t always

improve that access path.
● Future lookups deep down near where x

used to be will still be slow.

A More Balanced Approach

● In 1983, Daniel Sleator and Robert
Tarjan invented an operation called
splaying.

● Splaying rotates an element to the root
of the tree, but does so in a way that's
more “fair” to other nodes in the tree.

● Each splay works by applying one of
three templates to determine which
rotations to apply.

Case 1: Zig-Zag

x

p

g

>p

>g
<x

>x
<p

<g

x

g p

<g
>g
<x

>x
<p >p

First, rotate x with p.
Then, rotate x with g.

Continue moving x up the tree.

First, rotate x with p.
Then, rotate x with g.

Continue moving x up the tree.

Case 2: Zig-Zig

x

p

g

>p
<g

<x
>x
<p

>g

x

p

g

>g
>p
<g

>x
<p

<x

First, rotate p with g.
Then, rotate x with p.

Continue moving x up the tree.

First, rotate p with g.
Then, rotate x with p.

Continue moving x up the tree.

Case 3: Zig

x

r

>p

<x
>x
<p

x

r

<x

>x
<p >p

Rotate x with r
x is now the root.

Rotate x with r
x is now the root.

(Assume r is the
tree root)

(Assume r is the
tree root)

A

B

C

D

E

F

G

A

B

C

D

E

F

G

A

B

C

D

E

F

G

A

B

C

D

E

F

G

A

B

C

D

E

F

G

A

B

C

D

E

F

G

A

B

C

D

E

F

G

A

B

D

E

F

GC

A

B

E

F

G

C

D

A

B

E

F

G

C

D

FC

D

A

B

E

G

B

C

D

E

F

A G

C

D

E

F

G

A

B

A

B

C

D

E

F

G

A

B

C

D

E

F

G

A

B

C

G

D

E

F

A

B

C

F

G

D

E

A

B

C

G

D

E

F

A

B

C

G

D

E

F

A

C

D F

B

G

E

A

C

D

FB

E

G

A

C

D

E

F

B G

A

B

C

D

E

F

G

Splaying, Empirically

● After a few splays, we went from a totally
degenerate tree to a reasonably-balanced
tree.

● Splaying nodes that are deep in the tree
tends to correct the tree shape.

● Why is this?
● Is this a coincidence?

Why Splaying Works

● Claim: After doing a splay at x, the
average depths of any nodes on the
access path to x are halved.

● This helps eliminate long access paths,
making lookups of elements near x faster
in the future.

x

p

g

>p
<g

<x
>x
<p

>g

x

p

g

>g
>p
<g

>x
<p

<x

The average depth of x,
p, and g is unchanged.

The average depth of x,
p, and g is unchanged.

These subtrees decrease
in height by one or two.

These subtrees decrease
in height by one or two.

x

p

g

>p

>g
<x

>x
<p

<g

x

g p

<g
>g
<x

>x
<p >p

The average height of x, p,
and g decreases by ¹/₃.

The average height of x, p,
and g decreases by ¹/₃.

These subtrees have their
height decreased by one.

These subtrees have their
height decreased by one.

x

r

>p

<x
>x
<p

x

r

<x

>x
<p >p

There is no net
change in the

height of x or r.

There is no net
change in the

height of x or r.

The nodes in this subtree have
their height decreased by one.

The nodes in this subtree have
their height decreased by one.

An Intuition for Splaying

● Each rotation done only slightly penalizes each
other part of the tree (say, adding +1 or +2
depth).

● Each splay rapidly cuts down the height of each
node on the access path.

● Slow growth in height, combined with rapid drop
in height, is a hallmark of amortized eficiency.

● Claim: The original “rotate-to-root” idea from
before doesn't do this, which partially explains
why it's not a good strategy.

x

p

g

>p
<g

<x
>x
<p

>g

x

p

>p
<g

<x

>x
<p

g

>g

Rotate-to-Root

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

Why Rotate-to-Root Fails

A

B

C

D

E

The Wonderful World of Splaying

Some Claims

● Claim 1: The amortized cost of splaying
a node up to the root is O(log n).

● Claim 2: The amortized cost of splaying
a node up to the root can be o(log n) if
the access pattern is non-uniform.

● We'll prove these results later today.

Making Things Easy

● Splay trees provide make it extremely
easy to perform the following operations:
● lookup
● insert
● delete
● predecessor / successor
● join
● split

● Let's see why.

