

Frequency Estimators

Outline for Today

● Randomized Data Structures
● Our next approach to improving

performance.
● Count-Min Sketches

● A simple and powerful data structure for
estimating frequencies.

● Count Sketches
● Another approach for estimating

frequencies.

Randomized Data Structures

Tradeoffs

● Data structure design is all about
tradeoffs:
● Trade preprocessing time for query time.
● Trade asymptotic complexity for constant

factors.
● Trade worst-case per-operation guarantees

for worst-case aggregate guarantees.

Randomization

● Randomization opens up new routes for
tradeoffs in data structures:
● Trade worst-case guarantees for average-case

guarantees.
● Trade exact answers for approximate answers.

● Over the next few lectures, we'll explore
two families of data structures that make
these tradeoffs:
● Today: Frequency estimators.
● Next Week: Hash tables.

Preliminaries: What is a Hash Function?

Hashing in Practice

● In most programming languages, each object
has “a” hash code.
● C++: std::hash
● Java: Object.hashCode
● Python: __hash__

● To store objects in a hash table, you just go
and implement the appropriate function or
type.

● In other words, hash functions are intrinsic
properties of objects.

Hashing in Theoryland

● In Theoryland, a hash function is a function from
some domain called the universe (typically
denoted) to some codomain. 𝒰) to some codomain.

● The codomain is usually a set of the form {0, 1, 2,
3, …, m – 1}, which we’ll denote [m].

● We often will grab lots of different hash functions
from the same universe to some codomain, and 𝒰) to some codomain.
we’ll assume we have access to as many of them
as we need.

● In other words, hash functions are extrinsic to
objects, and it’s possible to have multiple different
hash functions available at the same time.

Families of Hash Functions

● A family of hash functions is a set of ℋ of
hash functions with the same domain and
codomain.

● The data structures we’ll explore will
assume that we have access to certain
families of hash functions with nice
properties.

● We’ll then sample uniformly-random choices
h ∈ to use as needed.ℋ of

Sampling Random Functions

● Here’s a family of hash functions from ℕ to [137]:ℋ of

ℋ of = { f(n) = (an + b) mod 137 | a, b ∈ [137] }
● In Theoryland, we’d model picking a uniformly-

random hash function from as just that – sampling ℋ of
some h ∈ uniformly.ℋ of

● In The Real World, we’d probably model picking such
a function like this:

 int a = rand() % 137;
 int b = rand() % 137;

 int hash(int value) {
 return (a * value + b) % 137;
 }

Characterizing Hash Functions

● Different algorithms and data structures
require different guarantees from their hash
functions.

● In CS161, you explored universal hash
functions in the context of chained hash
tables.

● For what we’ll be doing in CS166, we’re
going to need hash functions with slightly
stronger probabilistic guarantees.

Pairwise Independence

● Let be a family of hash functions from to some set .ℋ of 𝒰) to some codomain. 𝒞.

● We say that is a ℋ of 2-independent family of hash
functions if, for any distinct distinct x, y ∈ , if we choose a 𝒰) to some codomain.
hash function h ∈ uniformly at random, the following ℋ of
hold:

h(x) and h(y) are uniformly distributed over . 𝒞.

h(x) and h(y) are independent.

● 2-independent hash functions are great hash functions when
we want a nice distribution over the output space even after
fixing some specific element.

3-Independence

● Let be a family of hash functions from to some set .ℋ of 𝒰) to some codomain. 𝒞.

● We say that is a ℋ of 3-independent family of hash
functions if, for any distinct distinct x, y, z ∈ , if we 𝒰) to some codomain.
choose a hash function h ∈ uniformly at random, the ℋ of
following hold:

h(x), h(y), and h(z) are uniformly distributed over . 𝒞.

h(x), h(y), and h(z) are independent.

● As you’ll see, in many cases, making stronger assumptions
about our hash functions makes it possible to simplify tricky
probabilistic expressions.

● (As you can probably guess, this generalizes even further to
k-independence, which we’ll see on Tuesday.)

Frequency Estimation

Frequency Estimators

● A frequency estimator is a data structure
supporting the following operations:
● increment(x), which increments the number of

times that x has been seen, and
● estimate(x), which returns an estimate of the

frequency of x.
● Using BSTs, we can solve this in space Θ(n)

with worst-case O(log n) costs on the
operations.

● Using hash tables, we can solve this in space
Θ(n) with expected O(1) costs on the
operations.

Frequency Estimators

● Frequency estimation has many applications:
● Search engines: Finding frequent search

queries.
● Network routing: Finding common source and

destination addresses.
● In these applications, Θ(n) memory can be

impractical.
● Goal: Get approximate answers to these

queries in sublinear space.

