Frequency Estimators

Outline for Today

- Randomized Data Structures
 - Our next approach to improving performance.
- Count-Min Sketches
 - A simple and powerful data structure for estimating frequencies.
- Count Sketches
 - Another approach for estimating frequencies.

Randomized Data Structures

Tradeoffs

- Data structure design is all about tradeoffs:
 - Trade preprocessing time for query time.
 - Trade asymptotic complexity for constant factors.
 - Trade worst-case per-operation guarantees for worst-case aggregate guarantees.

Randomization

- Randomization opens up new routes for tradeoffs in data structures:
 - Trade worst-case guarantees for average-case guarantees.
 - Trade exact answers for approximate answers.
- Over the next few lectures, we'll explore two families of data structures that make these tradeoffs:
 - Today: *Frequency estimators*.
 - Next Week: *Hash tables*.

Preliminaries: *What is a Hash Function?*

Hashing in Practice

- In most programming languages, each object has "a" hash code.
 - C++: std::hash
 - Java: **Object.hashCode**
 - Python: <u>hash</u>
- To store objects in a hash table, you just go and implement the appropriate function or type.
- In other words, hash functions are *intrinsic* properties of objects.

Hashing in Theoryland

- In Theoryland, a hash function is a function from some domain called the *universe* (typically denoted *W*) to some codomain.
- The codomain is usually a set of the form {0, 1, 2, 3, ..., m 1}, which we'll denote [m].
- We often will grab lots of different hash functions from the same universe \mathscr{U} to some codomain, and we'll assume we have access to as many of them as we need.
- In other words, hash functions are *extrinsic* to objects, and it's possible to have multiple different hash functions available at the same time.

Families of Hash Functions

- A *family* of hash functions is a set \mathscr{H} of hash functions with the same domain and codomain.
- The data structures we'll explore will assume that we have access to certain families of hash functions with nice properties.
- We'll then sample uniformly-random choices $h \in \mathscr{H}$ to use as needed.

Sampling Random Functions

• Here's a family of hash functions \mathscr{H} from \mathbb{N} to [137]:

 $\mathscr{H} = \{ f(n) = (an + b) \mod 137 \mid a, b \in [137] \}$

- In Theoryland, we'd model picking a uniformlyrandom hash function from \mathscr{H} as just that – sampling some $h \in \mathscr{H}$ uniformly.
- In The Real World, we'd probably model picking such a function like this:

```
int a = rand() % 137;
int b = rand() % 137;
int hash(int value) {
    return (a * value + b) % 137;
}
```

Characterizing Hash Functions

- Different algorithms and data structures require different guarantees from their hash functions.
- In CS161, you explored *universal hash functions* in the context of chained hash tables.
- For what we'll be doing in CS166, we're going to need hash functions with slightly stronger probabilistic guarantees.

Pairwise Independence

- Let \mathscr{H} be a family of hash functions from \mathscr{U} to some set \mathscr{C} .
- We say that \mathscr{H} is a **2-independent family of hash functions** if, for any distinct distinct $x, y \in \mathscr{U}$, if we choose a hash function $h \in \mathscr{H}$ uniformly at random, the following hold:

h(x) and h(y) are uniformly distributed over \mathcal{C} . h(x) and h(y) are independent.

• 2-independent hash functions are great hash functions when we want a nice distribution over the output space even after fixing some specific element.

3-Independence

- Let \mathscr{H} be a family of hash functions from \mathscr{U} to some set \mathscr{C} .
- We say that \mathscr{H} is a **3-independent family of hash functions** if, for any distinct distinct $x, y, z \in \mathscr{U}$, if we choose a hash function $h \in \mathscr{H}$ uniformly at random, the following hold:

h(x), h(y), and h(z) are uniformly distributed over \mathcal{C} . h(x), h(y), and h(z) are independent.

- As you'll see, in many cases, making stronger assumptions about our hash functions makes it possible to simplify tricky probabilistic expressions.
- (As you can probably guess, this generalizes even further to *k*-independence, which we'll see on Tuesday.)

Frequency Estimation

Frequency Estimators

- A *frequency estimator* is a data structure supporting the following operations:
 - *increment*(x), which increments the number of times that x has been seen, and
 - *estimate*(*x*), which returns an estimate of the frequency of *x*.
- Using BSTs, we can solve this in space $\Theta(n)$ with worst-case $O(\log n)$ costs on the operations.
- Using hash tables, we can solve this in space $\Theta(n)$ with expected O(1) costs on the operations.

Frequency Estimators

- Frequency estimation has many applications:
 - Search engines: Finding frequent search queries.
 - Network routing: Finding common source and destination addresses.
- In these applications, $\Theta(n)$ memory can be impractical.
- **Goal:** Get *approximate* answers to these queries in sublinear space.

Some Terminology

- Let's suppose that all elements x are drawn from some set $\mathcal{U} = \{ x_1, x_2, ..., x_n \}.$
- We can interpret the frequency estimation problem as follows:

Maintain an *n*-dimensional vector \boldsymbol{a} such that \boldsymbol{a}_i is the frequency of x_i .

• We'll represent *a* implicitly in a format that uses reduced space.