Lookups

● To do a lookup in a
splay tree:
● Search for that

item as usual.
● If it's found, splay

it up to the root.
● Otherwise, splay

the last-visited
node to the root.

Lookups

● To do a lookup in a
splay tree:
● Search for that

item as usual.
● If it's found, splay

it up to the root.
● Otherwise, splay

the last-visited
node to the root.

Lookups

● To do a lookup in a
splay tree:
● Search for that

item as usual.
● If it's found, splay

it up to the root.
● Otherwise, splay

the last-visited
node to the root.

Lookups

● To do a lookup in a
splay tree:
● Search for that

item as usual.
● If it's found, splay

it up to the root.
● Otherwise, splay

the last-visited
node to the root.

Lookups

● To do a lookup in a
splay tree:
● Search for that

item as usual.
● If it's found, splay

it up to the root.
● Otherwise, splay

the last-visited
node to the root.

Insertions

● To insert a node
into a splay tree:
● Insert the node as

usual.
● Splay it up to the

root.

Insertions

● To insert a node
into a splay tree:
● Insert the node as

usual.
● Splay it up to the

root.

Insertions

● To insert a node
into a splay tree:
● Insert the node as

usual.
● Splay it up to the

root.

Insertions

● To insert a node
into a splay tree:
● Insert the node as

usual.
● Splay it up to the

root.

Insertions

● To insert a node
into a splay tree:
● Insert the node as

usual.
● Splay it up to the

root.

Insertions

● To insert a node
into a splay tree:
● Insert the node as

usual.
● Splay it up to the

root.

Insertions

● To insert a node
into a splay tree:
● Insert the node as

usual.
● Splay it up to the

root.

Join

● To join two trees T₁ and T₂, where all
keys in T₁ are less than the keys in T₂:
● Splay the max element of T₁ to the root.
● Make T₂ a right child of T₁.

T₁ T₂

Join

● To join two trees T₁ and T₂, where all
keys in T₁ are less than the keys in T₂:
● Splay the max element of T₁ to the root.
● Make T₂ a right child of T₁.

T₁ T₂

Join

● To join two trees T₁ and T₂, where all
keys in T₁ are less than the keys in T₂:
● Splay the max element of T₁ to the root.
● Make T₂ a right child of T₁.

T₁ T₂

Join

● To join two trees T₁ and T₂, where all
keys in T₁ are less than the keys in T₂:
● Splay the max element of T₁ to the root.
● Make T₂ a right child of T₁.

T₁ T₂

Split

● To split T at a key k:
● Splay the successor of k up to the root.
● Cut the link from the root to its left child.

T

Split

● To split T at a key k:
● Splay the successor of k up to the root.
● Cut the link from the root to its left child.

T

Split

● To split T at a key k:
● Splay the successor of k up to the root.
● Cut the link from the root to its left child.

T₁ T₂

Split

● To split T at a key k:
● Splay the successor of k up to the root.
● Cut the link from the root to its left child.

T₁ T₂

Delete

● To delete a key k from the tree:
● Splay k to the root.
● Delete k.
● Join the two resulting subtrees.

T

Delete

● To delete a key k from the tree:
● Splay k to the root.
● Delete k.
● Join the two resulting subtrees.

T

k

Delete

● To delete a key k from the tree:
● Splay k to the root.
● Delete k.
● Join the two resulting subtrees.

T₁

k

T₂

Delete

● To delete a key k from the tree:
● Splay k to the root.
● Delete k.
● Join the two resulting subtrees.

T₁ T₂

Delete

● To delete a key k from the tree:
● Splay k to the root.
● Delete k.
● Join the two resulting subtrees.

T'

The Runtime

● Claim: All of these operations require
amortized time O(log n).

● Rationale: Each has runtime bounded
by the cost of O(1) splays, which takes
total amortized time O(log n).

● Contrast this with red/black trees:
● No need to store any kind of balance

information.
● Only three rules to memorize.

So... just how fast are splay trees?

Time-Out for Announcements!

The Stanford Women in Computer Science EXEC
Applicaton is CURRENTLY LIVE

Interested in being an infuental promoter of women in computer science?

Want to shape the future of Stanford's computer science community?

How about meetng some of the most talented CS students at Stanford?

You've come to the right place! ALL genders welcome to apply!

Check out our chair positons for next year's program and make sure to apply by
Friday, May 11 at 11:59pm!