Some Terminology

● Let's suppose that all elements x are
drawn from some set = { 𝒰) to some codomain. x₁, x₂, … xₙ }.

● We can interpret the frequency
estimation problem as follows:

Maintain an n-dimensional vector a
such that aᵢ is the frequency of xᵢ.

● We'll represent a implicitly in a format
that uses reduced space.

● Let a ∈ ℝn be a vector.
● The L₁ norm of a, denoted ║a║₁, is

defined as

● The L₂ norm of a, denoted ║a║₂, is

defined as

Vector Norms

∥a∥1=∑
i=1

n

∣ai∣

∥a∥2=√∑
i=1

n

ai
2

Properties of Norms

● The following property of norms holds for
any vector a ∈ ℝn. It's a good exercise to
prove this on your own:

║a║₂ ≤ ║a║₁ ≤ Θ(n1/2) · ║a║₂
● The first bound is tight when exactly one

component of a is nonzero.
● The second bound is tight when all

components of a are equal.

Where We're Going

● Today, we'll see two data frequency
estimation data structures.

● Each is parameterized over two
quantities:
● An accuracy parameter ε ∈ (0, 1)

determining how close to accurate we want
our answers to be.

● A confidence parameter δ ∈ (0, 1]
determining how likely it is that our estimate
is within the bounds given by ε.

Where We're Going

● The count-min sketch provides estimates with
error at most ε║a║₁ with probability at least 1 – δ.

● The count sketch provides estimates with an
error at most ε║a║₂ with probability at least 1 – δ.

● (Notice that lowering ε and lower δ give better
bounds.)

● Count-min sketches will use less space than
count sketches for the same ε and δ, but provide
slightly weaker guarantees.

The Count-Min Sketch

The Count-Min Sketch

● Rather than diving into the full count-min
sketch, we'll develop the data structure in
phases.

● First, we'll build a simple data structure that
on expectation provides good estimates, but
which does not have a high probability of
doing so.

● Next, we'll combine several of these data
structures together to build a data structure
that has a high probability of providing good
estimates.

Revisiting the Exact Solution

● In the exact solution to the frequency estimation
problem, we maintained a single counter for each
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a
counter to each xᵢ ∈ . Multiple 𝒰) to some codomain. xᵢ's might be assigned
to the same counter.

● To increment(x), increment the counter for x.

● To estimate(x), read the value of the counter for x.

11 6 4 7

Our Initial Structure

● We can model “assigning each xᵢ to a counter” by using
hash functions.

● Choose, from a family of 2-independent hash functions , ℋ of
a uniformly-random hash function h : → [𝒰) to some codomain. w].

● Create an array count of w counters, each initially zero.
● We'll choose w later on.

● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].

137 42 166 … 161

h

x

Analyzing this Structure

● Recall: a is the vector representing the
true frequencies of the elements.
● aᵢ is the frequency of element xᵢ.

● Denote by âᵢ the value of estimate(xᵢ).
This is a random variable that depends
on the true frequencies a (out of our
control, but not random) and the hash
function h (truly chosen at random.)

● Goal: Show that on expectation, âᵢ is not
far from aᵢ.

Analyzing this Structure

● Intuitively, what do we expect âᵢ to be?
● There are ║a║₁ total elements spread out across w

buckets.
● Assuming they’re well-distributed, we’d probably

expect ║a║₁ / w of them to be in each bucket.
● So a reasonable guess would be that âᵢ should

probably end up being something like aᵢ + ║a║₁ / w.
● Let’s see if we can formalize this.

137 42 166 … 161

h

x

Analyzing this Structure

● Let's look at âᵢ = count[h(xᵢ)] for some choice of xᵢ.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random
variables X₁, X₂, …, as follows:

● The value of âᵢ is then given by

X j = { 1 if h(xi) = h(x j)

 0 otherwise

âi = ∑
j

a j X j = ai + ∑
j≠i

a j X j

Each of these variables is
called an indicator

random variable, since
it “indicates” whether

some event occurs.

Each of these variables is
called an indicator

random variable, since
it “indicates” whether

some event occurs.