Vector Norms

- Let $\mathbf{a} \in \mathbb{R}^n$ be a vector.
- The L₁ norm of a, denoted ||a||1, is defined as

$$\|\boldsymbol{a}\|_1 = \sum_{i=1}^n |\boldsymbol{a}_i|$$

• The L₂ norm of a, denoted $||a||_2$, is defined as

$$\|\boldsymbol{a}\|_2 = \sqrt{\sum_{i=1}^n \boldsymbol{a}_i^2}$$

Properties of Norms

• The following property of norms holds for any vector $\mathbf{a} \in \mathbb{R}^n$. It's a good exercise to prove this on your own:

 $\|a\|_{2} \leq \|a\|_{1} \leq \Theta(n^{1/2}) \cdot \|a\|_{2}$

- The first bound is tight when exactly one component of *a* is nonzero.
- The second bound is tight when all components of *a* are equal.

Where We're Going

- Today, we'll see two data frequency estimation data structures.
- Each is parameterized over two quantities:
 - An *accuracy* parameter $\varepsilon \in (0, 1)$ determining how close to accurate we want our answers to be.
 - A confidence parameter $\delta \in (0, 1]$ determining how likely it is that our estimate is within the bounds given by ϵ .

Where We're Going

- The *count-min sketch* provides estimates with error at most $\varepsilon ||a||_1$ with probability at least 1δ .
- The *count sketch* provides estimates with an error at most $\varepsilon ||a||_2$ with probability at least 1δ .
 - (Notice that lowering ϵ and lower δ give better bounds.)
- Count-min sketches will use less space than count sketches for the same ϵ and δ , but provide slightly weaker guarantees.

The Count-Min Sketch

The Count-Min Sketch

- Rather than diving into the full count-min sketch, we'll develop the data structure in phases.
- First, we'll build a simple data structure that on expectation provides good estimates, but which does not have a high probability of doing so.
- Next, we'll combine several of these data structures together to build a data structure that has a high probability of providing good estimates.

Revisiting the Exact Solution

- In the exact solution to the frequency estimation problem, we maintained a single counter for each distinct element. This is too space-inefficient.
- **Idea:** Store a fixed number of counters and assign a counter to each $x_i \in \mathcal{U}$. Multiple x_i 's might be assigned to the same counter.
- To *increment*(*x*), increment the counter for *x*.
- To *estimate*(*x*), read the value of the counter for *x*.

Our Initial Structure

- We can model "assigning each x_i to a counter" by using hash functions.
- Choose, from a family of 2-independent hash functions \mathcal{H} , a uniformly-random hash function $h : \mathcal{U} \to [w]$.
- Create an array **count** of *w* counters, each initially zero.
 - We'll choose *w* later on.
- To *increment*(*x*), increment **count**[*h*(*x*)].
- To *estimate*(*x*), return count[*h*(*x*)].

- **Recall:** *a* is the vector representing the true frequencies of the elements.
 - a_i is the frequency of element x_i .
- Denote by *â_i* the value of *estimate*(*x_i*). This is a random variable that depends on the true frequencies *a* (out of our control, but not random) and the hash function *h* (truly chosen at random.)
- Goal: Show that on expectation, â_i is not far from a_i.

- Intuitively, what do we expect \hat{a}_i to be?
- There are $\|a\|_1$ total elements spread out across w buckets.
- Assuming they're well-distributed, we'd probably expect $\|a\|_1 / w$ of them to be in each bucket.
- So a reasonable guess would be that \hat{a}_i should probably end up being something like $a_i + ||a||_1 / w$.
- Let's see if we can formalize this.

- Let's look at $\hat{a}_i = \text{count}[h(x_i)]$ for some choice of x_i .
- For each element *x_j*:
 - If $h(x_i) = h(x_j)$, then x_j contributes a_j to count $[h(x_i)]$.
 - If $h(x_i) \neq h(x_j)$, then x_j contributes 0 to count $[h(x_i)]$.
- To pin this down precisely, let's define a set of random variables $X_1, X_2, ...,$ as follows:

$$X_{j} = \begin{cases} 1 & \text{if } h(x_{i}) = h(x_{j}) \\ 0 & \text{otherwise} \end{cases}$$

Each of these variables is called an *indicator random variable*, since it "indicates" whether some event occurs.

- Let's look at $\hat{a}_i = \text{count}[h(x_i)]$ for some choice of x_i .
- For each element x_j :
 - If $h(x_i) = h(x_j)$, then x_j contributes a_j to count $[h(x_i)]$.
 - If $h(x_i) \neq h(x_j)$, then x_j contributes 0 to count $[h(x_i)]$.
- To pin this down precisely, let's define a set of random variables $X_1, X_2, ...,$ as follows:

$$X_{j} = \begin{cases} 1 & \text{if } h(x_{i}) = h(x_{j}) \\ 0 & \text{otherwise} \end{cases}$$

• The value of \hat{a}_i is then given by

$$\hat{\boldsymbol{a}}_i = \sum_j \boldsymbol{a}_j \boldsymbol{X}_j = \boldsymbol{a}_i + \sum_{j \neq i} \boldsymbol{a}_j \boldsymbol{X}_j$$

$$E[\hat{\boldsymbol{a}}_{i}] = E[\boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= E[\boldsymbol{a}_{i}] + E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$

This follows from *linearity of expectation*. We'll use this property extensively over the next few days.

