## Frequency Estimators

## Outline for Today

- Randomized Data Structures
- Our next approach to improving performance.
- Count-Min Sketches
- A simple and powerful data structure for estimating frequencies.
- Count Sketches
- Another approach for estimating frequencies.


## Randomized Data Structures

## Tradeoffs

- Data structure design is all about tradeoffs:
- Trade preprocessing time for query time.
- Trade asymptotic complexity for constant factors.
- Trade worst-case per-operation guarantees for worst-case aggregate guarantees.


## Randomization

- Randomization opens up new routes for tradeoffs in data structures:
- Trade worst-case guarantees for average-case guarantees.
- Trade exact answers for approximate answers.
- Over the next few lectures, we'll explore two families of data structures that make these tradeoffs:
- Today: Frequency estimators.
- Next Week: Hash tables.


## Preliminaries: What is a Hash Function?

## Hashing in Practice

- In most programming languages, each object has "a" hash code.
- C++: std: : hash
- Java: Object.hashCode
- Python: __hash__
- To store objects in a hash table, you just go and implement the appropriate function or type.
- In other words, hash functions are intrinsic properties of objects.


## Hashing in Theoryland

- In Theoryland, a hash function is a function from some domain called the universe (typically denoted 9 ) to some codomain.
- The codomain is usually a set of the form $\{0,1,2$, $3, \ldots, m-1\}$, which we'll denote [ $m$ ].
- We often will grab lots of different hash functions from the same universe $\mathscr{U}$ to some codomain, and we'll assume we have access to as many of them as we need.
- In other words, hash functions are extrinsic to objects, and it's possible to have multiple different hash functions available at the same time.


## Families of Hash Functions

- A family of hash functions is a set $\mathscr{H}$ of hash functions with the same domain and codomain.
- The data structures we'll explore will assume that we have access to certain families of hash functions with nice properties.
- We'll then sample uniformly-random choices $h \in \mathscr{H}$ to use as needed.


## Sampling Random Functions

- Here's a family of hash functions $\mathscr{H}$ from $\mathbb{N}$ to [137]:

$$
\mathscr{H}=\{f(n)=(a n+b) \bmod 137 \mid a, b \in[137]\}
$$

- In Theoryland, we'd model picking a uniformlyrandom hash function from $\mathscr{H}$ as just that - sampling some $h \in \mathscr{H}$ uniformly.
- In The Real World, we'd probably model picking such a function like this:

```
int a = rand() % 137;
int b = rand() % 137;
int hash(int value) {
    return (a * value + b) % 137;
}
```


## Characterizing Hash Functions

- Different algorithms and data structures require different guarantees from their hash functions.
- In CS161, you explored universal hash functions in the context of chained hash tables.
- For what we'll be doing in CS166, we're going to need hash functions with slightly stronger probabilistic guarantees.


## Pairwise Independence

- Let $\mathscr{H}$ be a family of hash functions from $\mathscr{U}$ to some set $\mathscr{C}$.
- We say that $\mathscr{H}$ is a 2-independent family of hash functions if, for any distinct distinct $x, y \in \mathscr{U}$, if we choose a hash function $h \in \mathscr{H}$ uniformly at random, the following hold:
$h(x)$ and $h(y)$ are uniformly distributed over $\mathscr{C}$. $h(x)$ and $h(y)$ are independent.
- 2-independent hash functions are great hash functions when we want a nice distribution over the output space even after fixing some specific element.


## 3-Independence

- Let $\mathscr{H}$ be a family of hash functions from $\mathscr{U}$ to some set $\mathscr{C}$.
- We say that $\mathscr{H}$ is a 3-independent family of hash functions if, for any distinct distinct $x, y, z \in \mathscr{U}$, if we choose a hash function $h \in \mathscr{H}$ uniformly at random, the following hold:
$h(x), h(y)$, and $h(z)$ are uniformly distributed over $\mathscr{C}$. $h(x), h(y)$, and $h(x)$ are independent.
- As you'll see, in many cases, making stronger assumptions about our hash functions makes it possible to simplify tricky probabilistic expressions.
- (As you can probably guess, this generalizes even further to $k$-independence, which we'll see on Tuesday.)

Frequency Estimation

## Frequency Estimators

- A frequency estimator is a data structure supporting the following operations:
- increment (x), which increments the number of times that $x$ has been seen, and
- estimate( $x$ ), which returns an estimate of the frequency of $x$.
- Using BSTs, we can solve this in space $\Theta(n)$ with worst-case $O(\log n)$ costs on the operations.
- Using hash tables, we can solve this in space $\Theta(n)$ with expected $\mathrm{O}(1)$ costs on the operations.


## Frequency Estimators

- Frequency estimation has many applications:
- Search engines: Finding frequent search queries.
- Network routing: Finding common source and destination addresses.
- In these applications, $\Theta(n)$ memory can be impractical.
- Goal: Get approximate answers to these queries in sublinear space.


## Some Terminology

- Let's suppose that all elements $x$ are drawn from some set $\mathscr{U}=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$.
- We can interpret the frequency estimation problem as follows:

Maintain an $n$-dimensional vector $\boldsymbol{a}$ such that $\boldsymbol{a}_{i}$ is the frequency of $\chi_{i}$.

- We'll represent $\boldsymbol{a}$ implicitly in a format that uses reduced space.