If you have questons, please don't hesitate to reach out to Lauren Zhu (laurenz@stanford.edu)

and Makena Low (makenal@stanford.edu).

https://quip.com/bSLHAbO3TIie
https://goo.gl/forms/wbehCSvKDhRTWLAU2
mailto:laurenz@stanford.edu
mailto:makenal@stanford.edu

Problem Set Four

● Problem Set Four goes out today. It's due
next Thursday at 2:30PM.
● Play around with amortized analyses, binomial

heaps, Fibonacci heaps, and splay trees!
● Problem Set Three solutions are now up

on the course website.
● Have questions? Feel free to stop by ofice

hours or to ask on Piazza!

Final Project Logistics

● As a reminder, the fnal project proposal
is due this Thursday at 2:30PM.

● No late days may be used here. We’d
like to get our matchmaking done as
early as possible.

● There’s a huge list of potential topics up
on the course website. Feel free to read
over it for inspiration!

Back to CS166!

The Tricky Part: Formalizing This

Analyzing BSTs

● Let's assume that every element xᵢ in our BST
has some associated weight wᵢ.

● We'll assume that access probabilities are
proportional to weights, though we won't assume
the weights sum to 1. (This is just for
mathematical simplicity.)

● Let W denote the sum w₁ + w₂ + … + wₙ.
● Imagine we have some fxed BST T containing

the keys x₁, …, xₙ. Let sᵢ denote the sum of all the
weights of the keys in the subtree rooted at xᵢ.

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

snew > ½sold

snew ≤ ½sold

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

snew > ½sold

snew ≤ ½sold

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

snew > ½sold

snew ≤ ½sold

Cost of looking up xᵢ:

O(#blue-used + #red-used)

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

snew > ½sold

snew ≤ ½sold

Cost of looking up xᵢ:

O(log (W / wᵢ) + #red-used)

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

snew > ½sold

snew ≤ ½sold

Cost of looking up xᵢ:

O(log (W / wᵢ) + #red-used)

Every blue edge throws away half of
the total weight remaining.

We begin with W total weight. If we're
searching for xᵢ, the weight at the last

node visited must be at least wᵢ.

You can only throw away half the total
weight log (W / wᵢ) times before the

total weight drops to wᵢ.

Every blue edge throws away half of
the total weight remaining.

We begin with W total weight. If we're
searching for xᵢ, the weight at the last

node visited must be at least wᵢ.

You can only throw away half the total
weight log (W / wᵢ) times before the

total weight drops to wᵢ.

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

snew > ½sold

snew ≤ ½sold

Cost of looking up xᵢ:

O(log (W / wᵢ) + #red-used)

Every blue edge throws away half of
the total weight remaining.

We begin with W total weight. If we're
searching for xᵢ, the total weight at

node xᵢ must be at least wᵢ.

You can only throw away half the total
weight log (W / wᵢ) times before the

total weight drops to wᵢ.

Every blue edge throws away half of
the total weight remaining.

We begin with W total weight. If we're
searching for xᵢ, the total weight at

node xᵢ must be at least wᵢ.

You can only throw away half the total
weight log (W / wᵢ) times before the

total weight drops to wᵢ.

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

snew > ½sold

snew ≤ ½sold

Cost of looking up xᵢ:

O(log (W / wᵢ) + #red-used)

Every blue edge throws away half of
the total weight remaining.

We begin with W total weight. If we're
searching for xᵢ, the total weight at

node xᵢ must be at least wᵢ.

You can only throw away half the total
weight log (W / wᵢ) times before the

total weight drops to wᵢ.

Every blue edge throws away half of
the total weight remaining.

We begin with W total weight. If we're
searching for xᵢ, the total weight at

node xᵢ must be at least wᵢ.

You can only throw away half the total
weight log (W / wᵢ) times before the

total weight drops to wᵢ.

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

snew > ½sold

snew ≤ ½sold

Cost of looking up xᵢ:

O(log (W / wᵢ) + #red-used)

This technique of splitting edges into
“good” edges and “bad” edges is a

technique called a heavy/light
decomposition and is used

extensively in the design and analysis
of data structures.

This technique of splitting edges into
“good” edges and “bad” edges is a

technique called a heavy/light
decomposition and is used

extensively in the design and analysis
of data structures.