$$E[\hat{\boldsymbol{a}}_{i}] = E[\boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= E[\boldsymbol{a}_{i}] + E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$
$$= \boldsymbol{a}_{i} + \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$

The actual value of **a**^{*i*} is not a random variable. The randomness here is in our choice of hash function, not the choice of the data.

$$E[\hat{\boldsymbol{a}}_{i}] = E[\boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$

$$= E[\boldsymbol{a}_{i}] + E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$

$$= \boldsymbol{a}_{i} + \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$

$$= \boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$\mathbf{E}[X_j] = \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] + \mathbf{0} \cdot \Pr[h(x_i) \neq h(x_j)]$

$$X_{j} = \begin{cases} 1 & \text{if } h(x_{i}) = h(x_{j}) \\ 0 & \text{otherwise} \end{cases}$$

$$E[\hat{\boldsymbol{a}}_{i}] = E[\boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$

$$= E[\boldsymbol{a}_{i}] + E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$

$$= \boldsymbol{a}_{i} + \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$

$$= \boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$\begin{split} \mathbf{E}[X_j] &= \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] + \mathbf{0} \cdot \Pr[h(x_i) \neq h(x_j)] \\ &= \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] \end{split}$$

If X is an indicator variable for some event \mathcal{E} , then $\mathbf{E}[X] = \mathbf{Pr}[\mathcal{E}]$. This is really useful when using linearity of expectation!

$$E[\hat{\boldsymbol{a}}_{i}] = E[\boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$

$$= E[\boldsymbol{a}_{i}] + E[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}]$$

$$= \boldsymbol{a}_{i} + \sum_{j \neq i} E[\boldsymbol{a}_{j} X_{j}]$$

$$= \boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} E[X_{j}]$$

$$\begin{split} \mathbf{E}[X_j] &= \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] + \mathbf{0} \cdot \Pr[h(x_i) \neq h(x_j)] \\ &= \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] \end{split}$$

1Any two hash codes from a randomly-chosenW2-independent hash function are independent,
uniformly-random variables.

$$E[\hat{a}_{i}] = E[a_{i} + \sum_{j \neq i} a_{j}X_{j}]$$

$$= E[a_{i}] + E[\sum_{j \neq i} a_{j}X_{j}]$$

$$= a_{i} + \sum_{j \neq i} E[a_{j}X_{j}]$$

$$= a_{i} + \sum_{j \neq i} a_{j}E[X_{j}]$$

$$= a_{i} + \sum_{j \neq i} \frac{a_{j}}{W}$$

$$\leq a_{i} + \frac{\|a\|_{1}}{W}$$

$$\begin{split} \mathbf{E}[X_j] &= \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] + \mathbf{0} \cdot \Pr[h(x_i) \neq h(x_j)] \\ &= \mathbf{1} \cdot \Pr[h(x_i) = h(x_j)] \\ &= \frac{1}{w} \end{split}$$

Interpreting our Analysis

- On expectation, the value of *estimate*(x_i) is at most $||a||_1 / w$ greater than a_i .
 - That matches our intuition from before! Yay!
- From a practical perspective:
 - Increasing *w* increases memory usage, but improves accuracy.
 - Decreasing *w* decreases memory usage, but decreases accuracy.
One Problem

- We have shown that on expectation, the value of estimate(x_i) can be made close to the true value.
- However, this data structure may give wildly inaccurate results for most elements.
 - Any low-frequency elements that collide with high-frequency elements will have overreported frequency.

One Problem

- We have shown that on expectation, the value of estimate(x_i) can be made close to the true value.
- However, this data structure may give wildly inaccurate results for most elements.
 - Any low-frequency elements that collide with high-frequency elements will have overreported frequency.
- *Question:* Can we bound the probability that we overestimate the frequency of an element?

A Useful Observation

- Notice that regardless of which hash function we use or the size of the table, we always have $\hat{a}_i \ge a_i$.
- This means that $\hat{a}_i a_i \ge 0$.
- We have a *one-sided error*; this data structure will never underreport the frequency of an element, but it may overreport it.

Bounding the Error Probability

 If X is a nonnegative random variable, then *Markov's inequality* states that for any c > 0, we have

$$\Pr[X > c \cdot E[X]] \le 1/c$$

• We know that

$$\mathrm{E}[\boldsymbol{\hat{a}}_i] \leq \boldsymbol{a}_i + \|\boldsymbol{a}\|_1 / w$$

• Therefore, we see that

$$\mathsf{E}[\boldsymbol{\hat{a}}_{i} - \boldsymbol{a}_{i}] \leq \|\boldsymbol{a}\|_{1} / w$$

• By Markov's inequality, for any c > 0, we have

$$\Pr[\hat{\boldsymbol{a}}_i - \boldsymbol{a}_i > \frac{c \|\boldsymbol{a}\|_1}{w}] \leq 1/c$$

• Equivalently:

$$\Pr[\hat{\boldsymbol{a}}_i > \boldsymbol{a}_i + \frac{c \|\boldsymbol{a}\|_1}{w}] \leq 1/c$$

Bounding the Error Probability

• For any c > 0, we know that

$$\Pr[\hat{a}_i > a_i + \frac{c \|a\|_1}{w}] \le 1/c$$

• In particular:

$$\Pr[\hat{a}_i > a_i + \frac{e \|a\|_1}{w}] \le 1/e$$

• Given an accuracy parameter ε , \in (0, 1], let's set $w = [e / \varepsilon]$. Then we have

$$\Pr[\hat{\boldsymbol{a}}_i > \boldsymbol{a}_i + \varepsilon \|\boldsymbol{a}\|_1] \leq 1/e$$

• This data structure uses $O(\varepsilon^{-1})$ space and gives estimates with error at most $\varepsilon \|a\|_1$ with probability at least 1 - 1 / *e*.