Analyzing this Structure

● Let's look at âᵢ = count[h(xᵢ)] for some choice of xᵢ.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random
variables X₁, X₂, …, as follows:

● The value of âᵢ is then given by

X j = { 1 if h(xi) = h(x j)

 0 otherwise

âi = ∑
j

a j X j = ai + ∑
j≠i

a j X j

E[âi] = E[ai + ∑
j≠i

a j X j]

= E[ai] + E[∑
j≠i

a j X j]

= ai + ∑
j≠i

E[a j X j]

= ai + ∑
j≠i

a jE[X j]

= ai + ∑
j≠i

a j

w

≤ ai +
‖a‖1

w

This follows from linearity
of expectation. We’ll use
this property extensively
over the next few days.

This follows from linearity
of expectation. We’ll use
this property extensively
over the next few days.

E[âi] = E[ai + ∑
j≠i

a j X j]

= E[ai] + E[∑
j≠i

a j X j]

= ai + ∑
j≠i

E[a j X j]

= ai + ∑
j≠i

a jE[X j]

= ai + ∑
j≠i

a j

w

≤ ai +
‖a‖1

w

The actual value of aᵢ is not
a random variable. The

randomness here is in our
choice of hash function,

not the choice of the data.

The actual value of aᵢ is not
a random variable. The

randomness here is in our
choice of hash function,

not the choice of the data.

E[âi] = E[ai + ∑
j≠i

a j X j]

= E[ai] + E[∑
j≠i

a j X j]

= ai + ∑
j≠i

E[a j X j]

= ai + ∑
j≠i

a jE[X j]

= ai + ∑
j≠i

a j

w

≤ ai +
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]

= 1⋅Pr [h(xi)=h(x j)]

=
1
w

 X j={ 1 if h(xi)=h(x j)

 0 otherwise

E[âi] = E[ai + ∑
j≠i

a j X j]

= E[ai] + E[∑
j≠i

a j X j]

= ai + ∑
j≠i

E[a j X j]

= ai + ∑
j≠i

a jE[X j]

= ai + ∑
j≠i

a j

w

≤ ai +
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]

= 1⋅Pr [h(xi)=h(x j)]

=
1
w

 If X is an indicator variable for some event Ɛ,
then E[X] = Pr[Ɛ]. This is really useful when

using linearity of expectation!

If X is an indicator variable for some event Ɛ,
then E[X] = Pr[Ɛ]. This is really useful when

using linearity of expectation!

E[âi] = E[ai + ∑
j≠i

a j X j]

= E[ai] + E[∑
j≠i

a j X j]

= ai + ∑
j≠i

E[a j X j]

= ai + ∑
j≠i

a jE[X j]

= ai + ∑
j≠i

a j

w

≤ ai +
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]

= 1⋅Pr [h(xi)=h(x j)]

=
1
w

 Any two hash codes from a randomly-chosen
2-independent hash function are independent,

uniformly-random variables.

Any two hash codes from a randomly-chosen
2-independent hash function are independent,

uniformly-random variables.

E[âi] = E[ai + ∑
j≠i

a j X j]

= E[ai] + E[∑
j≠i

a j X j]

= ai + ∑
j≠i

E[a j X j]

= ai + ∑
j≠i

a jE[X j]

= ai + ∑
j≠i

a j

w

≤ ai +
‖a‖1

w

E[X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]

= 1⋅Pr [h(xi)=h(x j)]

=
1
w

Interpreting our Analysis

● On expectation, the value of estimate(xᵢ)
is at most ║a║₁ / w greater than aᵢ.
● That matches our intuition from before! Yay!

● From a practical perspective:
● Increasing w increases memory usage, but

improves accuracy.
● Decreasing w decreases memory usage, but

decreases accuracy.

One Problem

● We have shown that on expectation, the
value of estimate(xᵢ) can be made close to
the true value.

● However, this data structure may give
wildly inaccurate results for most elements.
● Any low-frequency elements that collide with

high-frequency elements will have overreported
frequency.

Question: Can we bound the probability
that we overestimate the frequency of an
element?

12 6 5 7

One Problem

● We have shown that on expectation, the
value of estimate(xᵢ) can be made close to
the true value.

● However, this data structure may give
wildly inaccurate results for most elements.
● Any low-frequency elements that collide with

high-frequency elements will have overreported
frequency.

● Question: Can we bound the probability
that we overestimate the frequency of an
element?

A Useful Observation

● Notice that regardless of which hash
function we use or the size of the table,
we always have âᵢ ≥ aᵢ.

● This means that âᵢ – aᵢ ≥ 0.
● We have a one-sided error; this data

structure will never underreport the
frequency of an element, but it may
overreport it.