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

snew > ½sold

snew ≤ ½sold

Cost of looking up xᵢ:

O(log (W / wᵢ) + #red-used)

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

lg snew > lg (½sold)

lg snew ≤ lg (½sold)

Cost of looking up xᵢ:

O(log (W / wᵢ) + #red-used)

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

lg snew > lg sold – 1

lg snew ≤ lg sold
 – 1

Cost of looking up xᵢ:

O(log (W / wᵢ) + #red-used)

15

1 13

1 11

5

1 3

1 1

5

1 3

2

1

lg snew > lg sold – 1

lg snew ≤ lg sold
 – 1

Cost of looking up xᵢ:

O(log (W / wᵢ) + #red-used)

We need a potential function Φ
that looks at lg sᵢ for each key xᵢ.

Reasonable guess:

We need a potential function Φ
that looks at lg sᵢ for each key xᵢ.

Reasonable guess: Φ = ∑
i=1

n

lg si .

The Net Result

● Theorem: Using the potential function from
before, the amortized cost of splaying key xᵢ is

1 + 3 lg (W / wᵢ) = Θ(1 + log (W / wᵢ)),

where W = w₁ + w₂ + … + wₙ.
● The math behind this theorem is nontrivial and not

at all interesting. It's just hard math gymnastics.
Check Sleator and Tarjan's paper for details!

● This theorem holds for any choice of weights wᵢ
assigned to the nodes, so it's useful for proving a
number of nice results about splay trees.

● There's a subtle catch, though...

An Important Detail

● Recall: When using the potential method, the
sum of the amortized costs relates to the sum
of the real costs as follows:

● Therefore:

● The actual cost is bounded by the sum of the
amortized costs, plus the drop in potential.

∑
i=1

m

a(opi) = ∑
i=1

m

t (opi) + O(1)⋅(Φm+1−Φ1)

∑
i=1

m

a(opi) + O(1)⋅(Φ1−Φm+1) = ∑
i=1

m

t (opi)

An Important Detail

● Previously, when we've analyzed amortized-
eficient data structures, our potential function
started at 0 and ended nonnegative.

● With our current choice of

if we're given a tree and then start splaying,
our initial potential is nonzero, and our fnal
potential might be lower than initial.

● This means that if we perform m operations on
an n-element splay tree, we need to factor
Φ₁ - Φₘ₊₁ into the total cost.

Φ = ∑
i=1

n

lg si

Analyzing Splay Trees

● To analyze the cost of splay tree
operations, we'll proceed in three steps:
● First, assign the weights to the nodes in a way

that correlates weights and access patterns.
● Second, use the amortized cost from before to

determine the cost of each splay.
● Finally, factor in the potential drop to account

for the “startup cost.”
● The net result can be used to bound the

cost of splaying.

Theorem (Balance Theorem): The cost of performing m
operations on an n-node splay tree is O(m log n + n log n).

Proof: The runtime of each operation is bounded by the cost of
O(1) splays, so we'll bound the overall runtime by bounding
the costs of the splays involved.

Assign each key xᵢ weight wᵢ = 1. The amortized cost of
performing a splay at a key xᵢ is then

 = 1 + 3 lg (W / wᵢ)
 = 1 + 3 lg (n / 1)
 = O(log n).

 To bound the total drop in potential, note that in the worst
case any key xᵢ may initially be in a subtree of total weight
n and end in a subtree of total weight 1. Therefore, the
maximum possible potential drop is

 So the total cost of performing m operations on an n-node

splay tree is O(m log n + n log n), as required. ■

Theorem (Balance Theorem): The cost of performing m
operations on an n-node splay tree is O(m log n + n log n).

Proof: The runtime of each operation is bounded by the cost of
O(1) splays, so we'll bound the overall runtime by bounding
the costs of the splays involved.

Assign each key xᵢ weight wᵢ = 1. The amortized cost of
performing a splay at a key xᵢ is then

 = 1 + 3 lg (W / wᵢ)
 = 1 + 3 lg (n / 1)
 = O(log n).

 To bound the total drop in potential, note that in the worst
case any key xᵢ may initially be in a subtree of total weight
n and end in a subtree of total weight 1. Therefore, the
maximum possible potential drop is

 So the total cost of performing m operations on an n-node

splay tree is O(m log n + n log n), as required. ■

Theorem (Balance Theorem): The cost of performing m
operations on an n-node splay tree is O(m log n + n log n).

Proof: The runtime of each operation is bounded by the cost of
O(1) splays, so we'll bound the overall runtime by bounding
the costs of the splays involved.