Tuning the Probability

- Right now, we can tune the *accuracy* ε of the data structure, but we can't tune our *confidence* in that answer (it's always 1 1 / *e*).
- **Goal:** Update the data structure so that for any confidence $0 < \delta < 1$, the probability that an estimate is correct is at least 1δ .

Tuning the Probability

- A single copy of our data structure has a decently good chance of providing an estimate that isn't too far off the true value.
- Intuitively, having *lots* of copies of this data structure would make it more likely that at least one of them gets a good estimate.
- **Idea:** Combine together multiple copies of this data structure to boost confidence in our estimates.

Running in Parallel

- Let's suppose that we run *d* independent copies of this data structure. Each has its own independently randomly chosen hash function.
- To *increment*(x) in the overall structure, we call *increment*(x) on each of the underlying data structures.
- The probability that at least one of them provides a good estimate is quite high.
- *Question:* How do you know which one?

Recognizing the Answer

- **Recall:** Each estimate *â*ⁱ is the sum of two independent terms:
 - The actual value a_i .
 - Some "noise" terms from other elements colliding with *x*_{*i*}.
- Since the noise terms are always nonnegative, larger values of \hat{a}_i are less accurate than smaller values of \hat{a}_i .
- **Idea:** Take, as our estimate, the minimum value of \hat{a}_i from all of the data structures.

The Final Analysis

- For each independent copy of this data structure, the probability that our estimate is within $\varepsilon ||a||_1$ of the true value is at least 1 1 / e.
- Let \mathcal{E}_i be the event that the *i*th copy of the data structure provides an estimate within $\varepsilon ||\mathbf{a}||_1$ of the true answer.
- Let \mathcal{E} be the event that the aggregate data structure provides an estimate within $\varepsilon ||a||_1$.
- **Question:** What is Pr[E]?

The Final Analysis

- Since we're taking the minimum of all the estimates, if *any* of the data structures provides a good estimate, our estimate will be accurate.
- Therefore,

 $\Pr[\mathcal{E}] = \Pr[\exists i. \mathcal{E}_i]$

• Equivalently:

 $\Pr[\mathcal{E}] = 1 - \Pr[\forall i. \ \overline{\mathcal{E}}_i]$

• Since all the estimates are independent: $\Pr[\mathcal{E}] = 1 - \Pr[\forall i. \ \overline{\mathcal{E}}_i] \ge 1 - 1/e^d.$

The Final Analysis

• We now have that

```
\Pr[\mathcal{E}] \geq 1 - 1/e^d.
```

- If we want the confidence to be 1 – $\delta,$ we can choose δ such that

$$1 - \delta = 1 - 1/e^{d}$$

- Solving, we can choose $d = \ln \delta^{-1}$.
- If we make $\ln \delta^{-1}$ independent copies of our data structure, the probability that our estimate is off by at most $\varepsilon ||a||_1$ is at least 1δ .

The Count-Min Sketch

- This data structure is called the *count-min sketch*.
- Given parameters ϵ and $\delta,$ choose

$$w = [e / \varepsilon] \qquad d = [\ln \delta^{-1}]$$

- Create an array **count** of size $w \times d$ and for each row *i*, choose a hash function $h_i : \mathcal{U} \to [w]$ uniformly and independently from a 2-independent family of hash functions \mathcal{H} .
- To *increment*(x), increment count[i][h_i(x)] for each row i.
- To *estimate*(x), return the minimum value of count[i][h_i(x)] across all rows i.

The Count-Min Sketch

- Update and query times are $\Theta(d)$, which is $\Theta(\log \delta^{-1})$.
- Space usage: $\Theta(\epsilon^{-1} \cdot \log \delta^{-1})$ counters.
 - This can be *significantly* better than just storing a raw frequency count!
- Provides an estimate to within $\varepsilon \| \mathbf{a} \|_1$ with probability at least 1δ .

Some Generalizable Ideas

- Many of the techniques and ideas from this analysis will show up in other places.
- First, the idea of using *indicator variables* and *linearity of expectation* to simplify expected value calculations.
- Second, relying on the *independence guarantees* of our hash function to simplify some of the intermediate steps.
- Third, the fact that being good on expectation isn't the same as being good with high probability and using concentration inequalities to quantify spread.
- Finally, the fact that *confidence* and *accuracy* aren't the same, and running *multiple parallel copies* of a data structure to boost confidence.

Time-Out for Announcements!

Final Project Proposal

- Final project proposals were due today at 2:30PM.
- We're going to run a matchmaking algorithm soon and get back to everyone with their assigned topics.
- We're looking forward to seeing what everyone has come up with!

Problem Sets

- Problem Set Four is due next Thursday at 2:30PM.
- Have questions? As always, you can
 - stop by office hours, or
 - ask on Piazza!
- We hope you have fun with this one!

Back to CS166!

