

Linear Probing

Outline for Today

● Linear Probing Hashing
● A simple and lightning fast hash table

implementation.
● Analyzing Linear Probing

● Why the degree of independence matters.
● Fourth Moment Bounds

● Another approach for estimating
frequencies.

Hashing Strategies

● All hash table implementations need to address what
happens when collisions occur.

● Common strategies:
● Closed addressing: Store all elements with hash collisions

in a secondary data structure (linked list, BST, etc.)
● Perfect hashing: Choose hash functions to ensure that

collisions don't happen, and rehash or move elements when
they do.

● Open addressing: Allow elements to “leak out” from their
preferred position and spill over into other positions.

● Linear probing is an example of open addressing.
● We'll see a type of perfect hashing (cuckoo hashing)

on Thursday.

Linear Probing

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

Linear Probing

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

x

Linear Probing

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

Linear Probing

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

y

Linear Probing

y

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

Linear Probing

y

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

z

Linear Probing

y z

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

Linear Probing

y z

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

w

Linear Probing

y z

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

w

Linear Probing

y z

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

w

Linear Probing

y z

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

w

Linear Probing

w

y z

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

Linear Probing

w

y z

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

r

Linear Probing

w

y z

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

r

Linear Probing

w

y z

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

r

Linear Probing

w

y z

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

r

Linear Probing

w

y z

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

r

Linear Probing

w

y z

x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

r

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Linear probing is a
simple open-addressing
hashing strategy.

● To insert an element x,
compute h(x) and try to
place x there.

● If that spot is occupied,
keep moving through the
array, wrapping around
at the end, until a free
spot is found.

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

t

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

t

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

t

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

y

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

y

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

y

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

r

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

r

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

r

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

r

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

r

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

a

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

a

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

a

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

a

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● To look up an element x,
compute h(x) and start
looking there.

● Move around the ring until
either the element is found
or a blank spot is detected.

● (We'll assume the load
factor prohibits us from
inserting so many
elements that there are no
free spaces.)

a

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where
we find it.

● Why?

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where
we find it.

● Why?

w

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where
we find it.

● Why?
w

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where
we find it.

● Why? w

Linear Probing

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where
we find it.

● Why?

Linear Probing

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where
we find it.

● Why?

r

Linear Probing

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where
we find it.

● Why?
r

Linear Probing

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where
we find it.

● Why? r

Linear Probing

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are a bit
trickier than in
chained hashing.

● We cannot just do a
search and remove
the element where
we find it.

● Why? r

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are often
implemented using
tombstones.

● When removing an element,
mark that the cell is empty
and was previously occupied.

● When doing a lookup, don't
stop at a tombstone. Instead,
keep the search going.
● You need to watch out for

wraparounds.
● When inserting, feel free to

replace any tombstone you
encounter.

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are often
implemented using
tombstones.

● When removing an element,
mark that the cell is empty
and was previously occupied.

● When doing a lookup, don't
stop at a tombstone. Instead,
keep the search going.
● You need to watch out for

wraparounds.
● When inserting, feel free to

replace any tombstone you
encounter.

w

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are often
implemented using
tombstones.

● When removing an element,
mark that the cell is empty
and was previously occupied.

● When doing a lookup, don't
stop at a tombstone. Instead,
keep the search going.
● You need to watch out for

wraparounds.
● When inserting, feel free to

replace any tombstone you
encounter.

w

Linear Probing

w

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are often
implemented using
tombstones.

● When removing an element,
mark that the cell is empty
and was previously occupied.

● When doing a lookup, don't
stop at a tombstone. Instead,
keep the search going.
● You need to watch out for

wraparounds.
● When inserting, feel free to

replace any tombstone you
encounter.

w

Linear Probing

墓

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are often
implemented using
tombstones.

● When removing an element,
mark that the cell is empty
and was previously occupied.

● When doing a lookup, don't
stop at a tombstone. Instead,
keep the search going.
● You need to watch out for

wraparounds.
● When inserting, feel free to

replace any tombstone you
encounter.

Linear Probing

墓

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are often
implemented using
tombstones.

● When removing an element,
mark that the cell is empty
and was previously occupied.

● When doing a lookup, don't
stop at a tombstone. Instead,
keep the search going.
● You need to watch out for

wraparounds.
● When inserting, feel free to

replace any tombstone you
encounter.

r

Linear Probing

墓

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are often
implemented using
tombstones.

● When removing an element,
mark that the cell is empty
and was previously occupied.

● When doing a lookup, don't
stop at a tombstone. Instead,
keep the search going.
● You need to watch out for

wraparounds.
● When inserting, feel free to

replace any tombstone you
encounter.

r

Linear Probing

墓

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are often
implemented using
tombstones.

● When removing an element,
mark that the cell is empty
and was previously occupied.

