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Outline for Today

● Randomized Data Structures
● Our next approach to improving 

performance.
● Count-Min Sketches

● A simple and powerful data structure for 
estimating frequencies.

● Count Sketches
● Another approach for estimating 

frequencies.



  

Randomized Data Structures



  

Tradeoffs

● Data structure design is all about 
tradeoffs:
● Trade preprocessing time for query time.
● Trade asymptotic complexity for constant 

factors.
● Trade worst-case per-operation guarantees 

for worst-case aggregate guarantees.



  

Randomization

● Randomization opens up new routes for 
tradeoffs in data structures:
● Trade worst-case guarantees for average-case 

guarantees.
● Trade exact answers for approximate answers.

● Over the next few lectures, we'll explore 
two families of data structures that make 
these tradeoffs:
● Today: Frequency estimators.
● Next Week: Hash tables.



  

Preliminaries: What is a Hash Function?



  

Hashing in Practice

● In most programming languages, each object 
has “a” hash code.
● C++: std::hash
● Java: Object.hashCode
● Python: __hash__

● To store objects in a hash table, you just go 
and implement the appropriate function or 
type.

● In other words, hash functions are intrinsic 
properties of objects.



  

Hashing in Theoryland

● In Theoryland, a hash function is a function from 
some domain called the universe (typically 
denoted ) to some codomain. 𝒰) to some codomain.

● The codomain is usually a set of the form {0, 1, 2, 
3, …, m – 1}, which we’ll denote [m].

● We often will grab lots of different hash functions 
from the same universe  to some codomain, and  𝒰) to some codomain.
we’ll assume we have access to as many of them 
as we need.

● In other words, hash functions are extrinsic to 
objects, and it’s possible to have multiple different 
hash functions available at the same time.



  

Families of Hash Functions

● A family of hash functions is a set  of ℋ of 
hash functions with the same domain and 
codomain.

● The data structures we’ll explore will 
assume that we have access to certain 
families of hash functions with nice 
properties.

● We’ll then sample uniformly-random choices 
h ∈  to use as needed.ℋ of 



  

Sampling Random Functions

● Here’s a family of hash functions  from ℕ to [137]:ℋ of 

ℋ of  = { f(n) = (an + b) mod 137 | a, b ∈ [137] }
● In Theoryland, we’d model picking a uniformly-

random hash function from  as just that – sampling ℋ of 
some h ∈  uniformly.ℋ of 

● In The Real World, we’d probably model picking such 
a function like this:

        int a = rand() % 137;
        int b = rand() % 137;

        int hash(int value) {
            return (a * value + b) % 137;
        }



  

Characterizing Hash Functions

● Different algorithms and data structures 
require different guarantees from their hash 
functions.

● In CS161, you explored universal hash 
functions in the context of chained hash 
tables.

● For what we’ll be doing in CS166, we’re 
going to need hash functions with slightly 
stronger probabilistic guarantees.



  

Pairwise Independence

● Let  be a family of hash functions from  to some set .ℋ of  𝒰) to some codomain.  𝒞.

● We say that  is a ℋ of 2-independent family of hash 
functions if, for any distinct distinct x, y ∈ , if we choose a  𝒰) to some codomain.
hash function h ∈  uniformly at random, the following ℋ of 
hold:

h(x) and h(y) are uniformly distributed over . 𝒞.

h(x) and h(y) are independent.

● 2-independent hash functions are great hash functions when 
we want a nice distribution over the output space even after 
fixing some specific element.



  

3-Independence

● Let  be a family of hash functions from  to some set .ℋ of  𝒰) to some codomain.  𝒞.

● We say that  is a ℋ of 3-independent family of hash 
functions if, for any distinct distinct x, y, z ∈ , if we  𝒰) to some codomain.
choose a hash function h ∈  uniformly at random, the ℋ of 
following hold:

h(x), h(y), and h(z) are uniformly distributed over . 𝒞.

h(x), h(y), and h(z) are independent.

● As you’ll see, in many cases, making stronger assumptions 
about our hash functions makes it possible to simplify tricky 
probabilistic expressions.

● (As you can probably guess, this generalizes even further to 
k-independence, which we’ll see on Tuesday.)