Bounding the Error Probability

● If X is a nonnegative random variable, then Markov's
inequality states that for any c > 0, we have

● We know that

● Therefore, we see that

● By Markov's inequality, for any c > 0, we have

● Equivalently:

E[âi] ≤ ai + ∥a∥1/w

Pr [X > c⋅E[X]] ≤ 1 /c

E[âi−ai] ≤ ∥a∥1/w

Pr [âi−ai >
c∥a∥1

w
] ≤ 1 /c

Pr [âi > ai +
c∥a∥1

w
] ≤ 1 /c

Bounding the Error Probability

● For any c > 0, we know that

● In particular:

● Given an accuracy parameter ε, ∈ (0, 1], let's set

w = ⌈e / ε⌉. Then we have

● This data structure uses O(ε-1) space and gives
estimates with error at most ε║a║₁ with probability
at least 1 - 1 / e.

Pr [âi > ai +
c∥a∥1

w
] ≤ 1 /c

Pr [âi > ai +
e∥a∥1

w
] ≤ 1/e

Pr [âi > ai + ε∥a∥1] ≤ 1 /e

Tuning the Probability

● Right now, we can tune the accuracy ε of the
data structure, but we can't tune our
confidence in that answer (it's always
1 - 1 / e).

● Goal: Update the data structure so that for
any confidence 0 < δ < 1, the probability
that an estimate is correct is at least 1 – δ.

Tuning the Probability

● A single copy of our data structure has a
decently good chance of providing an
estimate that isn’t too far off the true value.

● Intuitively, having lots of copies of this data
structure would make it more likely that at
least one of them gets a good estimate.

● Idea: Combine together multiple copies of
this data structure to boost confidence in
our estimates.

Running in Parallel

● Let's suppose that we run d independent copies of this
data structure. Each has its own independently randomly
chosen hash function.

● To increment(x) in the overall structure, we call
increment(x) on each of the underlying data structures.

● The probability that at least one of them provides a good
estimate is quite high.

● Question: How do you know which one?

137 … 161

h₁

166 … 42

h₂

103 … 109

hd
…

x

Recognizing the Answer

● Recall: Each estimate âᵢ is the sum of two
independent terms:
● The actual value aᵢ.
● Some “noise” terms from other elements

colliding with xᵢ.
● Since the noise terms are always nonnegative,

larger values of âᵢ are less accurate than
smaller values of âᵢ.

● Idea: Take, as our estimate, the minimum
value of âᵢ from all of the data structures.

The Final Analysis

● For each independent copy of this data structure,
the probability that our estimate is within ε||a||₁
of the true value is at least 1 – 1 / e.

● Let Ɛᵢ be the event that the ith copy of the data
structure provides an estimate within ε||a||₁ of
the true answer.

● Let Ɛ be the event that the aggregate data
structure provides an estimate within ε||a||₁.

● Question: What is Pr[Ɛ]?

The Final Analysis

● Since we're taking the minimum of all the
estimates, if any of the data structures provides a
good estimate, our estimate will be accurate.

● Therefore,

Pr[Ɛ] = Pr[∃i. Ɛᵢ]
● Equivalently:

Pr[Ɛ] = 1 – Pr[∀i. Ɛᵢ]
● Since all the estimates are independent:

Pr[Ɛ] = 1 – Pr[∀i. Ɛᵢ] ≥ 1 – 1/ed.

The Final Analysis

● We now have that

Pr[Ɛ] ≥ 1 – 1/ed.
● If we want the confidence to be 1 – δ, we can

choose δ such that

1 – δ = 1 – 1/ed

● Solving, we can choose d = ln δ-1.
● If we make ln δ-1 independent copies of our data

structure, the probability that our estimate is off
by at most ε||a||₁ is at least 1 – δ.

The Count-Min Sketch

● This data structure is called the count-min sketch.
● Given parameters ε and δ, choose

w = ⌈e / ε⌉ d = ⌈ln δ-1⌉
● Create an array count of size w × d and for each row

i, choose a hash function hᵢ : → [𝒰) to some codomain. w] uniformly and
independently from a 2-independent family of hash
functions .ℋ of

● To increment(x), increment count[i][hᵢ(x)] for each
row i.

● To estimate(x), return the minimum value of
count[i][hᵢ(x)] across all rows i.

The Count-Min Sketch

● Update and query times are Θ(d), which
is Θ(log δ-1).

● Space usage: Θ(ε-1 · log δ-1) counters.
● This can be significantly better than just

storing a raw frequency count!
● Provides an estimate to within ε║a║₁ with

probability at least 1 – δ.

Some Generalizable Ideas

● Many of the techniques and ideas from this analysis will
show up in other places.

● First, the idea of using indicator variables and
linearity of expectation to simplify expected value
calculations.

● Second, relying on the independence guarantees of
our hash function to simplify some of the intermediate
steps.