● When doing a lookup, don't
stop at a tombstone. Instead,
keep the search going.
● You need to watch out for

wraparounds.
● When inserting, feel free to

replace any tombstone you
encounter.

r

Linear Probing

墓

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are often
implemented using
tombstones.

● When removing an element,
mark that the cell is empty
and was previously occupied.

● When doing a lookup, don't
stop at a tombstone. Instead,
keep the search going.
● You need to watch out for

wraparounds.
● When inserting, feel free to

replace any tombstone you
encounter.

r

Linear Probing

墓

y z

r x

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

● Deletions are often
implemented using
tombstones.

● When removing an element,
mark that the cell is empty
and was previously occupied.

● When doing a lookup, don't
stop at a tombstone. Instead,
keep the search going.
● You need to watch out for

wraparounds.
● When inserting, feel free to

replace any tombstone you
encounter.

r

Linear Probing in Practice

● In practice, linear probing is one of the fastest
general-purpose hashing strategies available.

● This is surprising – it was originally invented in
1954! It's pretty amazing that it still holds up so
well.

● Why is this?
● Low memory overhead: just need an array and a hash

function.
● Excellent locality: when collisions occur, we only

search in adjacent locations in the array.
● Great cache performance: a combination of the above

two factors.

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

10

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

10

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

10

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

10

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

11

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

11

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

11

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

11

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

11

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

11

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

11 1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

11 1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

11

The Weakness

● Linear probing exhibits
severe performance
degradations when the
load factor gets high.

● The number of collisions
tends to grow as a
function of the number
of existing collisions.

● This is called primary
clustering.

0

412

13

14

11 1

2

3

10 11

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

So… how fast is linear probing?

Time-Out for Announcements!

Final Project Topics

● Final project topics have been assigned,
and we’re really excited to see what you
end up making!

● We recommend that you make slow and
steady progress on the project over the
next couple of weeks.

● We’ll work out a presentation schedule in
a week or so.

Problem Sets

● Problem Set Four is due this Thursday at
2:30PM.
● Have questions? Stop by office hours or ask on

Piazza!
● We’re working on grading PS3 right now and

will try to get it back to you soon.
● PS5 will go out on Thursday and will be due

one week from this Thursday.
● And that’s it!

Later This Week

● Keith will be out of town through the end
of the week.

● Rafa and Mitchell will be covering
Keith’s office hours at the regular time
(2PM – 4PM) in the Huang Basement.

● Sam will be giving Thursday’s lecture on
cuckoo hashing (super interesting stuff!)

GTGTC Exec Applications

● Girls Teaching Girls to Code (GTGTC) is
looking for people to serve on next year’s
executive committee.

● This is an excellent program that’s been
around for years. It’s a great way to
make an impact.

● Interested? Apply here by this Sunday.

http://bit.ly/gtgtcexec2018

Back to CS166!

Analyzing Linear Probing

You probably saw an analysis of chained
hash tables in CS161.

What makes linear probing different,
interesting, or noteworthy?

Why Linear Probing is Different

● In chained hashing,
collisions only occur when
two values have exactly the
same hash code.

● In linear probing, collisions
can occur between
elements with entirely
different hash codes.

● To analyze linear probing,
we need to know more than
just how many elements
collide with us.

0

412

13

14

11 1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

Why Linear Probing is Different

● In chained hashing,
collisions only occur when
two values have exactly the
same hash code.

● In linear probing, collisions
can occur between
elements with entirely
different hash codes.

● To analyze linear probing,
we need to know more than
just how many elements
collide with us.

0

412

13

14

11 1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

11

Why Linear Probing is Different

● In chained hashing,
collisions only occur when
two values have exactly the
same hash code.

● In linear probing, collisions
can occur between
elements with entirely
different hash codes.

● To analyze linear probing,
we need to know more than
just how many elements
collide with us.

0

412

13

14

11 1

2

3

10 11

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

Why Linear Probing is Different

● In chained hashing,
collisions only occur when
two values have exactly the
same hash code.

● In linear probing, collisions
can occur between
elements with entirely
different hash codes.

● To analyze linear probing,
we need to know more than
just how many elements
collide with us.

0

412

13

14

11 1

2

3

10 11

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

The lookup time
here is huge even
though this key
only directly
collides with one
other.

The lookup time
here is huge even
though this key
only directly
collides with one
other.

● In 1954, Gene Amdahl, Elaine McGraw, and Arthur Samuel invent linear
probing as a subroutine for an assembler.

● In 1962, Don Knuth, in his first ever analysis of an algorithm, proves that
linear probing takes expected time O(1) for lookups if the hash function is
truly random (n-wise independence).

● In 1995, Schmidt and Siegel proved O(log n)-independent hash functions
guarantee fast performance for linear probing, but note that such hash
functions either take a long time to evaluate or require a lot of space.