  

Frequency Estimation



  

Frequency Estimators

● A frequency estimator is a data structure 
supporting the following operations:
● increment(x), which increments the number of 

times that x has been seen, and
● estimate(x), which returns an estimate of the 

frequency of x.
● Using BSTs, we can solve this in space Θ(n) 

with worst-case O(log n) costs on the 
operations.

● Using hash tables, we can solve this in space 
Θ(n) with expected O(1) costs on the 
operations.



  

Frequency Estimators

● Frequency estimation has many applications:
● Search engines: Finding frequent search 

queries.
● Network routing: Finding common source and 

destination addresses.
● In these applications, Θ(n) memory can be 

impractical.
● Goal: Get approximate answers to these 

queries in sublinear space.



  

Some Terminology

● Let's suppose that all elements x are 
drawn from some set  = {  𝒰) to some codomain. x₁, x₂, … xₙ }.

● We can interpret the frequency 
estimation problem as follows:

Maintain an n-dimensional vector a
such that aᵢ is the frequency of xᵢ.

● We'll represent a implicitly in a format 
that uses reduced space.



  

● Let a ∈ ℝn be a vector.
● The L₁ norm of a, denoted ║a║₁, is 

defined as

 

 
● The L₂ norm of a, denoted ║a║₂, is 

defined as

Vector Norms

∥a∥1=∑
i=1

n

∣ai∣

∥a∥2=√∑
i=1

n

ai
2



  

Properties of Norms

● The following property of norms holds for 
any vector a ∈ ℝn. It's a good exercise to 
prove this on your own:

║a║₂  ≤  ║a║₁  ≤  Θ(n1/2) · ║a║₂
● The first bound is tight when exactly one 

component of a is nonzero.
● The second bound is tight when all 

components of a are equal.



  

Where We're Going

● Today, we'll see two data frequency 
estimation data structures.

● Each is parameterized over two 
quantities:
● An accuracy parameter ε ∈ (0, 1) 

determining how close to accurate we want 
our answers to be.

● A confidence parameter δ ∈ (0, 1] 
determining how likely it is that our estimate 
is within the bounds given by ε.



  

Where We're Going

● The count-min sketch provides estimates with 
error at most ε║a║₁ with probability at least 1 – δ.

● The count sketch provides estimates with an 
error at most ε║a║₂ with probability at least 1 – δ.

● (Notice that lowering ε and lower δ give better 
bounds.)

● Count-min sketches will use less space than 
count sketches for the same ε and δ, but provide 
slightly weaker guarantees.



  

The Count-Min Sketch



  

The Count-Min Sketch

● Rather than diving into the full count-min 
sketch, we'll develop the data structure in 
phases.

● First, we'll build a simple data structure that 
on expectation provides good estimates, but 
which does not have a high probability of 
doing so.

● Next, we'll combine several of these data 
structures together to build a data structure 
that has a high probability of providing good 
estimates.



  

Revisiting the Exact Solution

● In the exact solution to the frequency estimation 
problem, we maintained a single counter for each 
distinct element. This is too space-inefficient.

● Idea: Store a fixed number of counters and assign a 
counter to each xᵢ ∈ . Multiple  𝒰) to some codomain. xᵢ's might be assigned 
to the same counter.

● To increment(x), increment the counter for x.

● To estimate(x), read the value of the counter for x.

11 6 4 7



  

Our Initial Structure

● We can model “assigning each xᵢ to a counter” by using 
hash functions.

● Choose, from a family of 2-independent hash functions , ℋ of 
a uniformly-random hash function h :  → [ 𝒰) to some codomain. w].

● Create an array count of w counters, each initially zero.
● We'll choose w later on.

● To increment(x), increment count[h(x)].
● To estimate(x), return count[h(x)].
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Analyzing this Structure

● Recall: a is the vector representing the 
true frequencies of the elements.
● aᵢ is the frequency of element xᵢ.

● Denote by âᵢ the value of estimate(xᵢ). 
This is a random variable that depends 
on the true frequencies a (out of our 
control, but not random) and the hash 
function h (truly chosen at random.)

● Goal: Show that on expectation, âᵢ is not 
far from aᵢ.