An Alternative: Count Sketches

The Motivation

- (Note: This is historically backwards; count sketches came before count-min sketches.)
- In a count-min sketch, errors arise when multiple elements collide.
- Errors are strictly additive; the more elements collide in a bucket, the worse the estimate for those elements.
- *Question:* Can we try to offset the "badness" that results from the collisions?

The Setup

- As before, for some parameter *w*, we'll create an array **count** of length *w*.
- As before, choose a hash function $h : \mathcal{U} \to [w]$ from a family \mathcal{H} .
- For each $x_i \in \mathcal{U}$, assign x_i either +1 or -1.
- To *increment*(x), go to count[h(x)] and add ±1 as appropriate.
- To *estimate*(x), return count[h(x)], multiplied by ±1 as appropriate.

The Intuition

- Think about what introducing the ± 1 term does when collisions occur.
- If an element x collides with a frequent element y, we're not going to get a good estimate for x (but we wouldn't have gotten one anyway).
- If *x* collides with multiple infrequent elements, the collisions between those elements will partially offset one another and leave a better estimate for *x*.

More Formally

- Let's have $h \in \mathscr{H}$ chosen uniformly at random from a **3-independent** family of hash functions from \mathscr{U} . to w.
- Choose $s \in \mathcal{U}$ uniformly randomly and independently of h from a **3-independent** family from \mathcal{U} to $\{-1, +1\}$.
 - (Note: The more traditional analysis uses 2-independence rather than 3-independence. I'm showing you a slightly simplified version.)
- To *increment*(x), add s(x) to count[h(x)].
- To *estimate*(x), return $s(x) \cdot count[h(x)]$.

How accurate is our estimation?

Formalizing the Intuition

- As before, define \hat{a}_i to be our estimate of a_i .
- As before, \hat{a}_i will depend on how the other elements are distributed. Unlike before, it now also depends on signs given to the elements by *s*.
- Specifically, for each other x_j that collides with x_i , the error contribution will be

 $s(x_i) \cdot s(x_j) \cdot \boldsymbol{a}_j$

- Why?
 - The counter for x_i will have $s(x_j) a_j$ added in.
 - We multiply the counter by $s(x_i)$ before returning it.

Formalizing the Intuition

- As before, define \hat{a}_i to be our estimate of a_i .
- As before, \hat{a}_i will depend on how the other elements are distributed. Unlike before, it now also depends on signs given to the elements by *s*.
- Specifically, for each other x_j that collides with x_i , the error contribution will be

 $s(x_i) \cdot s(x_j) \cdot \boldsymbol{a}_j$

- Or:
 - If $s(x_i)$ and $s(x_j)$ point in the same direction, the terms add to the total.
 - If $s(x_i)$ and $s(x_j)$ point in different directions, the terms subtract from the total.

Formalizing the Intuition

• In our quest to learn more about \hat{a}_i , let's have X_j be a random variable indicating whether x_i and x_j collided with one another:

$$X_{j} = \begin{cases} 1 & \text{if } h(x_{i}) = h(x_{j}) \\ 0 & \text{if } h(x_{i}) \neq h(x_{j}) \end{cases}$$

• We can then express \hat{a}_i in terms of the signed contributions from the items it collides with:

$$\hat{\boldsymbol{a}}_{i} = \sum_{j} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j} = \boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}$$

This is how much the collision impacts our estimate.

We only care about items we collided with.

$$E[\hat{\boldsymbol{a}}_i] = E[\boldsymbol{a}_i + \sum_{j \neq i} \boldsymbol{a}_j \boldsymbol{s}(\boldsymbol{x}_i) \boldsymbol{s}(\boldsymbol{x}_j) \boldsymbol{X}_j]$$

= $E[\boldsymbol{a}_i] + E[\sum_{j \neq i} \boldsymbol{a}_j \boldsymbol{s}(\boldsymbol{x}_i) \boldsymbol{s}(\boldsymbol{x}_j) \boldsymbol{X}_j]$

Hey, it's linearity of expectation!

$$E[\hat{\boldsymbol{a}}_{i}] = E[\boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$

$$= E[\boldsymbol{a}_{i}] + E[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$

$$= \boldsymbol{a}_{i} + \sum_{j \neq i} E[\boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$

Remember that **a**_i and the like aren't random variables.

$$E[\hat{\boldsymbol{a}}_{i}] = E[\boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$

$$= E[\boldsymbol{a}_{i}] + E[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$

$$= \boldsymbol{a}_{i} + \sum_{j \neq i} E[\boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$

$$= \boldsymbol{a}_{i} + \sum_{j \neq i} E[\boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j})] E[\boldsymbol{a}_{j} \boldsymbol{X}_{j}]$$

We chose the hash functions *h* and *s* independently of one another.

$$X_{j} = \begin{cases} 1 & \text{if } h(x_{i}) = h(x_{j}) \\ 0 & \text{if } h(x_{i}) \neq h(x_{j}) \end{cases}$$

$$E[\hat{a}_i] = E[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j]$$

$$= E[a_i] + E[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j]$$

$$= a_i + \sum_{j \neq i} E[a_j s(x_i) s(x_j) X_j]$$

$$= a_i + \sum_{j \neq i} E[s(x_i) s(x_j)] E[a_j X_j]$$

$$= a_i + \sum_{j \neq i} E[s(x_i)] E[s(x_j)] E[a_j X_j]$$

Remember that s is drawn from a 3-independent family of hash functions, so $s(x_i)$ and $s(x_j)$ are independent random variables.