● In 2006, Anna Pagh et al. proved that 5-independent hash functions give
expected constant-time lookups. (This is the analysis we’ll see today.)
These hash functions can be stored in O(1) space and evaluated in O(1)
time.

● In 2007, Mitzenmacher and Vadhan proved that 2-independence will give
expected O(1)-time lookups, assuming there’s some measure of
randomness in the keys.

● In 2010, Pătrașcu and Thorup proved that 5-independence is the minimum
independence needed for adversarially-chosen keys.

Some Brief History

The Analysis!

12

12

10

11

10 5

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

This element is
far from home. ☹For simplicity, let’s assume

a load factor of α = ¹/₃.

A region of size m is a
consecutive set of m

locations in the hash table.

An element x hashes to
region R if h(x) ∈ R, though
x may not be placed in R.

On expectation, a region of
size 2s should have at most
¹/₃ · 2s elements hash to it.

It would be very unlucky if
a region had twice as many
elements in it as expected.

A region of size 2s is
overloaded if at least

²/₃ · 2s elements hash to it.

Intuition: If an element ends up
far from its home location, then
some large region near its home

has to be overloaded.

Intuition: If an element ends up
far from its home location, then
some large region near its home

has to be overloaded.

Theorem: The probability that an element
xₐ ends up between 2s and 2s+1 steps from

its home location is upper-bounded by

 c · Pr[the region of size 2s centered
 c · Pr[on h(xₐ) is overloaded]

for some fixed constant c independent of s.

Proof: Set up some cleverly-chosen ranges
over the hash table and use the pigeonhole

principle. See Thorup’s lecture notes.

Analyzing the Runtime

● The cost of looking up some key xₐ is bounded from
above by the length of the run containing xₐ.

● The expected cost of performing a lookup is therefore at
most

● The previous theorem tells us that this cost is

● If we can determine the probability that a region of size

2s is overloaded, we'll have a bound on the expected
lookup cost for xₐ.

O(1) ⋅∑
s=0

⌈log n⌉

2s+1
⋅Pr [xq is between 2s and 2s+1 spots from home]

O(1) ⋅ ∑
s=0

⌈ logn⌉

2s
⋅Pr [the region of size 2s on h(xa) is overloaded]

Overloaded Regions

● Recall: A region is a contiguous span of table slots, and we’ve
chosen α = ¹/₃.

● An overloaded region has at least ⅔ · 2ˢ elements in it.
● Let the random variable Bₛ represent the number of keys that

hash into the block of size 2ˢ centered on h(xₐ). We want to
know

Pr[Bₛ ≥ ⅔ · 2s].
● Assuming our hash functions are at least 2-independent, we

have E[Bₛ] = ⅓ · 2ˢ. Then the above quantity is equivalent to

Pr[Bₛ ≥ 2·E[Bₛ]],

and looking up an element takes, on expectation, time

O(1) ⋅ ∑
s=0

⌈ logn⌉

2s
⋅Pr [Bs ≥ 2⋅E[Bs]]

Concentration Inequalities

● The expression

Pr[Bₛ ≥ 2·E[Bₛ]]

seems like a perfect case to try to use a concentration
bound, like we did last Thursday.

● Knowing nothing about Bₛ other than the fact that it's
nonnegative, we could start off by trying to use Markov's
inequality:

Pr[X ≥ c] ≤ E[X] / c

● Using what we have:

Pr[Bₛ ≥ 2·E[Bₛ]] ≤ E[Bₛ] / 2·E[Bₛ] = ½.

● That's a pretty weak bound. What does that do to our
analysis?

A Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 2-independent hashing, this is

● This bound is not at all useful. We're going to need to do better
than this!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs > 2⋅E[Bk]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅
1
2

= O(1) ⋅∑
s=0

⌈logn⌉

2s

= O(n)

O(1) ⋅ ∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 2-independent hashing, this is

● This bound is not at all useful. We're going to need to do better
than this!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bk]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅
1
2

= O(1) ⋅∑
s=0

⌈logn⌉

2s

= O(n)

O(1) ⋅ ∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 2-independent hashing, this is

● This bound is not at all useful. We're going to need to do better
than this!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bk]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅
1
2

= O(1) ⋅∑
s=0

⌈logn⌉

2s

= O(n)

O(1) ⋅ ∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 2-independent hashing, this is

● This bound is not at all useful. We're going to need to do better
than this!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bk]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅
1
2

= O(1) ⋅∑
s=0

⌈logn⌉

2s

= O(n)

O(1) ⋅ ∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 2-independent hashing, this is

● This bound is not at all useful. We're going to need to do better
than this!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bk]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅
1
2

= O(1) ⋅∑
s=0

⌈logn⌉

2s

= O(n)

O(1) ⋅ ∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 2-independent hashing, this is

● This bound is not at all useful. We're going to need to do better
than this!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bk]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅
1
2

= O(1) ⋅∑
s=0

⌈logn⌉

2s

= O(n)

O(1) ⋅ ∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

Concentration Inequalities

● This analysis used Markov’s inequality without any
additional knowledge about Bₛ.