  

Analyzing this Structure

● Intuitively, what do we expect âᵢ to be?
● There are ║a║₁ total elements spread out across w 

buckets.
● Assuming they’re well-distributed, we’d probably 

expect ║a║₁ / w of them to be in each bucket.
● So a reasonable guess would be that âᵢ should 

probably end up being something like aᵢ + ║a║₁ / w.
● Let’s see if we can formalize this.
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Analyzing this Structure

● Let's look at âᵢ = count[h(xᵢ)] for some choice of xᵢ.
● For each element xⱼ:

● If h(xᵢ) = h(xⱼ), then xⱼ contributes aⱼ to count[h(xᵢ)].
● If h(xᵢ) ≠ h(xⱼ), then xⱼ contributes 0 to count[h(xᵢ)].

● To pin this down precisely, let’s define a set of random 
variables X₁, X₂, …, as follows:

● The value of âᵢ is then given by

X j = {  1 if h(xi)  = h(x j)

  0 otherwise

âi = ∑
j

a j X j = ai + ∑
j≠i

a j X j

Each of these variables is 
called an indicator 

random variable, since 
it “indicates” whether 

some event occurs.

Each of these variables is 
called an indicator 

random variable, since 
it “indicates” whether 

some event occurs.
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E[âi] = E[ai + ∑
j≠i

a j X j]

= E[ai] + E[∑
j≠i

a j X j ]

= ai + ∑
j≠i

E[a j X j]        

= ai + ∑
j≠i

a jE[ X j]        

= ai + ∑
j≠i

a j

w
               

≤ ai +
‖a‖1

w
                  

This follows from linearity 
of expectation. We’ll use 
this property extensively 
over the next few days.

This follows from linearity 
of expectation. We’ll use 
this property extensively 
over the next few days.



  

E[âi] = E[ai + ∑
j≠i

a j X j]

= E[ai] + E[∑
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a j X j ]

= ai + ∑
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= ai + ∑
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a j

w
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w
                  

The actual value of aᵢ is not 
a random variable. The 

randomness here is in our 
choice of hash function, 

not the choice of the data.

The actual value of aᵢ is not 
a random variable. The 

randomness here is in our 
choice of hash function, 

not the choice of the data.



  

E[âi] = E[ai + ∑
j≠i

a j X j]

= E[ai] + E[∑
j≠i

a j X j ]
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a jE[ X j]        

= ai + ∑
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a j

w
               

≤ ai +
‖a‖1

w
                  

E[ X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]

= 1⋅Pr [h(xi)=h(x j)]                                

=
1
w

                                                        X j={  1 if h(xi)=h(x j)

  0 otherwise



  

E[âi] = E[ai + ∑
j≠i

a j X j]

= E[ai] + E[∑
j≠i
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=
1
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                                                        If X is an indicator variable for some event Ɛ, 
then E[X] = Pr[Ɛ]. This is really useful when 

using linearity of expectation! 

If X is an indicator variable for some event Ɛ, 
then E[X] = Pr[Ɛ]. This is really useful when 

using linearity of expectation! 



  

E[âi] = E[ai + ∑
j≠i

a j X j]

= E[ai] + E[∑
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w
                  

E[ X j] = 1⋅Pr [h(xi)=h(x j)] + 0⋅Pr [h(xi)≠h(x j)]
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=
1
w

                                                        Any two hash codes from a randomly-chosen 
2-independent hash function are independent, 

uniformly-random variables.

Any two hash codes from a randomly-chosen 
2-independent hash function are independent, 

uniformly-random variables.



  

E[âi] = E[ai + ∑
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Interpreting our Analysis

● On expectation, the value of estimate(xᵢ) 
is at most ║a║₁ / w greater than aᵢ.
● That matches our intuition from before! Yay!

● From a practical perspective:
● Increasing w increases memory usage, but 

improves accuracy.
● Decreasing w decreases memory usage, but 

decreases accuracy.



  

One Problem

● We have shown that on expectation, the 
value of estimate(xᵢ) can be made close to 
the true value.

● However, this data structure may give 
wildly inaccurate results for most elements.
● Any low-frequency elements that collide with 

high-frequency elements will have overreported 
frequency.

Question: Can we bound the probability 
that we overestimate the frequency of an 
element?

12 6 5 7



  

One Problem

● We have shown that on expectation, the 
value of estimate(xᵢ) can be made close to 
the true value.