## Vector Norms

- Let $\boldsymbol{a} \in \mathbb{R}^{n}$ be a vector.
- The $L_{1}$ norm of $a$, denoted $\|a\|_{1}$, is defined as

$$
\|\boldsymbol{a}\|_{1}=\sum_{i=1}^{n}\left|\boldsymbol{a}_{i}\right|
$$

- The $L_{2}$ norm of $\boldsymbol{a}$, denoted $\|\boldsymbol{a}\|_{2}$, is defined as

$$
\|\boldsymbol{a}\|_{2}=\sqrt{\sum_{i=1}^{n} \boldsymbol{a}_{i}^{2}}
$$

## Properties of Norms

- The following property of norms holds for any vector $\boldsymbol{a} \in \mathbb{R}^{n}$. It's a good exercise to prove this on your own:

$$
\|\boldsymbol{a}\|_{2} \leq\|\boldsymbol{a}\|_{1} \leq \Theta\left(n^{1 / 2}\right) \cdot\|\boldsymbol{a}\|_{2}
$$

- The first bound is tight when exactly one component of $\boldsymbol{a}$ is nonzero.
- The second bound is tight when all components of $\boldsymbol{a}$ are equal.


## Where We're Going

- Today, we'll see two data frequency estimation data structures.
- Each is parameterized over two quantities:
- An accuracy parameter $\varepsilon \in(0,1)$ determining how close to accurate we want our answers to be.
- A confidence parameter $\delta \in(0,1]$ determining how likely it is that our estimate is within the bounds given by $\varepsilon$.


## Where We're Going

- The count-min sketch provides estimates with error at most $\varepsilon\|\boldsymbol{a}\|_{1}$ with probability at least $1-\delta$.
- The count sketch provides estimates with an error at most $\varepsilon\|\boldsymbol{a}\|_{2}$ with probability at least $1-\delta$.
- (Notice that lowering $\varepsilon$ and lower $\delta$ give better bounds.)
- Count-min sketches will use less space than count sketches for the same $\varepsilon$ and $\delta$, but provide slightly weaker guarantees.


## The Count-Min Sketch

## The Count-Min Sketch

- Rather than diving into the full count-min sketch, we'll develop the data structure in phases.
- First, we'll build a simple data structure that on expectation provides good estimates, but which does not have a high probability of doing so.
- Next, we'll combine several of these data structures together to build a data structure that has a high probability of providing good estimates.


## Revisiting the Exact Solution

- In the exact solution to the frequency estimation problem, we maintained a single counter for each distinct element. This is too space-inefficient.
- Idea: Store a fixed number of counters and assign a counter to each $\chi_{i} \in \mathscr{U}$. Multiple $\chi_{i}{ }^{\prime}$ s might be assigned to the same counter.
- To increment( $x$ ), increment the counter for $x$.
- To estimate (x), read the value of the counter for $x$.



## Our Initial Structure

- We can model "assigning each $\chi_{i}$ to a counter" by using hash functions.
- Choose, from a family of 2 -independent hash functions $\mathscr{H}$, a uniformly-random hash function $h: \mathscr{U} \rightarrow[w]$.
- Create an array count of $w$ counters, each initially zero.
- We'll choose w later on.
- To increment( $x$ ), increment count[ $h(x)$ ].
- To estimate(x), return count[h(x)].



## Analyzing this Structure

- Recall: a is the vector representing the true frequencies of the elements.
- $\boldsymbol{a}_{i}$ is the frequency of element $\chi_{i}$.
- Denote by $\hat{\boldsymbol{a}}_{i}$ the value of estimate $\left(x_{i}\right)$. This is a random variable that depends on the true frequencies $\boldsymbol{a}$ (out of our control, but not random) and the hash function $h$ (truly chosen at random.)
- Goal: Show that on expectation, $\hat{\boldsymbol{a}}_{i}$ is not far from $\boldsymbol{a}_{i}$.


## Analyzing this Structure

- Intuitively, what do we expect $\hat{\boldsymbol{a}}_{i}$ to be?
- There are $\|\boldsymbol{a}\|_{1}$ total elements spread out across $w$ buckets.
- Assuming they're well-distributed, we'd probably expect $\|\boldsymbol{a}\|_{1} / w$ of them to be in each bucket.
- So a reasonable guess would be that $\hat{\boldsymbol{a}}_{i}$ should probably end up being something like $\boldsymbol{a}_{i}+\|\boldsymbol{a}\|_{1} / w$.
- Let's see if we can formalize this.



## Analyzing this Structure

- Let's look at $\hat{\boldsymbol{a}}_{i}=$ count $\left[h\left(x_{i}\right)\right]$ for some choice of $x_{i}$.
- For each element $x_{j}$ :
- If $h\left(x_{i}\right)=h\left(x_{j}\right)$, then $\chi_{j}$ contributes $\boldsymbol{a}_{j}$ to count[ $h\left(x_{i}\right)$ ].
- If $h\left(x_{i}\right) \neq h\left(x_{j}\right)$, then $x_{j}$ contributes 0 to count[ $\left.h\left(x_{i}\right)\right]$.
- To pin this down precisely, let's define a set of random variables $X_{1}, X_{2}, \ldots$, as follows:

$$
X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Each of these variables is called an indicator random variable, since it "indicates" whether some event occurs.

## Analyzing this Structure

- Let's look at $\hat{\boldsymbol{a}}_{i}=$ count $\left[h\left(x_{i}\right)\right]$ for some choice of $x_{i}$.
- For each element $x_{j}$ :
- If $h\left(x_{i}\right)=h\left(x_{j}\right)$, then $x_{j}$ contributes $\boldsymbol{a}_{j}$ to count[h( $\left.\left.x_{i}\right)\right]$.
- If $h\left(x_{i}\right) \neq h\left(x_{j}\right)$, then $x_{j}$ contributes 0 to count[ $\left.h\left(x_{i}\right)\right]$.
- To pin this down precisely, let's define a set of random variables $X_{1}, X_{2}, \ldots$, as follows:

$$
X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right) \\ 0 & \text { otherwise }\end{cases}
$$

- The value of $\hat{\boldsymbol{a}}_{i}$ is then given by

$$
\hat{\boldsymbol{a}}_{i}=\sum_{j} \boldsymbol{a}_{j} X_{j}=\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right] & =\mathrm{E}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\mathrm{E}\left[\boldsymbol{a}_{i}\right]+\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right]
\end{aligned}
$$

This follows from linearity of expectation. We'll use this property extensively over the next few days.