● Bₛ is the number of elements that hash into the block of
size 2ˢ near h(xₐ). What does that tell us?

● Let Xᵢₛ be an indicator variable that's 1 if xᵢ hashes into
the region of size 2ˢ centered on h(xₐ) and 0 otherwise.
Then we can write

● Notice that

Bs = ∑
i=1

n

X is .

E [Bs] = E[∑
i=1

n

X is] = ∑
i=1

n

E [X is] .

Chernoff Bounds

● Last time, we saw the Chernoff bound, which says that if X ~
Binom(n, p) and p < 1/2, then

● We just saw that our variable Bₛ is the sum of a number of

Bernoulli variables Xᵢₛ, so it seems like we might be able to
apply Chernoff bounds here.

● Problem: These Xᵢₛ variables are not independent of one
another!
● We know h is k-independent and we know what h(xₐ) is.
● So any other group of k-1 hashes are independent, but

not all n of them.
● Therefore, Bₛ is not binomially distributed, so we can't use a

Chernoff bound.

Pr [X > n/2] < e
−n(1/2−p)

2

2p

Chebyshev's Inequality

● The last remaining bound that we used last
time was Chebyshev's inequality, which
states that

Pr [|X – E[X]| ≥ c] ≤ Var[X] / c2.
● If we can determine Var[Bₛ], then we can try

using Chebyshev's inequality to bound the
probability that Bₛ is too large.

Var [Bs] = Var [∑
i=1

n

X is]

= ∑
i=1

n

Var [X is]

≤ ∑
i=1

n

E [X is
2
]

= ∑
i=1

n

E [X is]

= E [∑
i=1

n

X is]

= E [Bs]

The Variance

Assume, going forward, that
the Xᵢₛ's are pairwise
independent.

Assume, going forward, that
the Xᵢₛ's are pairwise
independent.

We're already conditioning on
knowing h(xₐ).

This means that we need our
hash function to be at least
3-independent from this
point onward.

We're already conditioning on
knowing h(xₐ).

This means that we need our
hash function to be at least
3-independent from this
point onward.

Var [Bs] = Var [∑
i=1

n

X is]

= ∑
i=1

n

Var [X is]

≤ ∑
i=1

n

E [X is
2
]

= ∑
i=1

n

E [X is]

= E [∑
i=1

n

X is]

= E [Bs]

The Variance

The Variance

Var [Bs] = Var [∑
i=1

n

X is]

= ∑
i=1

n

Var [X is]

≤ ∑
i=1

n

E [X is
2
]

= ∑
i=1

n

E [X is]

= E [∑
i=1

n

X is]

= E [Bs]

Standard technique
we saw last time:
use the fact that
Var[Z] ≤ E[Z2].

Standard technique
we saw last time:
use the fact that
Var[Z] ≤ E[Z2].

The Variance

Var [Bs] = Var [∑
i=1

n

X is]

= ∑
i=1

n

Var [X is]

≤ ∑
i=1

n

E [X is
2
]

= ∑
i=1

n

E [X is]

= E [∑
i=1

n

X is]

= E [Bs]

Standard technique
we saw last time: if Z

is an indicator
variable, then Z2 = Z.

Standard technique
we saw last time: if Z

is an indicator
variable, then Z2 = Z.

The Variance

Var [Bs] = Var [∑
i=1

n

X is]

= ∑
i=1

n

Var [X is]

≤ ∑
i=1

n

E [X is
2
]

= ∑
i=1

n

E [X is]

= E [∑
i=1

n

X is]

= E [Bs]

The Variance

Var [Bs] = Var [∑
i=1

n

X is]

= ∑
i=1

n

Var [X is]

≤ ∑
i=1

n

E [X is
2
]

= ∑
i=1

n

E [X is]

= E [∑
i=1

n

X is]

= E [Bs]

More generally: if X is a sum
of pairwise independent
indicator variables, then

Var[X] ≤ E[X].

More generally: if X is a sum
of pairwise independent
indicator variables, then

Var[X] ≤ E[X].

Using Chebyshev

● We want to know

Pr[Bₛ ≥ 2·E[Bₛ]] = Pr[Bₛ – E[Bₛ] ≥ E[Bₛ]]

● Using Chebyshev's inequality:

Pr[Bₛ – E[Bₛ] ≥ E[Bₛ]] ≤ Pr[|Bₛ – E[Bₛ]| ≥ E[Bₛ]]

 ≤ Var[Bₛ] / E[Bₛ]2

 ≤ E[Bₛ] / E[Bₛ]2

 = 1 / E[Bₛ]

 = 3 · 2⁻ˢ.