● However, this data structure may give 
wildly inaccurate results for most elements.
● Any low-frequency elements that collide with 

high-frequency elements will have overreported 
frequency.

● Question: Can we bound the probability 
that we overestimate the frequency of an 
element?



  

A Useful Observation

● Notice that regardless of which hash 
function we use or the size of the table, 
we always have âᵢ ≥ aᵢ.

● This means that âᵢ – aᵢ ≥ 0.
● We have a one-sided error; this data 

structure will never underreport the 
frequency of an element, but it may 
overreport it.



  

Bounding the Error Probability

● If X is a nonnegative random variable, then Markov's 
inequality states that for any c > 0, we have

● We know that

● Therefore, we see that

● By Markov's inequality, for any c > 0, we have

 
● Equivalently:

 

E[âi] ≤ ai + ∥a∥1/w

Pr [ X > c⋅E[ X ]] ≤ 1 /c

E[âi−ai] ≤ ∥a∥1/w

Pr [âi−ai >
c∥a∥1

w
] ≤ 1 /c

Pr [âi > ai +
c∥a∥1

w
] ≤ 1 /c



  

Bounding the Error Probability

● For any c > 0, we know that

 
● In particular:

 
● Given an accuracy parameter ε, ∈ (0, 1], let's set

w = ⌈e / ε⌉. Then we have

● This data structure uses O(ε-1) space and gives 
estimates with error at most ε║a║₁ with probability 
at least 1 - 1 / e.

Pr [âi > ai +
c∥a∥1

w
] ≤ 1 /c

Pr [âi > ai +
e∥a∥1

w
] ≤ 1/e

Pr [âi > ai + ε∥a∥1] ≤ 1 /e



  

Tuning the Probability

● Right now, we can tune the accuracy ε of the 
data structure, but we can't tune our 
confidence in that answer (it's always 
1 - 1 / e).

● Goal: Update the data structure so that for 
any confidence 0 < δ < 1, the probability 
that an estimate is correct is at least 1 – δ.



  

Tuning the Probability

● A single copy of our data structure has a 
decently good chance of providing an 
estimate that isn’t too far off the true value.

● Intuitively, having lots of copies of this data 
structure would make it more likely that at 
least one of them gets a good estimate.

● Idea: Combine together multiple copies of 
this data structure to boost confidence in 
our estimates.



  

Running in Parallel

● Let's suppose that we run d independent copies of this 
data structure. Each has its own independently randomly 
chosen hash function.

● To increment(x) in the overall structure, we call 
increment(x) on each of the underlying data structures.

● The probability that at least one of them provides a good 
estimate is quite high.

● Question: How do you know which one?
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Recognizing the Answer

● Recall: Each estimate âᵢ is the sum of two 
independent terms:
● The actual value aᵢ.
● Some “noise” terms from other elements 

colliding with xᵢ.
● Since the noise terms are always nonnegative, 

larger values of âᵢ are less accurate than 
smaller values of âᵢ.

● Idea: Take, as our estimate, the minimum 
value of âᵢ from all of the data structures.



  

The Final Analysis

● For each independent copy of this data structure, 
the probability that our estimate is within ε||a||₁ 
of the true value is at least 1 – 1 / e.

● Let Ɛᵢ be the event that the ith copy of the data 
structure provides an estimate within ε||a||₁ of 
the true answer.

● Let Ɛ be the event that the aggregate data 
structure provides an estimate within ε||a||₁.

● Question: What is Pr[Ɛ]?



  

The Final Analysis

● Since we're taking the minimum of all the 
estimates, if any of the data structures provides a 
good estimate, our estimate will be accurate.

● Therefore,

Pr[Ɛ] = Pr[∃i. Ɛᵢ]    
● Equivalently:

Pr[Ɛ] = 1 – Pr[∀i. Ɛᵢ]    
● Since all the estimates are independent:

Pr[Ɛ] = 1 – Pr[∀i. Ɛᵢ] ≥ 1 – 1/ed.   



  

The Final Analysis

● We now have that

Pr[Ɛ] ≥ 1 – 1/ed.   
● If we want the confidence to be 1 – δ, we can 

choose δ such that

1 – δ = 1 – 1/ed  

● Solving, we can choose d = ln δ-1.
● If we make ln δ-1 independent copies of our data 

structure, the probability that our estimate is off 
by at most ε||a||₁ is at least 1 – δ.