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right] & =\mathrm{E}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\mathrm{E}\left[\boldsymbol{a}_{i}\right]+\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right]
\end{aligned}
$$

The actual value of $\boldsymbol{a}_{i}$ is not a random variable. The randomness here is in our choice of hash function, not the choice of the data.

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right] & =\mathrm{E}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\mathrm{E}\left[\boldsymbol{a}_{i}\right]+\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$\mathrm{E}\left[X_{j}\right]=1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right]$
$X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right) \\ 0 & \end{cases}$
0 otherwise

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right] & =\mathrm{E}\left[\boldsymbol{a}_{i}+\sum_{j \dot{ }} \boldsymbol{a}_{j} X_{j}\right] \\
& =\mathrm{E}\left[\boldsymbol{a}_{i}\right]+\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]
\end{aligned}
$$

If $X$ is an indicator variable for some event $\mathcal{E}$, then $\mathbf{E}[\boldsymbol{X}]=\operatorname{Pr}[\mathcal{E}]$. This is really useful when using linearity of expectation!

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right] & =\mathrm{E}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\mathrm{E}\left[\boldsymbol{a}_{i}\right]+\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right] \\
& =\frac{1}{w} \begin{array}{c}
\text { Any two hash codes from a randomly-chosen } \\
\text { 2-independent hash function are independent, } \\
\text { uniformly-random variables. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right] & =\mathrm{E}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\mathrm{E}\left[\boldsymbol{a}_{i}\right]+\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \mathrm{E}\left[X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq} \frac{\boldsymbol{a}_{j}}{w} \\
& \leq \boldsymbol{a}_{i}+\frac{\|\boldsymbol{a}\|_{1}}{w}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[X_{j}\right] & =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right]+0 \cdot \operatorname{Pr}\left[h\left(x_{i}\right) \neq h\left(x_{j}\right)\right] \\
& =1 \cdot \operatorname{Pr}\left[h\left(x_{i}\right)=h\left(x_{j}\right)\right] \\
& =\frac{1}{w}
\end{aligned}
$$

## Interpreting our Analysis

- On expectation, the value of estimate( $\left(x_{i}\right)$ is at most $\|\boldsymbol{a}\|_{1} / w$ greater than $a_{i}$.
- That matches our intuition from before! Yay!
- From a practical perspective:
- Increasing $w$ increases memory usage, but improves accuracy.
- Decreasing $w$ decreases memory usage, but decreases accuracy.


## One Problem

- We have shown that on expectation, the value of estimate ( $x_{i}$ ) can be made close to the true value.
- However, this data structure may give wildly inaccurate results for most elements.
- Any low-frequency elements that collide with high-frequency elements will have overreported frequency.



## One Problem

- We have shown that on expectation, the value of estimate ( $x_{i}$ ) can be made close to the true value.
- However, this data structure may give wildly inaccurate results for most elements.
- Any low-frequency elements that collide with high-frequency elements will have overreported frequency.
- Question: Can we bound the probability that we overestimate the frequency of an element?


## A Useful Observation

- Notice that regardless of which hash function we use or the size of the table, we always have $\hat{\boldsymbol{a}}_{i} \geq \boldsymbol{a}_{i}$.
- This means that $\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i} \geq 0$.
- We have a one-sided error; this data structure will never underreport the frequency of an element, but it may overreport it.


## Bounding the Error Probability

- If $X$ is a nonnegative random variable, then Markov's inequality states that for any $c>0$, we have

$$
\operatorname{Pr}[X>c \cdot \mathrm{E}[X]] \leq 1 / c
$$

- We know that

$$
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right] \leq \boldsymbol{a}_{i}+\|\boldsymbol{a}\|_{1} / w
$$

- Therefore, we see that

$$
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right] \leq\|\boldsymbol{a}\|_{1} / w
$$

- By Markov's inequality, for any $c>0$, we have
- Equivalently:

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}>\frac{C\|\boldsymbol{a}\|_{1}}{w}\right] \leq 1 / C
$$

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}>\boldsymbol{a}_{i}+\frac{c\|\boldsymbol{a}\|_{1}}{w}\right] \leq 1 / C
$$

## Bounding the Error Probability

- For any $c>0$, we know that

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}>\boldsymbol{a}_{i}+\frac{c\|\boldsymbol{a}\|_{1}}{w}\right] \leq 1 / c
$$

- In particular:

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}>\boldsymbol{a}_{i}+\frac{e\|\boldsymbol{a}\|_{1}}{w}\right] \leq 1 / e
$$

- Given an accuracy parameter $\varepsilon, \in(0,1]$, let's set $w=\lceil e / \varepsilon\rceil$. Then we have

$$
\operatorname{Pr}\left[\hat{\boldsymbol{a}}_{i}>\boldsymbol{a}_{i}+\varepsilon\|\boldsymbol{a}\|_{1}\right] \leq 1 / e
$$

- This data structure uses $\mathrm{O}\left(\varepsilon^{-1}\right)$ space and gives estimates with error at most $\varepsilon\|\boldsymbol{a}\|_{1}$ with probability at least 1-1/e.


## Tuning the Probability

- Right now, we can tune the accuracy $\varepsilon$ of the data structure, but we can't tune our confidence in that answer (it's always 1-1/e).
- Goal: Update the data structure so that for any confidence $0<\delta<1$, the probability that an estimate is correct is at least $1-\delta$.