● Third, the fact that being good on expectation isn’t the
same as being good with high probability and using
concentration inequalities to quantify spread.

● Finally, the fact that confidence and accuracy aren’t the
same, and running multiple parallel copies of a data
structure to boost confidence.

Time-Out for Announcements!

Final Project Proposal

● Final project proposals were due today at
2:30PM.

● We’re going to run a matchmaking
algorithm soon and get back to everyone
with their assigned topics.

● We’re looking forward to seeing what
everyone has come up with!

Problem Sets

● Problem Set Four is due next Thursday at
2:30PM.

● Have questions? As always, you can
● stop by office hours, or
● ask on Piazza!

● We hope you have fun with this one!

Back to CS166!

An Alternative: Count Sketches

The Motivation

● (Note: This is historically backwards; count
sketches came before count-min sketches.)

● In a count-min sketch, errors arise when
multiple elements collide.

● Errors are strictly additive; the more
elements collide in a bucket, the worse the
estimate for those elements.

● Question: Can we try to offset the
“badness” that results from the collisions?

The Setup

● As before, for some parameter w, we'll create an array count of
length w.

● As before, choose a hash function h : → [𝒰) to some codomain. w] from a family .ℋ of
● For each xᵢ ∈ , assign 𝒰) to some codomain. xᵢ either +1 or -1.
● To increment(x), go to count[h(x)] and add ±1 as appropriate.
● To estimate(x), return count[h(x)], multiplied by ±1 as appropriate.

– – –

– – – –

–

+ +

+ +

– – – –

+ + + +

+ +

–– –

-6 +4

+ + + +

-4 +5

The Intuition

● Think about what introducing the ±1 term does
when collisions occur.

● If an element x collides with a frequent element
y, we're not going to get a good estimate for x
(but we wouldn't have gotten one anyway).

● If x collides with multiple infrequent elements,
the collisions between those elements will
partially offset one another and leave a better
estimate for x.

● Let’s have h ∈ chosen uniformly at random from aℋ of
3-independent family of hash functions from . to 𝒰) to some codomain. w.

● Choose s ∈ uniformly randomly and independently of 𝒰) to some codomain. h
from a 3-independent family from to {-1, +1}. 𝒰) to some codomain.
● (Note: The more traditional analysis uses 2-independence rather

than 3-independence. I’m showing you a slightly simplified
version.)

● To increment(x), add s(x) to count[h(x)].
● To estimate(x), return s(x) · count[h(x)].

More Formally

137 42 166 … 161

h

xs

+1-1

How accurate is our estimation?

Formalizing the Intuition

● As before, define âᵢ to be our estimate of aᵢ.

● As before, âᵢ will depend on how the other
elements are distributed. Unlike before, it now
also depends on signs given to the elements by s.

● Specifically, for each other xⱼ that collides with xᵢ,
the error contribution will be

s(xᵢ) · s(xⱼ) · aⱼ

● Why?
● The counter for xᵢ will have s(xⱼ) aⱼ added in.
● We multiply the counter by s(xᵢ) before returning it.

Formalizing the Intuition

● As before, define âᵢ to be our estimate of aᵢ.

● As before, âᵢ will depend on how the other
elements are distributed. Unlike before, it now
also depends on signs given to the elements by s.

● Specifically, for each other xⱼ that collides with xᵢ,
the error contribution will be

s(xᵢ) · s(xⱼ) · aⱼ

● Or:
● If s(xᵢ) and s(xⱼ) point in the same direction, the

terms add to the total.
● If s(xᵢ) and s(xⱼ) point in different directions, the

terms subtract from the total.

Formalizing the Intuition

● In our quest to learn more about âᵢ, let’s have Xⱼ be
a random variable indicating whether xᵢ and xⱼ
collided with one another:

● We can then express âᵢ in terms of the signed
contributions from the items it collides with:

X j = { 1 if h(xi) = h(x j)

 0 if h(xi) ≠ h(x j)

âi = ∑
j

a j s(xi)s(x j) X j = ai + ∑
j≠i

a j s(xi)s (x j) X j

We only care about
items we collided with.

We only care about
items we collided with.

This is how much the collision
impacts our estimate.

This is how much the collision
impacts our estimate.

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

Hey, it’s linearity of
expectation!

Hey, it’s linearity of
expectation!

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

Remember that aᵢ
and the like aren’t
random variables.

Remember that aᵢ
and the like aren’t
random variables.

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

We chose the hash
functions h and s
independently of

one another.

We chose the hash
functions h and s
independently of

one another.