  

The Count-Min Sketch

● This data structure is called the count-min sketch.
● Given parameters ε and δ, choose

w = ⌈e / ε⌉        d = ⌈ln δ-1⌉
● Create an array count of size w × d and for each row 

i, choose a hash function hᵢ :  → [ 𝒰) to some codomain. w] uniformly and 
independently from a 2-independent family of hash 
functions .ℋ of 

● To increment(x), increment count[i][hᵢ(x)] for each 
row i.

● To estimate(x), return the minimum value of 
count[i][hᵢ(x)] across all rows i.



  

The Count-Min Sketch

● Update and query times are Θ(d), which 
is Θ(log δ-1).

● Space usage: Θ(ε-1 · log δ-1) counters.
● This can be significantly better than just 

storing a raw frequency count!
● Provides an estimate to within ε║a║₁ with 

probability at least 1 – δ.



  

Some Generalizable Ideas

● Many of the techniques and ideas from this analysis will 
show up in other places.

● First, the idea of using indicator variables and 
linearity of expectation to simplify expected value 
calculations.

● Second, relying on the independence guarantees of 
our hash function to simplify some of the intermediate 
steps.

● Third, the fact that being good on expectation isn’t the 
same as being good with high probability and using 
concentration inequalities to quantify spread.

● Finally, the fact that confidence and accuracy aren’t the 
same, and running multiple parallel copies of a data 
structure to boost confidence.



  

Time-Out for Announcements!



  

Final Project Proposal

● Final project proposals were due today at 
2:30PM.

● We’re going to run a matchmaking 
algorithm soon and get back to everyone 
with their assigned topics.

● We’re looking forward to seeing what 
everyone has come up with!



  

Problem Sets

● Problem Set Four is due next Thursday at 
2:30PM.

● Have questions? As always, you can
● stop by office hours, or
● ask on Piazza!

● We hope you have fun with this one!



  

Back to CS166!



  

An Alternative: Count Sketches



  

The Motivation

● (Note: This is historically backwards; count 
sketches came before count-min sketches.)

● In a count-min sketch, errors arise when 
multiple elements collide.

● Errors are strictly additive; the more 
elements collide in a bucket, the worse the 
estimate for those elements.

● Question: Can we try to offset the 
“badness” that results from the collisions?



  

The Setup

● As before, for some parameter w, we'll create an array count of 
length w.

● As before, choose a hash function h :  → [ 𝒰) to some codomain. w] from a family .ℋ of 
● For each xᵢ ∈ , assign  𝒰) to some codomain. xᵢ either +1 or -1.
● To increment(x), go to count[h(x)] and add ±1 as appropriate.
● To estimate(x), return count[h(x)], multiplied by ±1 as appropriate.

– – –

– – – –

–

+ +

+ +

– – – –

+ + + +

+ +

–– –

-6 +4

+ + + +

-4 +5



  

The Intuition

● Think about what introducing the ±1 term does 
when collisions occur.

● If an element x collides with a frequent element 
y, we're not going to get a good estimate for x 
(but we wouldn't have gotten one anyway).

● If x collides with multiple infrequent elements, 
the collisions between those elements will 
partially offset one another and leave a better 
estimate for x.



  

● Let’s have h ∈  chosen uniformly at random from aℋ of 
3-independent family of hash functions from . to  𝒰) to some codomain. w.

● Choose s ∈  uniformly randomly and independently of  𝒰) to some codomain. h 
from a 3-independent family from  to {-1, +1}. 𝒰) to some codomain.
● (Note: The more traditional analysis uses 2-independence rather 

than 3-independence. I’m showing you a slightly simplified 
version.)

● To increment(x), add s(x) to count[h(x)].
● To estimate(x), return s(x) · count[h(x)].

More Formally
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How accurate is our estimation?



  

Formalizing the Intuition

● As before, define âᵢ to be our estimate of aᵢ.

● As before, âᵢ will depend on how the other 
elements are distributed. Unlike before, it now 
also depends on signs given to the elements by s.