## Tuning the Probability

- A single copy of our data structure has a decently good chance of providing an estimate that isn't too far off the true value.
- Intuitively, having lots of copies of this data structure would make it more likely that at least one of them gets a good estimate.
- Idea: Combine together multiple copies of this data structure to boost confidence in our estimates.


## Running in Parallel

- Let's suppose that we run $d$ independent copies of this data structure. Each has its own independently randomly chosen hash function.
- To increment(x) in the overall structure, we call increment $(x)$ on each of the underlying data structures.
- The probability that at least one of them provides a good estimate is quite high.
- Question: How do you know which one?



## Recognizing the Answer

- Recall: Each estimate $\hat{\boldsymbol{a}}_{i}$ is the sum of two independent terms:
- The actual value $\boldsymbol{a}_{i}$.
- Some "noise" terms from other elements colliding with $x_{i}$.
- Since the noise terms are always nonnegative, larger values of $\hat{\boldsymbol{a}}_{i}$ are less accurate than smaller values of $\hat{\boldsymbol{a}}_{i}$.
- Idea: Take, as our estimate, the minimum value of $\hat{\boldsymbol{a}}_{i}$ from all of the data structures.


## The Final Analysis

- For each independent copy of this data structure, the probability that our estimate is within $\varepsilon\|a\|_{1}$ of the true value is at least $1-1 / e$.
- Let $\mathcal{E}_{i}$ be the event that the $i$ th copy of the data structure provides an estimate within $\varepsilon\|a\|_{1}$ of the true answer.
- Let $\mathcal{E}$ be the event that the aggregate data structure provides an estimate within $\varepsilon\|\boldsymbol{a}\|$.
- Question: What is $\operatorname{Pr}[\varepsilon]$ ?


## The Final Analysis

- Since we're taking the minimum of all the estimates, if any of the data structures provides a good estimate, our estimate will be accurate.
- Therefore,

$$
\operatorname{Pr}[\mathcal{E}]=\operatorname{Pr}\left[\exists i . \mathcal{E}_{i}\right]
$$

- Equivalently:

$$
\operatorname{Pr}[\varepsilon]=1-\operatorname{Pr}\left[\forall i . \bar{\varepsilon}_{i}\right]
$$

- Since all the estimates are independent:

$$
\operatorname{Pr}[\varepsilon]=1-\operatorname{Pr}\left[\forall i . \bar{\varepsilon}_{i}\right] \geq 1-1 / e^{d} .
$$

## The Final Analysis

- We now have that

$$
\operatorname{Pr}[\varepsilon] \geq 1-1 / e^{d}
$$

- If we want the confidence to be $1-\delta$, we can choose $\delta$ such that

$$
1-\delta=1-1 / e^{d}
$$

- Solving, we can choose $d=\ln \delta^{-1}$.
- If we make ln $\delta^{-1}$ independent copies of our data structure, the probability that our estimate is off by at most $\varepsilon\|\boldsymbol{a}\|_{1}$ is at least $1-\delta$.


## The Count-Min Sketch

- This data structure is called the count-min sketch.
- Given parameters $\varepsilon$ and $\delta$, choose

$$
w=\lceil e / \varepsilon\rceil \quad d=\left\lceil\ln \delta^{-1}\right\rceil
$$

- Create an array count of size $w \times d$ and for each row $i$, choose a hash function $h_{i}: \mathscr{U} \rightarrow[w]$ uniformly and independently from a 2-independent family of hash functions $\mathscr{H}$.
- To increment(x), increment count[i][ $\left.h_{i}(x)\right]$ for each row $i$.
- To estimate ( $x$ ), return the minimum value of count $[i]\left[h_{i}(x)\right]$ across all rows $i$.


## The Count-Min Sketch

- Update and query times are $\Theta(d)$, which is $\Theta\left(\log \delta^{-1}\right)$.
- Space usage: $\Theta\left(\varepsilon^{-1} \cdot \log \delta^{-1}\right)$ counters.
- This can be significantly better than just storing a raw frequency count!
- Provides an estimate to within $\varepsilon\|\boldsymbol{a}\|_{1}$ with probability at least $1-\delta$.


## Some Generalizable Ideas

- Many of the techniques and ideas from this analysis will show up in other places.
- First, the idea of using indicator variables and linearity of expectation to simplify expected value calculations.
- Second, relying on the independence guarantees of our hash function to simplify some of the intermediate steps.
- Third, the fact that being good on expectation isn't the same as being good with high probability and using concentration inequalities to quantify spread.
- Finally, the fact that confidence and accuracy aren't the same, and running multiple parallel copies of a data structure to boost confidence.


## Time-Out for Announcements!

## Final Project Proposal

- Final project proposals were due today at 2:30PM.
- We're going to run a matchmaking algorithm soon and get back to everyone with their assigned topics.
- We're looking forward to seeing what everyone has come up with!


## Problem Sets

- Problem Set Four is due next Thursday at 2:30PM.
- Have questions? As always, you can
- stop by office hours, or
- ask on Piazza!
- We hope you have fun with this one!

Back to CS166!

## An Alternative: Count Sketches

## The Motivation

- (Note: This is historically backwards; count sketches came before count-min sketches.)
- In a count-min sketch, errors arise when multiple elements collide.
- Errors are strictly additive; the more elements collide in a bucket, the worse the estimate for those elements.
- Question: Can we try to offset the "badness" that results from the collisions?


## The Setup

- As before, for some parameter $w$, we'll create an array count of length $w$.
- As before, choose a hash function $h: \mathscr{U} \rightarrow[w]$ from a family $\mathscr{H}$.
- For each $x_{i} \in \mathscr{U}$, assign $x_{i}$ either +1 or -1 .
- To increment $(x)$, go to count $[h(x)]$ and add $\pm 1$ as appropriate.
- To estimate $(x)$, return count[ $h(x)]$, multiplied by $\pm 1$ as appropriate.