Assign each key xᵢ weight wᵢ = 1. The amortized cost of
performing a splay at a key xᵢ is then

 = 1 + 3 lg (W / wᵢ)
 = 1 + 3 lg (n / 1)
 = O(log n).

 To bound the total drop in potential, note that in the worst
case any key xᵢ may initially be in a subtree of total weight
n and end in a subtree of total weight 1. Therefore, the
maximum possible potential drop is

 So the total cost of performing m operations on an n-node

splay tree is O(m log n + n log n), as required. ■

Theorem (Balance Theorem): The cost of performing m
operations on an n-node splay tree is O(m log n + n log n).

Proof: The runtime of each operation is bounded by the cost of
O(1) splays, so we'll bound the overall runtime by bounding
the costs of the splays involved.

Assign each key xᵢ weight wᵢ = 1. The amortized cost of
performing a splay at a key xᵢ is then

 = 1 + 3 lg (W / wᵢ)
 = 1 + 3 lg (n / 1)
 = O(log n).

 To bound the total drop in potential, note that in the worst
case any key xᵢ may initially be in a subtree of total weight
n and end in a subtree of total weight 1. Therefore, the
maximum possible potential drop is

 So the total cost of performing m operations on an n-node

splay tree is O(m log n + n log n), as required. ■

Theorem (Balance Theorem): The cost of performing m
operations on an n-node splay tree is O(m log n + n log n).

Proof: The runtime of each operation is bounded by the cost of
O(1) splays, so we'll bound the overall runtime by bounding
the costs of the splays involved.

Assign each key xᵢ weight wᵢ = 1. The amortized cost of
performing a splay at a key xᵢ is then

 = 1 + 3 lg (W / wᵢ)
 = 1 + 3 lg (n / 1)
 = O(log n).

 To bound the total drop in potential, note that in the worst
case any key xᵢ may initially be in a subtree of total weight
n and end in a subtree of total weight 1. Therefore, the
maximum possible potential drop is

 So the total cost of performing m operations on an n-node

splay tree is O(m log n + n log n), as required. ■

Theorem (Balance Theorem): The cost of performing m
operations on an n-node splay tree is O(m log n + n log n).

Proof: The runtime of each operation is bounded by the cost of
O(1) splays, so we'll bound the overall runtime by bounding
the costs of the splays involved.

Assign each key xᵢ weight wᵢ = 1. The amortized cost of
performing a splay at a key xᵢ is then

 = 1 + 3 lg (W / wᵢ)
 = 1 + 3 lg (n / 1)
 = O(log n).

 To bound the total drop in potential, note that in the worst
case any key xᵢ may initially be in a subtree of total weight
n and end in a subtree of total weight 1. Therefore, the
maximum possible potential drop is

 So the total cost of performing m operations on an n-node

splay tree is O(m log n + n log n), as required. ■

Theorem (Balance Theorem): The cost of performing m
operations on an n-node splay tree is O(m log n + n log n).

Proof: The runtime of each operation is bounded by the cost of
O(1) splays, so we'll bound the overall runtime by bounding
the costs of the splays involved.

Assign each key xᵢ weight wᵢ = 1. The amortized cost of
performing a splay at a key xᵢ is then

 = 1 + 3 lg (W / wᵢ)
 = 1 + 3 lg (n / 1)
 = O(log n).

 To bound the total drop in potential, note that in the worst
case any key xᵢ may initially be in a subtree of total weight
n and end in a subtree of total weight 1. Therefore, the
maximum possible potential drop is

 So the total cost of performing m operations on an n-node

splay tree is O(m log n + n log n), as required. ■

Theorem (Balance Theorem): The cost of performing m
operations on an n-node splay tree is O(m log n + n log n).

Proof: The runtime of each operation is bounded by the cost of
O(1) splays, so we'll bound the overall runtime by bounding
the costs of the splays involved.

Assign each key xᵢ weight wᵢ = 1. The amortized cost of
performing a splay at a key xᵢ is then

 = 1 + 3 lg (W / wᵢ)
 = 1 + 3 lg (n / 1)
 = O(log n).

 To bound the total drop in potential, note that in the worst
case any key xᵢ may initially be in a subtree of total weight
n and end in a subtree of total weight 1. Therefore, the
maximum possible potential drop is

 So the total cost of performing m operations on an n-node

splay tree is O(m log n + n log n), as required. ■

∑
i=1

n

lgn − ∑
i=1

n

lg1 = n lgn.