● Specifically, for each other xⱼ that collides with xᵢ, 
the error contribution will be

s(xᵢ) · s(xⱼ) · aⱼ

● Why?
● The counter for xᵢ will have s(xⱼ) aⱼ added in.
● We multiply the counter by s(xᵢ) before returning it.



  

Formalizing the Intuition

● As before, define âᵢ to be our estimate of aᵢ.

● As before, âᵢ will depend on how the other 
elements are distributed. Unlike before, it now 
also depends on signs given to the elements by s.

● Specifically, for each other xⱼ that collides with xᵢ, 
the error contribution will be

s(xᵢ) · s(xⱼ) · aⱼ

● Or:
● If s(xᵢ) and s(xⱼ) point in the same direction, the 

terms add to the total.
● If s(xᵢ) and s(xⱼ) point in different directions, the 

terms subtract from the total.



  

Formalizing the Intuition

● In our quest to learn more about âᵢ, let’s have Xⱼ be 
a random variable indicating whether xᵢ and xⱼ 
collided with one another:

● We can then express âᵢ in terms of the signed 
contributions from the items it collides with:

X j = {  1 if h(xi)  = h(x j)

  0 if h(xi)  ≠ h(x j)

âi = ∑
j

a j s(xi)s(x j) X j = ai + ∑
j≠i

a j s(xi)s (x j) X j

We only care about 
items we collided with.

We only care about 
items we collided with.

This is how much the collision 
impacts our estimate.

This is how much the collision 
impacts our estimate.



  

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j ]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j ]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j ]              

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j ]         

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j ]    

= ai + ∑
j≠i

0                                      

= ai                                                 

Hey, it’s linearity of 
expectation!

Hey, it’s linearity of 
expectation!
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and the like aren’t 
random variables.

Remember that aᵢ 
and the like aren’t 
random variables.



  

E[âi] = E[ai + ∑
j≠i

a j s(xi)s(x j)X j ]

= E[ai] + E[∑
j≠i

a j s(xi)s(x j)X j ]

= ai + ∑
j≠i

E[a j s (xi)s(x j)X j ]              

= ai + ∑
j≠i

E[s (xi)s (x j)]E[a j X j ]         

= ai + ∑
j≠i

E[s(xi)]E[s (x j)]E[a j X j ]    

= ai + ∑
j≠i

0                                      

= ai                                                 

We chose the hash 
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s is drawn from a 3-independent 
family of hash functions.

 

s(xᵢ) is uniform over {-1, +1}
 

Pr[s(xᵢ) = -1] = ½    Pr[s(xᵢ) = +1] = ½

s is drawn from a 3-independent 
family of hash functions.

 

s(xᵢ) is uniform over {-1, +1}
 

Pr[s(xᵢ) = -1] = ½    Pr[s(xᵢ) = +1] = ½

E[s(xᵢ)] = ½ · (-1) + ½ · (+1)
  = 0



  

Expecting the Unexpected

● We’ve just seen that E[âᵢ] = aᵢ, so on 
expectation our estimate is perfectly correct!

● However, we have no idea how likely it is that 
we’re going to get an estimate like this.

● Let’s see if we can bound the likelihood that we 
stray far from aᵢ.



  

A Hitch

● In the count-min sketch, we used Markov's 
inequality to bound the probability that we get a 
bad estimate.

● This worked because we had a one-sided error: 
the distance âᵢ – aᵢ from the true answer was 
nonnegative.

● However, with the count sketch, we have a two-
sided error: âᵢ – aᵢ can be negative in the count 
sketch because collisions can decrease the estimate 
âᵢ below the true value aᵢ.

● We'll need to use a different technique to bound the 
error.



  

Chebyshev to the Rescue

● Chebyshev's inequality states that for any 
random variable X with finite variance, given 
any c > 0, the following holds:

● Equivalently:

 
● If we can get the variance of âᵢ, we can bound 

the probability that we get a bad estimate with 
our data structure.

Pr [ ∣X−E[ X ]∣ ≥ c √Var [ X ] ] ≤
1
c2

Pr [ |X−E[ X ]| ≥ c ] ≤
Var [ X ]

c2



  

Computing the Variance

● Let’s try computing the variance of our estimate âᵢ:

● Variance is not a linear operator, but it is linear if 
the underlying random variables are independent 
of one another.