## The Intuition

- Think about what introducing the $\pm 1$ term does when collisions occur.
- If an element $x$ collides with a frequent element $y$, we're not going to get a good estimate for $x$ (but we wouldn't have gotten one anyway).
- If $x$ collides with multiple infrequent elements, the collisions between those elements will partially offset one another and leave a better estimate for $x$.


## More Formally

- Let's have $h \in \mathscr{H}$ chosen uniformly at random from a 3-independent family of hash functions from $\mathscr{U}$. to $w$.
- Choose $s \in \mathscr{U}$ uniformly randomly and independently of $h$ from a 3 -independent family from $\mathscr{U}$ to $\{-1,+1\}$.
- (Note: The more traditional analysis uses 2 -independence rather than 3-independence. I'm showing you a slightly simplified version.)
- To increment( $x$ ), add $s(x)$ to count[ $h(x)]$.
- To estimate $(x)$, return $s(x) \cdot \operatorname{count}[h(x)]$.



## How accurate is our estimation?

## Formalizing the Intuition

- As before, define $\hat{\boldsymbol{a}}_{i}$ to be our estimate of $\boldsymbol{a}_{i}$.
- As before, $\hat{a}_{i}$ will depend on how the other elements are distributed. Unlike before, it now also depends on signs given to the elements by $s$.
- Specifically, for each other $\chi_{j}$ that collides with $x_{i}$, the error contribution will be

$$
s\left(\chi_{i}\right) \cdot s\left(\chi_{j}\right) \cdot \boldsymbol{a}_{j}
$$

- Why?
- The counter for $\chi_{i}$ will have $s\left(\chi_{j}\right) \boldsymbol{a}_{j}$ added in.
- We multiply the counter by $s\left(\chi_{i}\right)$ before returning it.


## Formalizing the Intuition

- As before, define $\hat{\boldsymbol{a}}_{i}$ to be our estimate of $\boldsymbol{a}_{i}$.
- As before, $\hat{\boldsymbol{a}}_{i}$ will depend on how the other elements are distributed. Unlike before, it now also depends on signs given to the elements by $s$.
- Specifically, for each other $\chi_{j}$ that collides with $x_{i}$, the error contribution will be

$$
s\left(\chi_{i}\right) \cdot s\left(\chi_{j}\right) \cdot \boldsymbol{a}_{j}
$$

- Or:
- If $s\left(\chi_{i}\right)$ and $s\left(\chi_{j}\right)$ point in the same direction, the terms add to the total.
- If $s\left(\chi_{i}\right)$ and $s\left(\chi_{j}\right)$ point in different directions, the terms subtract from the total.


## Formalizing the Intuition

- In our quest to learn more about $\hat{\boldsymbol{a}}_{i}$, let's have $X_{j}$ be a random variable indicating whether $x_{i}$ and $x_{j}$ collided with one another:

$$
X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right) \\ 0 & \text { if } h\left(x_{i}\right) \neq h\left(x_{j}\right)\end{cases}
$$

- We can then express $\hat{\boldsymbol{a}}_{i}$ in terms of the signed contributions from the items it collides with:

$$
\hat{\boldsymbol{a}}_{i}=\sum_{j} \boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}=\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right] & =\mathrm{E}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& =\mathrm{E}\left[\boldsymbol{a}_{i}\right]+\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} s\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right]
\end{aligned}
$$

Hey, it's linearity of expectation!

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right] & =\mathrm{E}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} s\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& =\mathrm{E}\left[\boldsymbol{a}_{i}\right]+\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} s\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right]
\end{aligned}
$$

Remember that $\boldsymbol{a}_{i}$ and the like aren't random variables.

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right] & =\mathrm{E}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& =\mathrm{E}\left[\boldsymbol{a}_{i}\right]+\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[s\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right)\right] \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right]
\end{aligned}
$$

We chose the hash functions $h$ and $s$ independently of one another.

$$
X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right) \\ 0 & \text { if } h\left(x_{i}\right) \neq h\left(x_{j}\right)\end{cases}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right] & =\mathrm{E}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right] \\
& =\mathrm{E}\left[\boldsymbol{a}_{i}\right]+\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[s\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right)\right] \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{s}\left(x_{i}\right)\right] \mathrm{E}\left[s\left(x_{j}\right)\right] \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right]
\end{aligned}
$$

Remember that $s$ is drawn from a 3-independent family of hash functions, so $s\left(x_{i}\right)$ and $s\left(x_{j}\right)$ are independent random variables.

$$
\begin{aligned}
\mathrm{E}\left[\hat{\boldsymbol{a}}_{i}\right] & =\mathrm{E}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right] \\
& =\mathrm{E}\left[\boldsymbol{a}_{i}\right]+\mathrm{E}\left[\sum_{j \neq i} \boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[s\left(x_{i}\right) s\left(x_{j}\right)\right] \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} \mathrm{E}\left[s\left(x_{i}\right)\right] \mathrm{E}\left[s\left(x_{j}\right)\right] \mathrm{E}\left[\boldsymbol{a}_{j} X_{j}\right] \\
& =\boldsymbol{a}_{i}+\sum_{j \neq i} 0 \\
& =\boldsymbol{a}_{i}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[s\left(x_{i}\right)\right] & =1 / 2 \cdot(-1)+1 / 2 \cdot(+1) \\
& =0
\end{aligned}
$$

$s$ is drawn from a 3-independent family of hash functions.
$s\left(x_{i}\right)$ is uniform over $\{-1,+1\}$

$$
\operatorname{Pr}\left[s\left(x_{i}\right)=-1\right]=1 / 2 \quad \operatorname{Pr}\left[s\left(x_{\mathrm{i}}\right)=+1\right]=1 / 2
$$

## Expecting the Unexpected

- We've just seen that $E\left[\hat{\boldsymbol{a}}_{i}\right]=\boldsymbol{a}_{i}$, so on expectation our estimate is perfectly correct!
- However, we have no idea how likely it is that we're going to get an estimate like this.
- Let's see if we can bound the likelihood that we stray far from $\boldsymbol{a}_{i}$.