A Better Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 3-independent hashing, this is

● Theorem: This runtime bound is tight (there's an adversarial
choice of a 3-independent hash function that degrades the
runtime to this level.)

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs < 2⋅E[Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅3⋅2−s

= O(1) ⋅∑
s=0

⌈logn⌉

3

= O(logn)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Better Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 3-independent hashing, this is

● Theorem: This runtime bound is tight (there's an adversarial
choice of a 3-independent hash function that degrades the
runtime to this level.)

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅3⋅2−s

= O(1) ⋅∑
s=0

⌈logn⌉

3

= O(logn)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Better Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 3-independent hashing, this is

● Theorem: This runtime bound is tight (there's an adversarial
choice of a 3-independent hash function that degrades the
runtime to this level.)

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅3⋅2−s

= O(1) ⋅∑
s=0

⌈logn⌉

3

= O(logn)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Better Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 3-independent hashing, this is

● Theorem: This runtime bound is tight (there's an adversarial
choice of a 3-independent hash function that degrades the
runtime to this level.)

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅3⋅2−s

= O(1) ⋅∑
s=0

⌈logn⌉

3

= O(logn)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Better Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 3-independent hashing, this is

● Theorem: This runtime bound is tight (there's an adversarial
choice of a 3-independent hash function that degrades the
runtime to this level.)

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅3⋅2−s

= O(1) ⋅∑
s=0

⌈logn⌉

3

= O(logn)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Better Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 3-independent hashing, this is

● Theorem: This runtime bound is tight (there's an adversarial
choice of a 3-independent hash function that degrades the
runtime to this level.)

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅3⋅2−s

= O(1) ⋅∑
s=0

⌈logn⌉

3

= O(logn)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

Why This Works

● Key idea: Increasing the degree of independence lets us
control the variance of the distribution.

● With 2-independent hashing, we use one degree of
independence to condition on knowing where some specific
key lands. At that point, we only have one more degree of
independence – not enough to control the variance!

● With 3-independent hashing, we use one degree of
independence to condition on knowing where the key
lands. We can then use the two remaining degrees of
independence to control the variance and use Chebyshev's
inequality.

● Small increases to the independence of a hash
function can dramatically tighten concentration
bounds.

Question: If we increase the degree of
independence further, can we constrain the

spread of the elements in a way that
improves our runtime?

(This is the theory version of “can we do
better?”)

Generalizing Variance

● The variance of a random variable X is defined as

Var[X] = E[(X – E[X])2].
● We can generalize this to higher exponents.
● The fourth central moment of X, denoted

4th[X], is defined as

4th[X] = E[(X – E[X])4].
● Like the variance, 4th[X] measures how likely we

are to get far away from E[X].
● Because of the fourth-power term, 4th[X] is

much more sensitive to outliers.

Generalizing Chebyshev

● The fourth moment inequality states that

Pr[|X – E[X]| ≥ c] ≤ 4th[X] / c4.
● Proof: Let X be a random variable. Then

Pr [|X – E[X]| ≥ c] = Pr[(X – E[X])4 ≥ c4].

Let Y = (X – E[X])4 . Notice that

E[Y] = E[(X – E[X])4] = 4th[X],

so via Markov's inequality, we have

 Pr[|X – E[X]| ≥ c] = Pr[Y ≥ c4]

 ≤ E[Y] / c4

 = 4th[X] / c4. ■
Good question to ponder:
why doesn't this work for the
third central moment, where

3rd[X] = (X – E[X])3?

Good question to ponder:
why doesn't this work for the
third central moment, where

3rd[X] = (X – E[X])3?

Generalizing Indicator Variance

● Theorem: If X is an indicator variable for the
event Ɛ, then 4th[X] ≤ E[X].

● Proof: X takes on value 1 with probability Pr[Ɛ]
and 0 with probability 1 – Pr[Ɛ]. Therefore, we
have

 4th[X] = E[(X – E[X])4]

 = (1 – Pr[Ɛ])4 · Pr[Ɛ] + Pr[Ɛ]4(1 – Pr[Ɛ])

 ≤ (1 – Pr[Ɛ])3 · Pr[Ɛ] + Pr[Ɛ]4

 = Pr[Ɛ] – Pr[Ɛ]4 + Pr[Ɛ]4

 = Pr[Ɛ]

 = E[X]. ■

Read this on your own
time – it’s cute!

Read this on your own
time – it’s cute!

Updating our Analysis

● For linear probing, we're ultimately interested in
bounding

Pr[Bₛ ≥ 2·E[Bₛ]]

in the case where Bₛ represents the number of elements
hitting a particular block.

● Using 2-independent hashing, the best bound we could
use was Markov's inequality, which gave an extremely
weak bound.

● Using 3-independent hashing, we could use
Chebyshev's inequality, which gave an inverse
exponential bound.