● Claim: Each term of the sum is independent of the 
others.

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s (x j) X j ]

= Var [∑
j≠i

a j s (x i)s(x j) X j]

Var[a + X] = Var[X]Var[a + X] = Var[X]



  

Computing the Variance

● Let’s try computing the variance of our estimate âᵢ:

● Variance is not a linear operator, but it is linear if 
the underlying random variables are independent 
of one another.

● Claim: Each term of the sum is independent of the 
others.

Var [âi] = Var [ai + ∑
j≠i

a j s(xi)s (x j) X j ]
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j≠i

a j s (x i)s(x j) X j]



  

Independence Day

● We want to show that these two terms are independent:

aⱼ s(xᵢ) s(xⱼ) Xⱼ            aₖ s(xᵢ) s(xₖ) Xₖ

● Imagine we know aⱼ s(xᵢ) s(xⱼ) Xⱼ.

● Whether aₖ s(xᵢ) s(xₖ) Xₖ = 0 depends on whether h(xᵢ) = h(xₖ).

● The values h(xᵢ), h(xⱼ), and h(xₖ) are uniformly-random and 
independent because h is 3-independent.

● Knowing whether h(xᵢ) = h(xⱼ) doesn’t impact the probability that 
h(xᵢ) = h(xₖ), since all three values are uniform and independent.

● The sign of aₖ s(xᵢ) s(xₖ) Xₖ depends on s(xᵢ) · s(xₖ).

● s(xᵢ), s(xⱼ), and s(xₖ) are uniformly-random and independent 
because s is 3-independent.

● There’s an equal chance that s(xᵢ) · s(xₖ) = 1 and s(xᵢ) · s(xₖ) = -1, 
since even with s(xᵢ) · s(xⱼ) fixed, s(xₖ) is independently and 
uniformly distributed over {+1, -1}.



  

Var [âi] = Var [ai + ∑
j≠i

a j s(x i)s(x j)X j ]
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Var [a j s(xi)s(x j)X j ]        

≤ ∑
j≠i

E[(a j s(xi)s(x j) X j)
2
]        

= ∑
j≠i

E[a j
2 s(xi)

2 s(x j)
2 X j

2
]         

= ∑
j≠i

a j
2E[ X j

2
]                          

= ∑
j≠i

a j
2E[ X j ]                          

= ∑
j≠i

a j
2
/w                               

= ‖a‖2
2
/w                          

   Var[Z] = E[Z2] – E[Z]2

≤ E[Z2]

   Var[Z] = E[Z2] – E[Z]2

≤ E[Z2]
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s(x) = ±1,
 

so
 

s(x)2 = 1

s(x) = ±1,
 

so
 

s(x)2 = 1
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If X is an indicator 

variable, then X2 = X.
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If X is an indicator 

variable, then X2 = X.
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I know this might look 
really dense, but many of 

these substeps end up 
being really useful 

techniques. These ideas 
generalize, I promise. 
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Harnessing Chebyshev

● Chebyshev's Inequality says

● Applying this to âᵢ yields

 
 

● Given error parameter ε, pick w = ⌈e / ε2⌉, so 

 
 

● Therefore, choosing c = e1/2 gives

Pr [ |âi−ai| ≥
cε‖a‖2

√e ] ≤ 1/c2

Pr [ ∣X−E[ X ]∣ ≥ c √Var [ X ] ] ≤ 1 /c2

Pr [ ∣âi−ai∣ ≥
c∥a∥2

√w ] ≤ 1 /c2

Pr [ ∣âi−ai∣ ≥ ε∥a∥2 ] ≤ 1/e



  

The Story So Far

● We now know that, by setting ε = (e / w)1/2, 
the estimate is within ε║a║₂ with probability 
at least 1 – 1 / e.

● Solving for w, this means that we will choose 
w = ⌈e / ε2⌉.

● Space usage is now O(ε-2), but the error 
bound is now ε║a║₂ rather than ε║a║₁.

● As before, the next step is to reduce the error 
probability.



  

Repetitions with a Catch

● As before, our goal is to make it possible to choose 
a bound 0 < δ < 1 so that the confidence is at 
least 1 – δ.

● As before, we'll do this by making d independent 
copies of the data structure and running each in 
parallel.