Theorem (Balance Theorem): The cost of performing m
operations on an n-node splay tree is O(m log n + n log n).

Proof: The runtime of each operation is bounded by the cost of
O(1) splays, so we'll bound the overall runtime by bounding
the costs of the splays involved.

Assign each key xᵢ weight wᵢ = 1. The amortized cost of
performing a splay at a key xᵢ is then

 = 1 + 3 lg (W / wᵢ)
 = 1 + 3 lg (n / 1)
 = O(log n).

 To bound the total drop in potential, note that in the worst
case any key xᵢ may initially be in a subtree of total weight
n and end in a subtree of total weight 1. Therefore, the
maximum possible potential drop is

 So the total cost of performing m operations on an n-node

splay tree is O(m log n + n log n), as required. ■

∑
i=1

n

lgn − ∑
i=1

n

lg1 = n lgn.

A Stronger Result

● Recall: A statically optimal binary search
tree has expected lookup cost Θ(1 + H),
where H is the Shannon entropy of the
access probability distribution.

● Claim: In a sense, splay trees achieve
this statically optimal bound.

Static Optimality Theorem: Let S = { x₁, …, xₙ } be a
set of keys stored in a splay tree. Suppose a series of
lookups is performed where

· every node is accessed at least once, and
· all lookups are successful.

 Then the amortized cost of each access is O(1 + H),
where H is the Shannon entropy of the access
distribution.

Proof: Assign each key xᵢ weight pᵢ, where pᵢ is the fraction of
the lookups that access xᵢ. The amortized cost of a lookup of
xᵢ is therefore at most

1 + 3 lg (W / wᵢ) = 1 + 3 lg (1 / pᵢ) = 1 – 3 lg pᵢ.

Since each element is accessed mpᵢ times, the sum of the
amortized lookup times is given by

To bound the total drop in potential, notice that each node
contributes lg sᵢ to the potential, where sᵢ is the weight of
the subtree rooted at sᵢ. The maximum value of sᵢ is 1 (when
all nodes are in the tree) and the minimum value of sᵢ is pᵢ
(when xᵢ is by itself), so the maximum possible potential
drop from a single element is given by -lg pᵢ. Therefore, the
maximum potential drop is

So the cost of the m lookups is O(m + mH), and since there
are m lookups, the amortized cost of each is O(1 + H). ■

Proof: Assign each key xᵢ weight pᵢ, where pᵢ is the fraction of
the lookups that access xᵢ. The amortized cost of a lookup of
xᵢ is therefore at most

1 + 3 lg (W / wᵢ) = 1 + 3 lg (1 / pᵢ) = 1 – 3 lg pᵢ.

Since each element is accessed mpᵢ times, the sum of the
amortized lookup times is given by

To bound the total drop in potential, notice that each node
contributes lg sᵢ to the potential, where sᵢ is the weight of
the subtree rooted at sᵢ. The maximum value of sᵢ is 1 (when
all nodes are in the tree) and the minimum value of sᵢ is pᵢ
(when xᵢ is by itself), so the maximum possible potential
drop from a single element is given by -lg pᵢ. Therefore, the
maximum potential drop is

So the cost of the m lookups is O(m + mH), and since there
are m lookups, the amortized cost of each is O(1 + H). ■

Proof: Assign each key xᵢ weight pᵢ, where pᵢ is the fraction of
the lookups that access xᵢ. The amortized cost of a lookup of
xᵢ is therefore at most

1 + 3 lg (W / wᵢ) = 1 + 3 lg (1 / pᵢ) = 1 – 3 lg pᵢ.

Since each element is accessed mpᵢ times, the sum of the
amortized lookup times is given by

To bound the total drop in potential, notice that each node
contributes lg sᵢ to the potential, where sᵢ is the weight of
the subtree rooted at sᵢ. The maximum value of sᵢ is 1 (when
all nodes are in the tree) and the minimum value of sᵢ is pᵢ
(when xᵢ is by itself), so the maximum possible potential
drop from a single element is given by -lg pᵢ. Therefore, the
maximum potential drop is

So the cost of the m lookups is O(m + mH), and since there
are m lookups, the amortized cost of each is O(1 + H). ■

Proof: Assign each key xᵢ weight pᵢ, where pᵢ is the fraction of
the lookups that access xᵢ. The amortized cost of a lookup of
xᵢ is therefore at most

1 + 3 lg (W / wᵢ) = 1 + 3 lg (1 / pᵢ) = 1 – 3 lg pᵢ.