● Question: If we use stronger hash functions, can we
tighten this bound using the fourth moment inequality?

What is 4th[Bₛ]?

The Limits of Our Generalization
● There’s a lovely little expression for Var[X]:

Var[X] = E[X2] – E[X]2.
● That’s because

 Var[X] = E[(X – E[X])2]

 = E[X2 – 2X·E[X] + E[X]2]

 = E[X2] – 2E[X] · E[X] + E[X]2

 = E[X2] – 2E[X]2 + E[X]2

 = E[X2] – E[X]2.
● We can try this for fourth moments, but, well, um...

 4th[X] = E[(X – E[X])4]

 = E[X4 – 4X3 · E[X] + 6X2 · E[X]2 – 4X · E[X]3 + E[X]4]

 = E[X4] – 4E[X]·E[X3] + 6E[X]2E[X2] – 4E[X] · E[X]3 + E[X4]

 = E[X4] – 4E[X]·E[X3] + 6E[X]2E[X2] – 3E[X]4

 = ¯_(ツ)_/¯

The Fourth Moment

● Let’s see if we can bound 4th[Bₛ].

● So now we “just” need to simplify this expression. 😃

4th[Bs] = E[(Bs−E[Bs])
4
]

= E[(∑
i=1

n

X is−∑
i=1

n

E[X is])
4

]

= E[(∑
i=1

n

(X is−E[X is]))
4

]

= E[∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

= ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

The Fourth Moment

● Let’s see if we can bound 4th[Bₛ].

● So now we “just” need to simplify this expression. 😃

4th[Bs] = E[(Bs−E[Bs])
4
]

= E[(∑
i=1

n

X is−∑
i=1

n

E[X is])
4

]

= E[(∑
i=1

n

(X is−E[X is]))
4

]

= E[∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

= ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

The Fourth Moment

● Let’s see if we can bound 4th[Bₛ].

● So now we “just” need to simplify this expression. 😃

4th[Bs] = E[(Bs−E[Bs])
4
]

= E[(∑
i=1

n

X is−∑
i=1

n

E[X is])
4

]

= E[(∑
i=1

n

(X is−E[X is]))
4

]

= E[∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

= ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

The Fourth Moment

● Let’s see if we can bound 4th[Bₛ].

● So now we “just” need to simplify this expression. 😃

4th[Bs] = E[(Bs−E[Bs])
4
]

= E[(∑
i=1

n

X is−∑
i=1

n

E[X is])
4

]

= E[(∑
i=1

n

(X is−E[X is]))
4

]

= E[∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

= ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

The Fourth Moment

● Let’s see if we can bound 4th[Bₛ].

● So now we “just” need to simplify this expression. 😃

4th[Bs] = E[(Bs−E[Bs])
4
]

= E[(∑
i=1

n

X is−∑
i=1

n

E[X is])
4

]

= E[(∑
i=1

n

(X is−E[X is]))
4

]

= E[∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

= ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

The Fourth Moment

● Let’s see if we can bound 4th[Bₛ].

● So now we “just” need to simplify this expression. 😃

4th[Bs] = E[(Bs−E[Bs])
4
]

= E[(∑
i=1

n

X is−∑
i=1

n

E[X is])
4

]

= E[(∑
i=1

n

(X is−E[X is]))
4

]

= E[∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

= ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

The Fourth Moment

● Let’s see if we can bound 4th[Bₛ].

● So now we “just” need to simplify this expression. 😃

4th[Bs] = E[(Bs−E[Bs])
4
]

= E[(∑
i=1

n

X is−∑
i=1

n

E[X is])
4

]

= E[(∑
i=1

n

(X is−E[X is]))
4

]

= E[∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

= ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

Increasing our Independence

● We now have this lovely expression:

● Recall: If our hash function is k-independent, then
we've already used one degree of independence
conditioning on knowing where h(xₐ) is. That leaves us
with k-1 degrees of independence.

● Let's suppose we're using a 5-independent hash
function, meaning that any four hash values are
independent of one another.

● This allows us to dramatically simplify this expression.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

Exploring this Summation

● The terms of this summation might sometimes range over
the same variables at the same time:

● Claim: Any term in the above summation where Xᵢₛ is a
different random variable than Xⱼₛ, Xₖₛ, and Xₗₛ is zero.