● Unlike the count-min sketch, errors in count 
sketches are two-sided; we can overshoot or 
undershoot.

● Therefore, it's not meaningful to take the 
minimum or maximum value.

● How do we know which value to report?



  

Working with the Median

● Claim: If we output the median estimate 
given by the data structures, we have high 
probability of giving the right answer.

● Intuition: The only way we report an 
answer more than ε||a||₂ is if at least half of 
the data structures output an answer that 
is more than ε||a||₂ from the true answer.

● Each individual data structure is wrong 
with probability at most 1 / e, so this is 
highly unlikely.



  

The Setup

● Let X denote a random variable equal to 
the number of data structures that 
produce an answer not within ε||a||₂ of 
the true answer.

● Since each independent data structure 
has failure probability at most 1 / e, we 
can upper-bound X with a Binom(d, 1 / e) 
variable.

● We want to know Pr[X > d / 2].
● How can we determine this?



  

Chernoff Bounds

● The Chernoff bound says that if X ~ Binom(n, p) 
and p < 1/2, then

 
● In our case, X ~ Binom(d, 1/e), so we know that

   

  

● Therefore, choosing d = k-1 · log δ-1 ensures that 
Pr[X > d / 2] ≤ δ.

● Therefore, the success probability is at least 1 – δ.

Pr [ X >
d
2

] ≤ e
−d(1/2−1/e)

2

2(1/e)    

= e−k⋅d           

Pr [ X > n/2 ] < e
−n(1/2−p)

2

2p

(for some constant k)
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exponent! To implement this 
data structure, you’ll need to 

work out the exact value.
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The Overall Construction

● The count sketch is the data structure given 
as follows.

● Given ε and δ, choose

w = ⌈e / ε2⌉      d = Θ(log δ-1)
● Create an array count of w × d counters.
● Choose hash functions hᵢ and sᵢ for each of the 

d rows.
● To increment(x), add sᵢ(x) to count[i][hᵢ(x)] for 

each row i.
● To estimate(x), return the median of

sᵢ(x) · count[i][hᵢ(x)] for each row i.



  

The Final Analysis

● With probability at least 1 – δ, all 
estimates are accurate to within a factor 
of ε║a║₂.

● Space usage is Θ(w × d), which we've 
seen to be Θ(ε-2 · log δ-1).

● Updates and queries run in time Θ(δ-1).
● Trades factor of ε-1 space for an accuracy 

guarantee relative to ║a║₂ versus ║a║₁.



  

In Practice

● These data structures have been and 
continue to be used in practice.

● These sketches and their variants have 
been used at Google and Yahoo! (or at least, 
there are papers coming from there about 
their usage).

● Many other sketches exist as well for 
estimating other quantities; they'd make for 
really interesting final project topics!



  

More to Explore

● A cardinality estimator is a data structure 
for estimating how many different elements 
have been seen in sublinear time and space. 
They're used extensively in database 
implementations.

● If instead of estimating aᵢ terms individually 
we want to estimate ║a║₁ or ║a₂║, we can 
use a frequency moment estimator.

● You’ll get to play around with at least one of 
these on Problem Set Five.



  

Some Concluding Notes



  

Randomized Data Structures

● You may have noticed that the final versions of 
these data structures are actually not all that 
complex – each just maintains a set of hash 
functions and some 2D tables.

● The analyses, on the other hand, are a lot more 
involved than what we saw for other data 
structures.

● This is common – randomized data structures 
often have simple descriptions and quite 
complex analyses.



  

The Strategy

● Typically, an analysis of a randomized data 
structure looks like this:
● First, show that the data structure (or some 

random variable related to it), on expectation, 
performs well.

● Second, use concentration inequalities (Markov, 
Chebyshev, Chernoff, or something else) to show 
that it's unlikely to deviate from expectation.

● The analysis often relies on properties of 
some underlying hash function. On Tuesday, 
we'll explore why this is so important.



  

Next Time

● Hashing Strategies
● There are a lot of hash tables out there. What do 

they look like?
● Linear Probing

● The original hashing strategy!
● Analyzing Linear Probing

● ...is way, way more complicated than you probably 
would have thought. But it's beautiful! And a great 
way to learn about randomized data structures!
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