Since each element is accessed mpᵢ times, the sum of the
amortized lookup times is given by

To bound the total drop in potential, notice that each node
contributes lg sᵢ to the potential, where sᵢ is the weight of
the subtree rooted at sᵢ. The maximum value of sᵢ is 1 (when
all nodes are in the tree) and the minimum value of sᵢ is pᵢ
(when xᵢ is by itself), so the maximum possible potential
drop from a single element is given by -lg pᵢ. Therefore, the
maximum potential drop is

So the cost of the m lookups is O(m + mH), and since there
are m lookups, the amortized cost of each is O(1 + H). ■

∑
i=1

n

(mpi(1−3lgpi)) = m∑
i=1

n

(pi − 3pi lgpi) = m + 3mH .

Proof: Assign each key xᵢ weight pᵢ, where pᵢ is the fraction of
the lookups that access xᵢ. The amortized cost of a lookup of
xᵢ is therefore at most

1 + 3 lg (W / wᵢ) = 1 + 3 lg (1 / pᵢ) = 1 – 3 lg pᵢ.

Since each element is accessed mpᵢ times, the sum of the
amortized lookup times is given by

To bound the total drop in potential, notice that each node
contributes lg sᵢ to the potential, where sᵢ is the weight of
the subtree rooted at sᵢ. The maximum value of sᵢ is 1 (when
all nodes are in the tree) and the minimum value of sᵢ is pᵢ
(when xᵢ is by itself), so the maximum possible potential
drop from a single element is given by -lg pᵢ. Therefore, the
maximum potential drop is

So the cost of the m lookups is O(m + mH), and since there
are m lookups, the amortized cost of each is O(1 + H). ■

∑
i=1

n

(mpi(1−3lgpi)) = m∑
i=1

n

(pi − 3pi lgpi) = m + 3mH .

Proof: Assign each key xᵢ weight pᵢ, where pᵢ is the fraction of
the lookups that access xᵢ. The amortized cost of a lookup of
xᵢ is therefore at most

1 + 3 lg (W / wᵢ) = 1 + 3 lg (1 / pᵢ) = 1 – 3 lg pᵢ.

Since each element is accessed mpᵢ times, the sum of the
amortized lookup times is given by

To bound the total drop in potential, notice that each node
contributes lg sᵢ to the potential, where sᵢ is the weight of
the subtree rooted at sᵢ. The maximum value of sᵢ is 1 (when
all nodes are in xᵢ's tree) and the minimum value of sᵢ is pᵢ
(when xᵢ is by itself), so the maximum possible potential
drop from a single element is given by -lg pᵢ. Therefore, the
maximum potential drop is

So the cost of the m lookups is O(m + mH), and since there
are m lookups, the amortized cost of each is O(1 + H). ■

∑
i=1

n

(mpi(1−3lgpi)) = m∑
i=1

n

(pi − 3pi lgpi) = m + 3mH .

Proof: Assign each key xᵢ weight pᵢ, where pᵢ is the fraction of
the lookups that access xᵢ. The amortized cost of a lookup of
xᵢ is therefore at most

1 + 3 lg (W / wᵢ) = 1 + 3 lg (1 / pᵢ) = 1 – 3 lg pᵢ.

Since each element is accessed mpᵢ times, the sum of the
amortized lookup times is given by

To bound the total drop in potential, notice that each node
contributes lg sᵢ to the potential, where sᵢ is the weight of
the subtree rooted at sᵢ. The maximum value of sᵢ is 1 (when
all nodes are in xᵢ's tree) and the minimum value of sᵢ is pᵢ
(when xᵢ is by itself), so the maximum possible potential
drop from a single element is given by -lg pᵢ. Therefore, the
maximum potential drop is

So the cost of the m lookups is O(m + mH), and since there
are m lookups, the amortized cost of each is O(1 + H). ■

∑
i=1

n

(mpi(1−3lgpi)) = m∑
i=1

n

(pi − 3pi lgpi) = m + 3mH .

∑
i=1

n

−lgpi ≤ ∑
i=1

n

−mpi lgpi = m∑
i=1

n

−pi lgpi = m H

Proof: Assign each key xᵢ weight pᵢ, where pᵢ is the fraction of
the lookups that access xᵢ. The amortized cost of a lookup of
xᵢ is therefore at most

1 + 3 lg (W / wᵢ) = 1 + 3 lg (1 / pᵢ) = 1 – 3 lg pᵢ.