$$E[\hat{a}_{i}] = E[a_{i} + \sum_{j \neq i} a_{j} s(x_{i}) s(x_{j}) X_{j}]$$

$$= E[a_{i}] + E[\sum_{j \neq i} a_{j} s(x_{i}) s(x_{j}) X_{j}]$$

$$= a_{i} + \sum_{j \neq i} E[a_{j} s(x_{i}) s(x_{j}) X_{j}]$$

$$= a_{i} + \sum_{j \neq i} E[s(x_{i}) s(x_{j})] E[a_{j} X_{j}]$$

$$= a_{i} + \sum_{j \neq i} E[s(x_{i})] E[s(x_{j})] E[a_{j} X_{j}]$$

$$= a_{i} + \sum_{j \neq i} 0$$

$$= a_{i}$$

$$E[s(x_i)] = \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot (+1) = 0$$

s is drawn from a 3-independent family of hash functions.

 $s(x_i)$ is uniform over $\{-1, +1\}$

 $\Pr[s(x_i) = -1] = \frac{1}{2}$ $\Pr[s(x_i) = +1] = \frac{1}{2}$

Expecting the Unexpected

- We've just seen that $E[\hat{a}_i] = a_i$, so on expectation our estimate is perfectly correct!
- However, we have no idea how likely it is that we're going to get an estimate like this.
- Let's see if we can bound the likelihood that we stray far from *a_i*.

A Hitch

- In the count-min sketch, we used Markov's inequality to bound the probability that we get a bad estimate.
- This worked because we had a **one-sided error**: the distance $\hat{a}_i - a_i$ from the true answer was nonnegative.
- However, with the count sketch, we have a *two-sided error*: *â*_i *a*_i can be negative in the count sketch because collisions can *decrease* the estimate *â*_i below the true value *a*_i.
- We'll need to use a different technique to bound the error.

Chebyshev to the Rescue

Chebyshev's inequality states that for any random variable X with finite variance, given any c > 0, the following holds:

$$\Pr\left[|X - \mathbb{E}[X]| \ge c \sqrt{\operatorname{Var}[X]} \right] \le \frac{1}{c^2}$$

• Equivalently:

$$\Pr[|X - \mathbb{E}[X]| \ge c] \le \frac{\operatorname{Var}[X]}{c^2}$$

• If we can get the variance of \hat{a}_i , we can bound the probability that we get a bad estimate with our data structure.
Computing the Variance

• Let's try computing the variance of our estimate \hat{a}_i :

$$Var[\hat{\boldsymbol{a}}_{i}] = Var[\boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$
$$= Var[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$

$$\operatorname{Var}[a + X] = \operatorname{Var}[X]$$

Computing the Variance

• Let's try computing the variance of our estimate \hat{a}_i :

$$Var[\hat{\boldsymbol{a}}_{i}] = Var[\boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$
$$= Var[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$

- Variance is not a linear operator, but it *is* linear if the underlying random variables are independent of one another.
- *Claim:* Each term of the sum is independent of the others.

Independence Day

• We want to show that these two terms are independent:

 $\boldsymbol{a}_{j} s(x_{i}) s(x_{j}) X_{j}$ $\boldsymbol{a}_{k} s(x_{i}) s(x_{k}) X_{k}$

- Imagine we know $\boldsymbol{a}_j s(x_i) s(x_j) X_j$.
- Whether $\mathbf{a}_k s(x_i) s(x_k) X_k = 0$ depends on whether $h(x_i) = h(x_k)$.
 - The values $h(x_i)$, $h(x_j)$, and $h(x_k)$ are uniformly-random and independent because h is 3-independent.
 - Knowing whether $h(x_i) = h(x_j)$ doesn't impact the probability that $h(x_i) = h(x_k)$, since all three values are uniform and independent.
- The sign of $a_k s(x_i) s(x_k) X_k$ depends on $s(x_i) \cdot s(x_k)$.
 - $s(x_i)$, $s(x_j)$, and $s(x_k)$ are uniformly-random and independent because s is 3-independent.
 - There's an equal chance that $s(x_i) \cdot s(x_k) = 1$ and $s(x_i) \cdot s(x_k) = -1$, since even with $s(x_i) \cdot s(x_j)$ fixed, $s(x_k)$ is independently and uniformly distributed over $\{+1, -1\}$.

$$\begin{aligned} \operatorname{Var}[\hat{\boldsymbol{a}}_{i}] &= \operatorname{Var}[\boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}] \\ &= \operatorname{Var}[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}] \\ &= \sum_{j \neq i} \operatorname{Var}[\boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}] \\ &\leq \sum_{j \neq i} \operatorname{E}[(\boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j})^{2}] \end{aligned}$$

$$Var[Z] = E[Z^2] - E[Z]^2$$
$$\leq E[Z^2]$$

$$Var[\hat{a}_{i}] = Var[a_{i} + \sum_{j \neq i} a_{j} s(x_{i}) s(x_{j}) X_{j}]$$

$$= Var[\sum_{j \neq i} a_{j} s(x_{i}) s(x_{j}) X_{j}]$$

$$= \sum_{j \neq i} Var[a_{j} s(x_{i}) s(x_{j}) X_{j}]$$

$$\leq \sum_{j \neq i} E[(a_{j} s(x_{i}) s(x_{j}) X_{j})^{2}]$$

$$= \sum_{j \neq i} E[a_{j}^{2} s(x_{i})^{2} s(x_{j})^{2} X_{j}^{2}]$$

$$= \sum_{j \neq i} a_{j}^{2} E[X_{j}^{2}]$$

$$= \sum_{j \neq i} a_{j}^{2} E[X_{j}]$$

$$Useful Fact:$$
If X is an indicator

variable, then $X^2 = X$.