X j = { 1 if h(xi) = h(x j)

 0 if h(xi) ≠ h(x j)

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai
Remember that s is drawn

from a 3-independent family
of hash functions, so s(xᵢ) and
s(xⱼ) are independent random

variables.

Remember that s is drawn
from a 3-independent family

of hash functions, so s(xᵢ) and
s(xⱼ) are independent random

variables.

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j]

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j]

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j]

= ai + ∑
j≠i

0

= ai

s is drawn from a 3-independent
family of hash functions.

s(xᵢ) is uniform over {-1, +1}

Pr[s(xᵢ) = -1] = ½ Pr[s(xᵢ) = +1] = ½

s is drawn from a 3-independent
family of hash functions.

s(xᵢ) is uniform over {-1, +1}

Pr[s(xᵢ) = -1] = ½ Pr[s(xᵢ) = +1] = ½

E[s(xᵢ)] = ½ · (-1) + ½ · (+1)
 = 0

Expecting the Unexpected

● We’ve just seen that E[âᵢ] = aᵢ, so on
expectation our estimate is perfectly correct!

● However, we have no idea how likely it is that
we’re going to get an estimate like this.

● Let’s see if we can bound the likelihood that we
stray far from aᵢ.

A Hitch

● In the count-min sketch, we used Markov's
inequality to bound the probability that we get a
bad estimate.

● This worked because we had a one-sided error:
the distance âᵢ – aᵢ from the true answer was
nonnegative.

● However, with the count sketch, we have a two-
sided error: âᵢ – aᵢ can be negative in the count
sketch because collisions can decrease the estimate
âᵢ below the true value aᵢ.

● We'll need to use a different technique to bound the
error.

Chebyshev to the Rescue

● Chebyshev's inequality states that for any
random variable X with finite variance, given
any c > 0, the following holds:

● Equivalently:

● If we can get the variance of âᵢ, we can bound

the probability that we get a bad estimate with
our data structure.

Pr [∣X−E[X]∣ ≥ c √Var [X]] ≤
1
c2

Pr [|X−E[X]| ≥ c] ≤
Var [X]

c2

Computing the Variance

● Let’s try computing the variance of our estimate âᵢ:

● Variance is not a linear operator, but it is linear if
the underlying random variables are independent
of one another.

● Claim: Each term of the sum is independent of the
others.

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s (x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

Var[a + X] = Var[X]Var[a + X] = Var[X]

Computing the Variance

● Let’s try computing the variance of our estimate âᵢ:

● Variance is not a linear operator, but it is linear if
the underlying random variables are independent
of one another.

● Claim: Each term of the sum is independent of the
others.

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s (x j) X j]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

Independence Day

● We want to show that these two terms are independent:

aⱼ s(xᵢ) s(xⱼ) Xⱼ aₖ s(xᵢ) s(xₖ) Xₖ

● Imagine we know aⱼ s(xᵢ) s(xⱼ) Xⱼ.

● Whether aₖ s(xᵢ) s(xₖ) Xₖ = 0 depends on whether h(xᵢ) = h(xₖ).

● The values h(xᵢ), h(xⱼ), and h(xₖ) are uniformly-random and
independent because h is 3-independent.

● Knowing whether h(xᵢ) = h(xⱼ) doesn’t impact the probability that
h(xᵢ) = h(xₖ), since all three values are uniform and independent.

● The sign of aₖ s(xᵢ) s(xₖ) Xₖ depends on s(xᵢ) · s(xₖ).

● s(xᵢ), s(xⱼ), and s(xₖ) are uniformly-random and independent
because s is 3-independent.

● There’s an equal chance that s(xᵢ) · s(xₖ) = 1 and s(xᵢ) · s(xₖ) = -1,
since even with s(xᵢ) · s(xⱼ) fixed, s(xₖ) is independently and
uniformly distributed over {+1, -1}.

Var [âi] = Var [ai + ∑
j≠i

a j s(x i)s(x j)X j]

= Var [∑
j≠i

a j s(x i)s(x j)X j]

= ∑
j≠i

Var [a j s(xi)s(x j)X j]

≤ ∑
j≠i

E[(a j s(xi)s(x j) X j)
2
]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2
]

= ∑
j≠i

a j
2E[X j

2
]

= ∑
j≠i

a j
2E[X j]

= ∑
j≠i

a j
2
/w

= ‖a‖2
2
/w

 Var[Z] = E[Z2] – E[Z]2

≤ E[Z2]

 Var[Z] = E[Z2] – E[Z]2

≤ E[Z2]