● Proof: Suppose that Xᵢₛ is a different random variable from
the others. Then since Xᵢₛ, Xⱼₛ, Xₖₛ, and Xₗₛ are independent,
we have

 = E[(Xᵢₛ – E[Xᵢₛ])(Xⱼₛ – E[Xⱼₛ])(Xₖₛ – E[Xₖₛ])(Xₗₛ – E[Xₗₛ])]

 = E[Xᵢₛ – E[Xᵢₛ]] · E[(Xⱼₛ – E[Xⱼₛ])(Xₖₛ – E[Xₖₛ])(Xₗₛ – E[Xₗₛ])]

 = 0 · E[(Xⱼₛ – E[Xⱼₛ])(Xₖₛ – E[Xₖₛ])(Xₗₛ – E[Xₗₛ])]

 = 0

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

Exploring this Summation

● The terms of this summation might sometimes range over
the same variables at the same time:

● Claim: Every term in this sum is zero except for the
following:

● Terms where i = j = k = l.
● Terms where two of i, j, k, and l refer to one value and

the other two of i, j, k, and l refer to another.
● Proof: If a variable appears exactly one time, then by our

previous logic the term evaluates to zero. If a variable
appears exactly three times, then the other variable
appears exactly once and the term evaluates to zero. That
leaves behind the two remaining cases here.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

Exploring this Summation

● The terms of this summation might sometimes range over
the same variables at the same time:

● Claim: Every term in this sum is zero except for the
following:

● Terms where i = j = k = l.
● Terms where two of i, j, k, and l refer to one value and

the other two of i, j, k, and l refer to another.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

p=1

n

∑
q=p+1

n

E[(Xps−E[Xps])
2
(Xqs−E[Xqs])

2
]

Exploring this Summation

● The terms of this summation might sometimes range over
the same variables at the same time:

● Claim: Every term in this sum is zero except for the
following:

● Terms where i = j = k = l.
● Terms where two of i, j, k, and l refer to one value and

the other two of i, j, k, and l refer to another.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

Exploring this Summation

● The terms of this summation might sometimes range over
the same variables at the same time:

● Claim: Every term in this sum is zero except for the
following:

● Terms where i = j = k = l.
● Terms where two of i, j, k, and l refer to one value and

the other two of i, j, k, and l refer to another.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

p=1

n

∑
q=p+1

n

E[(Xps−E[Xps])
2
(Xqs−E[Xqs])

2
]

Exploring this Summation

● The terms of this summation might sometimes range over
the same variables at the same time:

● Claim: Every term in this sum is zero except for the
following:

● Terms where i = j = k = l.
● Terms where two of i, j, k, and l refer to one value and

the other two of i, j, k, and l refer to another.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

p=1

n

∑
q=p+1

n

E[(Xps−E[Xps])
2
(Xqs−E[Xqs])

2
]

What’s the
first value?

What’s the
first value?

What’s the second?
(It must be different

than the first!)

What’s the second?
(It must be different

than the first!)

Which of i, j, k, and l
refer to the first

value?

Which of i, j, k, and l
refer to the first

value?

Exploring this Summation

● The terms of this summation might sometimes range over
the same variables at the same time:

● Claim: Every term in this sum is zero except for the
following:

● Terms where i = j = k = l.
● Terms where two of i, j, k, and l refer to one value and

the other two of i, j, k, and l refer to another.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

p=1

n

∑
q=p+1

n

E[(Xps−E[Xps])
2
(Xqs−E[Xqs])

2
]

Exploring this Summation

● The terms of this summation might sometimes range over
the same variables at the same time:

● Claim: Every term in this sum is zero except for the
following:

● Terms where i = j = k = l.
● Terms where two of i, j, k, and l refer to one value and

the other two of i, j, k, and l refer to another.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[Xks])(X ls−E[X ls])]

∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

We’ll use i and j as our
summation variables, since

that’s easier to read.

We’ll use i and j as our
summation variables, since

that’s easier to read.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3∑
i≠ j

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3∑
i≠ j

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

Since h is 5-independent and
we’re conditioning on just
knowing one hash location

(h(xₐ)), these are independent
random variables.

Since h is 5-independent and
we’re conditioning on just
knowing one hash location

(h(xₐ)), these are independent
random variables.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

Since h is 5-independent and
we’re conditioning on just
knowing one hash location

(h(xₐ)), these are independent
random variables.

Since h is 5-independent and
we’re conditioning on just
knowing one hash location

(h(xₐ)), these are independent
random variables.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

This is the definition
of the fourth central

moment.

This is the definition
of the fourth central

moment.

This is the definition
of variance.

This is the definition
of variance.

So is this.So is this.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

This is the definition
of the fourth central

moment.

This is the definition
of the fourth central

moment.

This is the definition
of variance.

This is the definition
of variance.

So is this.So is this.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

6 = 3 ≤ 3

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

6 = 3 ≤ 3

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(Xks−E[Xks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

2

=

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(Xks−E[Xks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

2

=

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(Xks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

∑
i=1

n

Var [X is] = Var [∑
i=1

n

X is] = Var [Bs]

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(Xks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

∑
i=1

n

Var [X is] = Var [∑
i=1

n

X is] = Var [Bs]

If X is an indicator,
then 4th[X] ≤ E[X].

If X is an indicator,
then 4th[X] ≤ E[X].