## A Hitch

- In the count-min sketch, we used Markov's inequality to bound the probability that we get a bad estimate.
- This worked because we had a one-sided error: the distance $\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}$ from the true answer was nonnegative.
- However, with the count sketch, we have a twosided error: $\hat{a}_{i}-\boldsymbol{a}_{i}$ can be negative in the count sketch because collisions can decrease the estimate $\hat{\boldsymbol{a}}_{i}$ below the true value $\boldsymbol{a}_{i}$.
- We'll need to use a different technique to bound the error.


## Chebyshev to the Rescue

- Chebyshev's inequality states that for any random variable $X$ with finite variance, given any $c>0$, the following holds:

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq c \sqrt{\operatorname{Var}[X]}] \leq \frac{1}{c^{2}}
$$

- Equivalently:

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq c] \leq \frac{\operatorname{Var}[X]}{c^{2}}
$$

- If we can get the variance of $\hat{\boldsymbol{a}}_{i}$, we can bound the probability that we get a bad estimate with our data structure.


## Computing the Variance

- Let's try computing the variance of our estimate $\hat{\boldsymbol{a}}_{i}$ :

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\boldsymbol{a}}_{i}\right] & =\operatorname{Var}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& =\operatorname{Var}\left[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right]
\end{aligned}
$$

$\operatorname{Var}[a+X]=\operatorname{Var}[X]$

## Computing the Variance

- Let's try computing the variance of our estimate $\hat{\boldsymbol{a}}_{i}$ :

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\boldsymbol{a}}_{i}\right] & =\operatorname{Var}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& =\operatorname{Var}\left[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right]
\end{aligned}
$$

- Variance is not a linear operator, but it is linear if the underlying random variables are independent of one another.
- Claim: Each term of the sum is independent of the others.


## Independence Day

- We want to show that these two terms are independent:

$$
\boldsymbol{a}_{j} s\left(\chi_{i}\right) s\left(\chi_{j}\right) X_{j} \quad \boldsymbol{a}_{k} s\left(\chi_{i}\right) s\left(\chi_{k}\right) X_{k}
$$

- Imagine we know $\boldsymbol{a}_{j} s\left(\chi_{i}\right) s\left(\chi_{j}\right) X_{j}$.
- Whether $\boldsymbol{a}_{k} \boldsymbol{s}\left(\chi_{i}\right) s\left(\chi_{k}\right) X_{k}=0$ depends on whether $h\left(\chi_{i}\right)=h\left(\chi_{k}\right)$.
- The values $h\left(x_{i}\right), h\left(x_{j}\right)$, and $h\left(x_{k}\right)$ are uniformly-random and independent because $h$ is 3 -independent.
- Knowing whether $h\left(x_{i}\right)=h\left(x_{j}\right)$ doesn't impact the probability that $h\left(x_{i}\right)=h\left(x_{k}\right)$, since all three values are uniform and independent.
- The sign of $\boldsymbol{a}_{k} s\left(\chi_{i}\right) s\left(\chi_{k}\right) X_{k}$ depends on $s\left(\chi_{i}\right) \cdot s\left(\chi_{k}\right)$.
- $s\left(\chi_{i}\right), s\left(\chi_{j}\right)$, and $s\left(\chi_{k}\right)$ are uniformly-random and independent because $s$ is 3-independent.
- There's an equal chance that $s\left(\chi_{i}\right) \cdot s\left(\chi_{k}\right)=1$ and $s\left(\chi_{i}\right) \cdot s\left(\chi_{k}\right)=-1$, since even with $s\left(\chi_{i}\right) \cdot s\left(\chi_{j}\right)$ fixed, $s\left(\chi_{k}\right)$ is independently and uniformly distributed over $\{+1,-1\}$.

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\boldsymbol{a}}_{i}\right] & =\operatorname{Var}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& =\operatorname{Var}\left[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& =\sum_{j \neq i} \operatorname{Var}\left[\boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& \leq \sum_{j \neq i} \mathrm{E}\left[\left(\boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}[Z] & =\mathrm{E}\left[Z^{2}\right]-\mathrm{E}[Z]^{2} \\
& \leq \mathrm{E}\left[Z^{2}\right]
\end{aligned}
$$

$\operatorname{Var}\left[\hat{\boldsymbol{a}}_{i}\right]=\operatorname{Var}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right]$

$$
=\operatorname{Var}\left[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right]
$$

$$
=\sum_{j \neq i} \operatorname{Var}\left[\boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right]
$$

$$
\leq \sum_{j \neq i} \mathrm{E}\left[\left(\boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right)^{2}\right]
$$

$$
=\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j}^{2} \boldsymbol{s}\left(x_{i}\right)^{2} \boldsymbol{s}\left(x_{j}\right)^{2} X_{j}^{2}\right]
$$

$$
=\sum_{j \neq i} \boldsymbol{a}_{j}^{2} \mathrm{E}\left[X_{j}^{2}\right]
$$

$$
\begin{gathered}
s(x)= \pm 1 \\
\text { so } \\
s(x)^{2}=1 \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\boldsymbol{a}}_{i}\right] & =\operatorname{Var}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& =\operatorname{Var}\left[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& =\sum_{j \neq i} \operatorname{Var}\left[\boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& \leq \sum_{j \neq i} \mathrm{E}\left[\left(\boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right)^{2}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j}^{2} \boldsymbol{s}\left(x_{i}\right)^{2} s\left(x_{j}\right)^{2} X_{j}^{2}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j}^{2} \mathrm{E}\left[X_{j}^{2}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j}^{2} \mathrm{E}\left[X_{j}\right]
\end{aligned}
$$