Var [âi] = Var [ai + ∑
j≠i

a j s(x i)s(x j)X j]

= Var [∑
j≠i

a j s(x i)s(x j)X j]

= ∑
j≠i

Var [a j s(xi)s(x j)X j]

≤ ∑
j≠i

E[(a j s(xi)s(x j) X j)
2
]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2
]

= ∑
j≠i

a j
2E[X j

2
]

= ∑
j≠i

a j
2E[X j]

= ∑
j≠i

a j
2
/w

= ‖a‖2
2
/w

s(x) = ±1,

so

s(x)2 = 1

s(x) = ±1,

so

s(x)2 = 1

Var [âi] = Var [ai + ∑
j≠i

a j s(x i)s(x j)X j]

= Var [∑
j≠i

a j s(x i)s(x j)X j]

= ∑
j≠i

Var [a j s(xi)s(x j)X j]

≤ ∑
j≠i

E[(a j s(xi)s(x j) X j)
2
]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2
]

= ∑
j≠i

a j
2E[X j

2
]

= ∑
j≠i

a j
2E[X j]

= ∑
j≠i

a j
2
/w

= ‖a‖2
2
/w

Useful Fact:
If X is an indicator

variable, then X2 = X.

Useful Fact:
If X is an indicator

variable, then X2 = X.

Var [âi] = Var [ai + ∑
j≠i

a j s(x i)s(x j)X j]

= Var [∑
j≠i

a j s(x i)s(x j)X j]

= ∑
j≠i

Var [a j s(xi)s(x j)X j]

≤ ∑
j≠i

E[(a j s(xi)s(x j) X j)
2
]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2
]

= ∑
j≠i

a j
2E[X j

2
]

= ∑
j≠i

a j
2E[X j]

= ∑
j≠i

a j
2
/w

= ‖a‖2
2
/w

X j = { 1 if h(xi) = h(x j)

 0 if h(xi) ≠ h(x j)

Var [âi] = Var [ai + ∑
j≠i

a j s(x i)s(x j)X j]

= Var [∑
j≠i

a j s(x i)s(x j)X j]

= ∑
j≠i

Var [a j s(xi)s(x j)X j]

≤ ∑
j≠i

E[(a j s(xi)s(x j) X j)
2
]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2
]

= ∑
j≠i

a j
2E[X j

2
]

= ∑
j≠i

a j
2E[X j]

= ∑
j≠i

a j
2
/w

≤ ‖a‖2
2
/w

√∑
j

a j
2

= ‖a‖2

Var [âi] = Var [ai + ∑
j≠i

a j s(x i)s(x j)X j]

= Var [∑
j≠i

a j s(x i)s(x j)X j]

= ∑
j≠i

Var [a j s(xi)s(x j)X j]

≤ ∑
j≠i

E[(a j s(xi)s(x j) X j)
2
]

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2
]

= ∑
j≠i

a j
2E[X j

2
]

= ∑
j≠i

a j
2E[X j]

= ∑
j≠i

a j
2
/w

≤ ‖a‖2
2
/w

I know this might look
really dense, but many of

these substeps end up
being really useful

techniques. These ideas
generalize, I promise.

I know this might look
really dense, but many of

these substeps end up
being really useful

techniques. These ideas
generalize, I promise.

Harnessing Chebyshev

● Chebyshev's Inequality says

● Applying this to âᵢ yields

● Given error parameter ε, pick w = ⌈e / ε2⌉, so

● Therefore, choosing c = e1/2 gives

Pr [|âi−ai| ≥
cε‖a‖2

√e] ≤ 1/c2

Pr [∣X−E[X]∣ ≥ c √Var [X]] ≤ 1 /c2

Pr [∣âi−ai∣ ≥
c∥a∥2

√w] ≤ 1 /c2

Pr [∣âi−ai∣ ≥ ε∥a∥2] ≤ 1/e

The Story So Far

● We now know that, by setting ε = (e / w)1/2,
the estimate is within ε║a║₂ with probability
at least 1 – 1 / e.

● Solving for w, this means that we will choose
w = ⌈e / ε2⌉.

● Space usage is now O(ε-2), but the error
bound is now ε║a║₂ rather than ε║a║₁.

● As before, the next step is to reduce the error
probability.

Repetitions with a Catch

● As before, our goal is to make it possible to choose
a bound 0 < δ < 1 so that the confidence is at
least 1 – δ.

● As before, we'll do this by making d independent
copies of the data structure and running each in
parallel.

● Unlike the count-min sketch, errors in count
sketches are two-sided; we can overshoot or
undershoot.