Since each element is accessed mpᵢ times, the sum of the
amortized lookup times is given by

To bound the total drop in potential, notice that each node
contributes lg sᵢ to the potential, where sᵢ is the weight of
the subtree rooted at sᵢ. The maximum value of sᵢ is 1 (when
all nodes are in xᵢ's tree) and the minimum value of sᵢ is pᵢ
(when xᵢ is by itself), so the maximum possible potential
drop from a single element is given by -lg pᵢ. Therefore, the
maximum potential drop is

So the cost of the m lookups is O(m + mH), and since there
are m lookups, the amortized cost of each is O(1 + H). ■

∑
i=1

n

(mpi(1−3lgpi)) = m∑
i=1

n

(pi − 3pi lgpi) = m + 3mH .

∑
i=1

n

−lgpi ≤ ∑
i=1

n

−mpi lgpi = m∑
i=1

n

−pi lgpi = m H

Beating Static Optimality

● On many classes of access sequences, splay trees can
outperform statically optimal BSTs.

● The sequential access theorem says that

If you look up all n elements in a splay tree in ascending
order, the amortized cost of each lookup is O(1).

● The working-set theorem says that

If you perform Ω(n log n) successful lookups, the
amortized cost of each successful lookup is O(1 + log t),

where t is the number of searches since we last looked up
the element searched for.

● In the upcoming programming assignment, you'll compare
the performance of splay trees to (nearly) optimal BSTs.
See if you notice anything interesting in these cases!

An Open Problem: Dynamic Optimality

Many Flavors of BSTs

● Over the course of this quarter, we’ve seen a bunch of
diferent types of BSTs:
● Weight-balanced trees (PS2, PS4)
● Red/black trees
● AVL trees
● Splay trees

● Each tree structure makes a diferent set of tradeofs
(per-operation eficient vs. amortized eficient, fast
lookups vs. fast insertions, static vs. dynamic, etc.)

● Question: Is there a single BST data structure that’s the
“best” possible choice across all BSTs?

The Ofine Perfect BST

● Imagine that you’re told, in advance, that you’ll be
maintaining a binary search tree that will have a
particular series of operations X performed on it.

● You’re allowed unlimited time to plan out the exact
sequence of rotations and updates you’re going to
make on your tree.

● The cost of your solution is the number of primitive
tree operations performed on your BST (for example,
following pointers, performing rotations, etc.)

● We’ll denote by OPT(X) the minimum possible cost
associated with performing your series of operations
on your BST.

Dynamic Optimality

● Suppose you have a binary search tree data
structure T maintained according to some
algorithm (e.g. red/black rules, splaying, etc.)

● We say that T is dynamically optimal if the
cost of performing any series of operations X
on T is O(OPT(X)).

● For example, red/black trees are not
dynamically optimal, since the cost of
performing a low-entropy series of lookups on
an optimal BST is O(m + mH), whereas it
could be Θ(m log n) in a red/black tree.

The Conjecture

● Conjectured: Splay trees are dynamically
optimal.
● In other words, there is no known series of

operations we can perform on a splay tree
that does any more than a constant factor
worse than the cost of performing those
operations on any dynamic search tree!

● We’re probably still a ways of on being able to
prove or disprove this statement. It’s an active
area of research!

More to Explore

● In 2004, Demaine et al. invented the tango tree, which is at
most an O(log log n) factor away from dynamic optimality.

● In 2006, Wang et al. developed the multisplay tree, which is
also at most a factor of O(log log n) from dynamic optimality.

● In 2007, Pettie proved that if a splay tree is used to implement a
deque, then the amortized cost of each operation is O(α*(n)),
where α*(n) is the number of times the Ackermann inverse
function needs to be applied to n to drop it to a constant.

● In 2009, Demaine et al. published “The Geometry of Binary
Search Trees,” providing a new framework for analyzing
dynamic optimality.

● In 2012, Bose et al. developed the crazy good chocolate pop
tart, a type of stack implemented with a binary search tree, and
used it to build a worst-case eficient version of the splay tree.

Next Time

● Randomized Data Structures
● How do we trade worst-case guarantees for

probabilistic guarantees?
● Count[-Min] Sketches

● Counting in sublinear space.
● Concentration Inequalities

● How do we show that we're near the
expected value most of the time?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209