## Useful Fact:

If $X$ is an indicator variable, then $X^{2}=X$.
$\operatorname{Var}\left[\hat{\boldsymbol{a}}_{i}\right]=\operatorname{Var}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right]$

$$
=\operatorname{Var}\left[\sum_{j \neq i} \boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right]
$$

$$
=\sum_{j \neq i} \operatorname{Var}\left[\boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right]
$$

$$
\leq \sum_{j \neq i} \mathrm{E}\left[\left(\boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right)^{2}\right]
$$

$$
=\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j}^{2} \boldsymbol{s}\left(x_{i}\right)^{2} \boldsymbol{s}\left(x_{j}\right)^{2} X_{j}^{2}\right]
$$

$$
=\sum_{j \neq i} \boldsymbol{a}_{j}^{2} \mathrm{E}\left[X_{j}^{2}\right]
$$

$$
=\sum_{j \neq i} \boldsymbol{a}_{j}^{2} \mathrm{E}\left[X_{j}\right]
$$

$$
=\sum_{j \neq i} \boldsymbol{a}_{j}^{2} / w \quad X_{j}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h\left(x_{j}\right) \\ 0 & \text { if } h\left(x_{i}\right) \neq h\left(x_{j}\right)\end{cases}
$$

$\operatorname{Var}\left[\hat{\boldsymbol{a}}_{i}\right]=\operatorname{Var}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right]$
$=\operatorname{Var}\left[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right]$
$=\sum_{j \neq i} \operatorname{Var}\left[\boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right]$
$\leq \sum_{j \neq i} \mathrm{E}\left[\left(\boldsymbol{a}_{j} s\left(x_{i}\right) s\left(x_{j}\right) X_{j}\right)^{2}\right]$
$=\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j}^{2} \boldsymbol{s}\left(x_{i}\right)^{2} \boldsymbol{s}\left(x_{j}\right)^{2} X_{j}^{2}\right]$
$=\sum_{j \neq i} \boldsymbol{a}_{j}^{2} \mathrm{E}\left[X_{j}^{2}\right]$
$=\sum_{j \neq i} \boldsymbol{a}_{j}^{2} \mathrm{E}\left[X_{j}\right]$
$=\sum_{j \neq i} \boldsymbol{a}_{j}^{2} / w$
$\leq\|\boldsymbol{a}\|_{2}^{2} / w$

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\boldsymbol{a}}_{i}\right] & =\operatorname{Var}\left[\boldsymbol{a}_{i}+\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& =\operatorname{Var}\left[\sum_{j \neq i} \boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& =\sum_{j \neq i} \operatorname{Var}\left[\boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right] \\
& \leq \sum_{j \neq i} \mathrm{E}\left[\left(\boldsymbol{a}_{j} \boldsymbol{s}\left(x_{i}\right) \boldsymbol{s}\left(x_{j}\right) X_{j}\right)^{2}\right] \\
& =\sum_{j \neq i} \mathrm{E}\left[\boldsymbol{a}_{j}^{2} \boldsymbol{s}\left(x_{i}\right)^{2} \boldsymbol{s}\left(x_{j}\right)^{2} X_{j}^{2}\right] \\
& =\sum_{j \neq i} \boldsymbol{a}_{j}^{2} \mathrm{E}\left[X_{j}^{2}\right]
\end{aligned}
$$

$$
=\sum_{j \neq i} \boldsymbol{a}_{j}^{2} \mathrm{E}\left[X_{j}\right]
$$

$$
=\sum_{j \neq i} a_{j}^{2} / w
$$

I know this might look really dense, but many of these substeps end up being really useful techniques. These ideas generalize, I promise.

$$
\leq\|\boldsymbol{a}\|_{2}^{2} / w
$$

## Harnessing Chebyshev

- Chebyshev's Inequality says

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq c \sqrt{\operatorname{Var}[X]}] \leq 1 / c^{2}
$$

- Applying this to $\hat{\boldsymbol{a}}_{i}$ yields

$$
\operatorname{Pr}\left[\left|\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right| \geq \frac{c\|\boldsymbol{a}\|_{2}}{\sqrt{w}}\right] \leq 1 / c^{2}
$$

- Given error parameter $\varepsilon$, pick $w=\left\lceil e / \varepsilon^{2}\right\rceil$, so

$$
\operatorname{Pr}\left[\left|\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right| \geq \frac{c \varepsilon\|\boldsymbol{a}\|_{2}}{\sqrt{\boldsymbol{e}}}\right] \leq 1 / c^{2}
$$

- Therefore, choosing $c=e^{1 / 2}$ gives

$$
\operatorname{Pr}\left[\left|\hat{\boldsymbol{a}}_{i}-\boldsymbol{a}_{i}\right| \geq \varepsilon\|\boldsymbol{a}\|_{2}\right] \leq 1 / e
$$

## The Story So Far

- We now know that, by setting $\varepsilon=(e / w)^{1 / 2}$, the estimate is within $\varepsilon\|\boldsymbol{a}\|_{2}$ with probability at least $1-1 / e$.
- Solving for $w$, this means that we will choose $w=\left\lceil e / \varepsilon^{2}\right\rceil$.
- Space usage is now $\mathrm{O}\left(\varepsilon^{-2}\right)$, but the error bound is now $\varepsilon\|\boldsymbol{a}\|_{2}$ rather than $\varepsilon\|\boldsymbol{a}\|_{1}$.
- As before, the next step is to reduce the error probability.