● Therefore, it's not meaningful to take the
minimum or maximum value.

● How do we know which value to report?

Working with the Median

● Claim: If we output the median estimate
given by the data structures, we have high
probability of giving the right answer.

● Intuition: The only way we report an
answer more than ε||a||₂ is if at least half of
the data structures output an answer that
is more than ε||a||₂ from the true answer.

● Each individual data structure is wrong
with probability at most 1 / e, so this is
highly unlikely.

The Setup

● Let X denote a random variable equal to
the number of data structures that
produce an answer not within ε||a||₂ of
the true answer.

● Since each independent data structure
has failure probability at most 1 / e, we
can upper-bound X with a Binom(d, 1 / e)
variable.

● We want to know Pr[X > d / 2].
● How can we determine this?

Chernoff Bounds

● The Chernoff bound says that if X ~ Binom(n, p)
and p < 1/2, then

● In our case, X ~ Binom(d, 1/e), so we know that

● Therefore, choosing d = k-1 · log δ-1 ensures that
Pr[X > d / 2] ≤ δ.

● Therefore, the success probability is at least 1 – δ.

Pr [X >
d
2

] ≤ e
−d(1/2−1/e)

2

2(1/e)

= e−k⋅d

Pr [X > n/2] < e
−n(1/2−p)

2

2p

(for some constant k)

Chernoff Bounds

● The Chernoff bound says that if X ~ Binom(n, p)
and p < 1/2, then

● In our case, X ~ Binom(d, 1/e), so we know that

● Therefore, choosing d = k-1 · log δ-1 ensures that
Pr[X > d / 2] ≤ δ.

● Therefore, the success probability is at least 1 – δ.

Pr [X >
d
2

] ≤ e
−d(1/2−1/e)

2

2(1/e)

= e−k⋅d

Pr [X > n/2] < e
−n(1/2−p)

2

2p

(for some constant k)

The specific constant factor
here matters, since it’s an

exponent! To implement this
data structure, you’ll need to

work out the exact value.

The specific constant factor
here matters, since it’s an

exponent! To implement this
data structure, you’ll need to

work out the exact value.

The Overall Construction

● The count sketch is the data structure given
as follows.

● Given ε and δ, choose

w = ⌈e / ε2⌉ d = Θ(log δ-1)
● Create an array count of w × d counters.
● Choose hash functions hᵢ and sᵢ for each of the

d rows.
● To increment(x), add sᵢ(x) to count[i][hᵢ(x)] for

each row i.
● To estimate(x), return the median of

sᵢ(x) · count[i][hᵢ(x)] for each row i.

The Final Analysis

● With probability at least 1 – δ, all
estimates are accurate to within a factor
of ε║a║₂.

● Space usage is Θ(w × d), which we've
seen to be Θ(ε-2 · log δ-1).

● Updates and queries run in time Θ(δ-1).
● Trades factor of ε-1 space for an accuracy

guarantee relative to ║a║₂ versus ║a║₁.

In Practice

● These data structures have been and
continue to be used in practice.

● These sketches and their variants have
been used at Google and Yahoo! (or at least,
there are papers coming from there about
their usage).

● Many other sketches exist as well for
estimating other quantities; they'd make for
really interesting final project topics!

More to Explore

● A cardinality estimator is a data structure
for estimating how many different elements
have been seen in sublinear time and space.
They're used extensively in database
implementations.

● If instead of estimating aᵢ terms individually
we want to estimate ║a║₁ or ║a₂║, we can
use a frequency moment estimator.

● You’ll get to play around with at least one of
these on Problem Set Five.

Some Concluding Notes

Randomized Data Structures

● You may have noticed that the final versions of
these data structures are actually not all that
complex – each just maintains a set of hash
functions and some 2D tables.

● The analyses, on the other hand, are a lot more
involved than what we saw for other data
structures.

● This is common – randomized data structures
often have simple descriptions and quite
complex analyses.

The Strategy

● Typically, an analysis of a randomized data
structure looks like this:
● First, show that the data structure (or some

random variable related to it), on expectation,
performs well.

● Second, use concentration inequalities (Markov,
Chebyshev, Chernoff, or something else) to show
that it's unlikely to deviate from expectation.

● The analysis often relies on properties of
some underlying hash function. On Tuesday,
we'll explore why this is so important.

Next Time

● Hashing Strategies
● There are a lot of hash tables out there. What do

they look like?
● Linear Probing

● The original hashing strategy!
● Analyzing Linear Probing

● ...is way, way more complicated than you probably
would have thought. But it's beautiful! And a great
way to learn about randomized data structures!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