$$\begin{aligned} \operatorname{Var}[\hat{\boldsymbol{a}}_{i}] &= \operatorname{Var}[\boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}] \\ &= \operatorname{Var}[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}] \\ &= \sum_{j \neq i} \operatorname{Var}[\boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}] \\ &\leq \sum_{j \neq i} \operatorname{E}[(\boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j})^{2}] \\ &= \sum_{j \neq i} \operatorname{E}[\boldsymbol{a}_{j}^{2} \boldsymbol{s}(\boldsymbol{x}_{i})^{2} \boldsymbol{s}(\boldsymbol{x}_{j})^{2} \boldsymbol{X}_{j}^{2}] \\ &= \sum_{j \neq i} \boldsymbol{a}_{j}^{2} \operatorname{E}[\boldsymbol{X}_{j}^{2}] \\ &= \sum_{j \neq i} \boldsymbol{a}_{j}^{2} \operatorname{E}[\boldsymbol{X}_{j}] \\ &= \sum_{j \neq i} \boldsymbol{a}_{j}^{2} \operatorname{E}[\boldsymbol{X}_{j}] \\ &= \sum_{j \neq i} \boldsymbol{a}_{j}^{2} / \boldsymbol{w} \qquad \boxed{\boldsymbol{X}_{j} = \left[\begin{array}{c} 1 & \operatorname{if} \ h(\boldsymbol{x}_{i}) = h(\boldsymbol{x}_{j}) \\ 0 & \operatorname{if} \ h(\boldsymbol{x}_{i}) \neq h(\boldsymbol{x}_{j}) \end{array} \right]} \end{aligned}$$

$$\operatorname{Var}[\hat{\boldsymbol{a}}_{i}] = \operatorname{Var}[\boldsymbol{a}_{i} + \sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$

$$= \operatorname{Var}[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$

$$= \sum_{j \neq i} \operatorname{Var}[\boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j}]$$

$$\leq \sum_{j \neq i} \operatorname{E}[(\boldsymbol{a}_{j} \boldsymbol{s}(\boldsymbol{x}_{i}) \boldsymbol{s}(\boldsymbol{x}_{j}) \boldsymbol{X}_{j})^{2}]$$

$$= \sum_{j \neq i} \operatorname{E}[\boldsymbol{a}_{j}^{2} \boldsymbol{s}(\boldsymbol{x}_{i})^{2} \boldsymbol{s}(\boldsymbol{x}_{j})^{2} \boldsymbol{X}_{j}^{2}]$$

$$= \sum_{j \neq i} \boldsymbol{a}_{j}^{2} \operatorname{E}[\boldsymbol{X}_{j}^{2}]$$

$$= \sum_{j \neq i} \boldsymbol{a}_{j}^{2} \operatorname{E}[\boldsymbol{X}_{j}]$$

$$= \sum_{j \neq i} \boldsymbol{a}_{j}^{2} \operatorname{E}[\boldsymbol{X}_{j}]$$

$$\sqrt{\sum_{j} \boldsymbol{a}_{j}^{2}} = \|\boldsymbol{a}\|_{2}$$

 $\leq \|\boldsymbol{a}\|_2^2/w$

Harnessing Chebyshev

- Chebyshev's Inequality says $\Pr\left[|X - \mathbb{E}[X]| \ge c \sqrt{\operatorname{Var}[X]} \right] \le 1/c^2$
- Applying this to $\hat{\boldsymbol{a}}_i$ yields $\Pr\left[\left| \hat{\boldsymbol{a}}_i - \boldsymbol{a}_i \right| \ge \frac{c \|\boldsymbol{a}\|_2}{\sqrt{w}} \right] \le 1/c^2$
- Given error parameter ε , pick $w = [e / \varepsilon^2]$, so $\Pr\left[|\hat{\boldsymbol{a}}_i - \boldsymbol{a}_i| \ge \frac{c \varepsilon ||\boldsymbol{a}||_2}{\sqrt{e}} \right] \le 1/c^2$
- Therefore, choosing $c = e^{1/2}$ gives $\Pr\left[|\hat{\boldsymbol{a}}_i - \boldsymbol{a}_i| \ge \varepsilon ||\boldsymbol{a}||_2 \right] \le 1/e$

The Story So Far

- We now know that, by setting $\varepsilon = (e / w)^{1/2}$, the estimate is within $\varepsilon ||a||_2$ with probability at least 1 - 1 / e.
- Solving for *w*, this means that we will choose $w = [e / \epsilon^2]$.
- Space usage is now $O(\varepsilon^{-2})$, but the error bound is now $\varepsilon \| \boldsymbol{a} \|_2$ rather than $\varepsilon \| \boldsymbol{a} \|_1$.
- As before, the next step is to reduce the error probability.