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(Xks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

We know from our
3-independence

analysis that
Var[Bₛ] ≤ E[Bₛ]

We know from our
3-independence

analysis that
Var[Bₛ] ≤ E[Bₛ]

If X is an indicator,
then 4th[X] ≤ E[X].

If X is an indicator,
then 4th[X] ≤ E[X].

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(Xks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

We know from our
3-independence

analysis that
Var[Bₛ] ≤ E[Bₛ]

We know from our
3-independence

analysis that
Var[Bₛ] ≤ E[Bₛ]

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(Xks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(Xks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[X js])(X ks−E[X ks])(X ls−E[X ls])]

= ∑
i=1

n

E[(X is−E[X is])
4
] + (42) ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
(X js−E[X js])

2
]

= ∑
i=1

n

E[(X is−E[X is])
4
] + 6 ∑

i=1

n

∑
j=i+1

n

E[(X is−E[X is])
2
]E[(X js−E[X js])

2
]

= ∑
i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is]Var[X js]

≤ ∑
i=1

n

4th[X is] + 3∑
i=1

n

∑
j=1

n

Var[X is]Var[X js]

= ∑
i=1

n

4th[X is] + 3(∑
i=1

n

Var[X is])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2

(As long as E[Bₛ] ≥ 1, which we
can assume if we’re talking

about sufficiently large regions.)

(As long as E[Bₛ] ≥ 1, which we
can assume if we’re talking

about sufficiently large regions.)

The Net Result

● We've just shown that

4th[B] ≤ 4·E[B]2

● Phew! That was crazy. But at least we
now have a bound on the fourth moment,
which lets us use the fourth moment
inequality!

Fourth Moments for Victory

● Using the fourth moment inequality:

Pr[Bₛ ≥ 2E[Bₛ]] = Pr[Bₛ – E[Bₛ] ≥ E[Bₛ]]

 ≤ 4th[Bₛ] / E[Bₛ]4

 ≤ 4·E[Bₛ]2 / E[Bₛ]4

 = 4 / E[Bₛ]2

 = 4 / (¹/₃ · 2s)2

 = 36 · 2-2s.
● Notice that this is exponentially better

than our previous bound!

A Strong Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 5-independent hashing, this is

● We've finally obtained an O(1) bound on the cost of operations in
a chained hash table – provided that we use 5-independent
hashing!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs < 2⋅E[Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅36⋅2−2s

= O(1) ⋅∑
s=0

⌈logn⌉

36⋅2−s

= O(1)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Strong Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 5-independent hashing, this is

● We've finally obtained an O(1) bound on the cost of operations in
a chained hash table – provided that we use 5-independent
hashing!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅36⋅2−2s

= O(1) ⋅∑
s=0

⌈logn⌉

36⋅2−s

= O(1)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Strong Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 5-independent hashing, this is

● We've finally obtained an O(1) bound on the cost of operations in
a chained hash table – provided that we use 5-independent
hashing!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅36⋅2−2s

= O(1) ⋅∑
s=0

⌈logn⌉

36⋅2−s

= O(1)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Strong Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 5-independent hashing, this is

● We've finally obtained an O(1) bound on the cost of operations in
a chained hash table – provided that we use 5-independent
hashing!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅36⋅2−2s

= O(1) ⋅∑
s=0

⌈logn⌉

36⋅2−s

= O(1)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Strong Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 5-independent hashing, this is

● We've finally obtained an O(1) bound on the cost of operations in
a chained hash table – provided that we use 5-independent
hashing!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅36⋅2−2s

= O(1) ⋅∑
s=0

⌈logn⌉

36⋅2−s

= O(1)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

A Strong Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

● Assuming 5-independent hashing, this is

● We've finally obtained an O(1) bound on the cost of operations in
a chained hash table – provided that we use 5-independent
hashing!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅36⋅2−2s

= O(1) ⋅∑
s=0

⌈logn⌉

36⋅2−s

= O(1)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs]]

What Just Happened?

● With one degree of independence, we could obtain the
expected value and use that to bound the probability
with Markov's inequality.

● Using two degrees of independence, we could obtain
the variance and use that to bound the probability with
Chebyshev's inequality.

● Using four degrees of independence, we could obtain
the fourth central moment and use that to bound the
probability with the fourth moment bound.

● Increasing the strength of a hash function allows us to
obtain more central moments and, therefore, to tighten
our bound more than might initially be suspected.

More to Explore

● Mitzenmacher and Vadhan’s paper “Why
Simple Hash Functions Work” provides a
fundamentally different strategy for
analyzing linear probing.

● Pătrașcu and Thorup’s paper on the
lower bound for 5-independence here
gives a glimpse of how you’d argue that
these bounds can’t be improved.

Next Time

● Cuckoo Hashing
● Hashing with worst-case O(1) lookups!

● The Cuckoo Graph
● Random graphs for Fun and Profit.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168