## Repetitions with a Catch

- As before, our goal is to make it possible to choose a bound $0<\delta<1$ so that the confidence is at least 1 - $\delta$.
- As before, we'll do this by making $d$ independent copies of the data structure and running each in parallel.
- Unlike the count-min sketch, errors in count sketches are two-sided; we can overshoot or undershoot.
- Therefore, it's not meaningful to take the minimum or maximum value.
- How do we know which value to report?


## Working with the Median

- Claim: If we output the median estimate given by the data structures, we have high probability of giving the right answer.
- Intuition: The only way we report an answer more than $\varepsilon\|\boldsymbol{a}\|_{2}$ is if at least half of the data structures output an answer that is more than $\varepsilon\|\boldsymbol{a}\|_{2}$ from the true answer.
- Each individual data structure is wrong with probability at most $1 / e$, so this is highly unlikely.


## The Setup

- Let $X$ denote a random variable equal to the number of data structures that produce an answer not within $\varepsilon\|a\|_{2}$ of the true answer.
- Since each independent data structure has failure probability at most $1 / e$, we can upper-bound $X$ with a $\operatorname{Binom}(d, 1 / e)$ variable.
- We want to know $\operatorname{Pr}[X>d / 2]$.
- How can we determine this?


## Chernoff Bounds

- The Chernoff bound says that if $X \sim \operatorname{Binom}(n, p)$ and $p<1 / 2$, then

$$
\operatorname{Pr}[X>n / 2]<e^{\frac{-n(1 / 2-p)^{2}}{2 p}}
$$

- In our case, $X \sim \operatorname{Binom}(d, 1 / e)$, so we know that

$$
\begin{aligned}
\operatorname{Pr}\left[X>\frac{d}{2}\right] & \leq e^{\frac{-d(1 / 2-1 / e)^{2}}{2(1 / e)}} \\
& =e^{-k \cdot d} \quad \text { (for some constant } k \text { ) }
\end{aligned}
$$

- Therefore, choosing $d=k^{-1} \cdot \log \delta^{-1}$ ensures that $\operatorname{Pr}[X>d / 2] \leq \delta$.
- Therefore, the success probability is at least $1-\delta$.


## Chernoff Bounds

- The Chernoff bound says that if $X \sim \operatorname{Binom}(n, p)$ and $p<1 / 2$, then

$$
\operatorname{Pr}[X>n / 2]<e^{\frac{-n(1 / 2-p)^{2}}{2 p}}
$$

The specific constant factor here matters, since it's an exponent! To implement this data structure, you'll need to work out the exact value.

```
1/e), so we know that
```



```
\[
e^{-k \cdot d}
\]
(for some constant \(k\) )
```

- Therefore, choosing $d=k^{-1} \cdot \log \delta^{-1}$ ensures that $\operatorname{Pr}[X>d / 2] \leq \delta$.
- Therefore, the success probability is at least $1-\delta$.


## The Overall Construction

- The count sketch is the data structure given as follows.
- Given $\varepsilon$ and $\delta$, choose

$$
w=\left\lceil e / \varepsilon^{2}\right\rceil \quad d=\Theta\left(\log \delta^{-1}\right)
$$

- Create an array count of $w \times d$ counters.
- Choose hash functions $h_{i}$ and $s_{i}$ for each of the d rows.
- To increment( $x$ ), add $s_{i}(x)$ to count[i][ $\left.h_{i}(x)\right]$ for each row $i$.
- To estimate $(x)$, return the median of $S_{i}(x) \cdot \operatorname{count}[i]\left[h_{i}(x)\right]$ for each row $i$.


## The Final Analysis

- With probability at least $1-\delta$, all estimates are accurate to within a factor of $\varepsilon\|\boldsymbol{a}\|_{2}$.
- Space usage is $\Theta(w \times d)$, which we've seen to be $\Theta\left(\varepsilon^{-2} \cdot \log \delta^{-1}\right)$.
- Updates and queries run in time $\Theta\left(\delta^{-1}\right)$.
- Trades factor of $\varepsilon^{-1}$ space for an accuracy guarantee relative to $\|\boldsymbol{a}\|_{2}$ versus $\|\boldsymbol{a}\|_{1}$.


## In Practice

- These data structures have been and continue to be used in practice.
- These sketches and their variants have been used at Google and Yahoo! (or at least, there are papers coming from there about their usage).
- Many other sketches exist as well for estimating other quantities; they'd make for really interesting final project topics!


## More to Explore

- A cardinality estimator is a data structure for estimating how many different elements have been seen in sublinear time and space. They're used extensively in database implementations.
- If instead of estimating $\boldsymbol{a}_{i}$ terms individually we want to estimate $\|\boldsymbol{a}\|_{1}$ or $\left\|\boldsymbol{a}_{2}\right\|$, we can use a frequency moment estimator.
- You'll get to play around with at least one of these on Problem Set Five.


## Some Concluding Notes

## Randomized Data Structures

- You may have noticed that the final versions of these data structures are actually not all that complex - each just maintains a set of hash functions and some 2D tables.
- The analyses, on the other hand, are a lot more involved than what we saw for other data structures.
- This is common - randomized data structures often have simple descriptions and quite complex analyses.


## The Strategy

- Typically, an analysis of a randomized data structure looks like this:
- First, show that the data structure (or some random variable related to it), on expectation, performs well.
- Second, use concentration inequalities (Markov, Chebyshev, Chernoff, or something else) to show that it's unlikely to deviate from expectation.
- The analysis often relies on properties of some underlying hash function. On Tuesday, we'll explore why this is so important.


## Next Time

- Hashing Strategies
- There are a lot of hash tables out there. What do they look like?
- Linear Probing
- The original hashing strategy!
- Analyzing Linear Probing
- ...is way, way more complicated than you probably would have thought. But it's beautiful! And a great way to learn about randomized data structures!