Repetitions with a Catch

- As before, our goal is to make it possible to choose a bound 0 < δ < 1 so that the confidence is at least 1 δ .
- As before, we'll do this by making *d* independent copies of the data structure and running each in parallel.
- Unlike the count-min sketch, errors in count sketches are two-sided; we can overshoot or undershoot.
- Therefore, it's not meaningful to take the minimum or maximum value.
- How do we know which value to report?

Working with the Median

- **Claim:** If we output the median estimate given by the data structures, we have high probability of giving the right answer.
- **Intuition:** The only way we report an answer more than $\varepsilon ||\mathbf{a}||_2$ is if at least half of the data structures output an answer that is more than $\varepsilon ||\mathbf{a}||_2$ from the true answer.
- Each individual data structure is wrong with probability at most 1 / *e*, so this is highly unlikely.

The Setup

- Let *X* denote a random variable equal to the number of data structures that produce an answer *not* within $\varepsilon ||\boldsymbol{a}||_2$ of the true answer.
- Since each independent data structure has failure probability at most 1 / e, we can upper-bound X with a Binom(d, 1 / e) variable.
- We want to know Pr[X > d / 2].
- How can we determine this?

Chernoff Bounds

• The **Chernoff bound** says that if $X \sim \text{Binom}(n, p)$ and p < 1/2, then

$$\Pr[X > n/2] < e^{\frac{-n(1/2-p)^2}{2p}}$$

- In our case, $X \sim \text{Binom}(d, 1/e)$, so we know that $\Pr[X > \frac{d}{2}] \leq e^{\frac{-d(1/2 - 1/e)^2}{2(1/e)}}$ $= e^{-k \cdot d} \quad (for some \ constant \ k)$
- Therefore, choosing $d = k^{-1} \cdot \log \delta^{-1}$ ensures that $\Pr[X > d / 2] \le \delta$.
- Therefore, the success probability is at least 1 $\delta.$

Chernoff Bounds

• The *Chernoff bound* says that if $X \sim \text{Binom}(n, p)$ and p < 1/2, then

$$\Pr[X > n/2] < e^{\frac{-n(1/2-p)}{2p}}$$

The specific constant factor here matters, since it's an exponent! To implement this data structure, you'll need to work out the exact value. *, 1/e), so we know that* $e^{\frac{-d(1/2-1/e)^2}{2(1/e)}}$

 $e^{-k \cdot d}$ (for some constant k)

- Therefore, choosing $d = k^{-1} \cdot \log \delta^{-1}$ ensures that $\Pr[X > d / 2] \le \delta$.
- Therefore, the success probability is at least 1 δ .

The Overall Construction

- The *count sketch* is the data structure given as follows.
- Given ϵ and $\delta,$ choose

 $w = [e / \varepsilon^2]$ $d = \Theta(\log \delta^{-1})$

- Create an array **count** of $w \times d$ counters.
- Choose hash functions h_i and s_i for each of the d rows.
- To *increment*(x), add $s_i(x)$ to count[*i*][$h_i(x)$] for each row *i*.
- To *estimate*(x), return the median of $s_i(x) \cdot count[i][h_i(x)]$ for each row i.

The Final Analysis

- With probability at least 1 δ , all estimates are accurate to within a factor of $\varepsilon \| \boldsymbol{a} \|_{2}$.
- Space usage is $\Theta(w \times d)$, which we've seen to be $\Theta(\varepsilon^{-2} \cdot \log \delta^{-1})$.
- Updates and queries run in time $\Theta(\delta^{-1})$.
- Trades factor of ε^{-1} space for an accuracy guarantee relative to $\|a\|_2$ versus $\|a\|_1$.

In Practice

- These data structures have been and continue to be used in practice.
- These sketches and their variants have been used at Google and Yahoo! (or at least, there are papers coming from there about their usage).
- Many other sketches exist as well for estimating other quantities; they'd make for really interesting final project topics!

More to Explore

- A *cardinality estimator* is a data structure for estimating how many different elements have been seen in sublinear time and space. They're used extensively in database implementations.
- If instead of estimating a_i terms individually we want to estimate $||a||_1$ or $||a_2||$, we can use a *frequency moment estimator*.
- You'll get to play around with at least one of these on Problem Set Five.

Some Concluding Notes

Randomized Data Structures

- You may have noticed that the final versions of these data structures are actually not all that complex each just maintains a set of hash functions and some 2D tables.
- The analyses, on the other hand, are a lot more involved than what we saw for other data structures.
- This is common randomized data structures often have simple descriptions and quite complex analyses.

The Strategy

- Typically, an analysis of a randomized data structure looks like this:
 - First, show that the data structure (or some random variable related to it), on expectation, performs well.
 - Second, use concentration inequalities (Markov, Chebyshev, Chernoff, or something else) to show that it's unlikely to deviate from expectation.
- The analysis often relies on properties of some underlying hash function. On Tuesday, we'll explore why this is so important.

Next Time

- Hashing Strategies
 - There are a lot of hash tables out there. What do they look like?
- Linear Probing
 - The original hashing strategy!
- Analyzing Linear Probing
 - ...is way, way more complicated than you probably would have thought. But it's beautiful! And a great way to learn about randomized data structures!