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Outline for Today

● Linear Probing Hashing
● A simple and lightning fast hash table 

implementation.
● Analyzing Linear Probing

● Why the degree of independence matters.
● Fourth Moment Bounds

● Another approach for estimating 
frequencies.



  

Hashing Strategies

● All hash table implementations need to address what 
happens when collisions occur.

● Common strategies:
● Closed addressing: Store all elements with hash collisions 

in a secondary data structure (linked list, BST, etc.)
● Perfect hashing: Choose hash functions to ensure that 

collisions don't happen, and rehash or move elements when 
they do.

● Open addressing: Allow elements to “leak out” from their 
preferred position and spill over into other positions.

● Linear probing is an example of open addressing.
● We'll see a type of perfect hashing (cuckoo hashing) 

on Thursday.
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● Linear probing is a 
simple open-addressing 
hashing strategy.

● To insert an element x, 
compute h(x) and try to 
place x there.

● If that spot is occupied, 
keep moving through the 
array, wrapping around 
at the end, until a free 
spot is found. 
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● To look up an element x, 
compute h(x) and start 
looking there.

● Move around the ring until 
either the element is found 
or a blank spot is detected.

● (We'll assume the load 
factor prohibits us from 
inserting so many 
elements that there are no 
free spaces.)

t
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● Deletions are a bit 
trickier than in 
chained hashing.

● We cannot just do a 
search and remove 
the element where 
we find it.

● Why?
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● Deletions are often 
implemented using 
tombstones.

● When removing an element, 
mark that the cell is empty 
and was previously occupied.

● When doing a lookup, don't 
stop at a tombstone. Instead, 
keep the search going.
● You need to watch out for 

wraparounds.
● When inserting, feel free to 

replace any tombstone you 
encounter.
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Linear Probing in Practice

● In practice, linear probing is one of the fastest 
general-purpose hashing strategies available.

● This is surprising – it was originally invented in 
1954! It's pretty amazing that it still holds up so 
well.

● Why is this?
● Low memory overhead: just need an array and a hash 

function.
● Excellent locality: when collisions occur, we only 

search in adjacent locations in the array.
● Great cache performance: a combination of the above 

two factors.



  

The Weakness

● Linear probing exhibits 
severe performance 
degradations when the 
load factor gets high.

● The number of collisions 
tends to grow as a 
function of the number 
of existing collisions.

● This is called primary 
clustering.
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So… how fast is linear probing?



  

Time-Out for Announcements!



  

Final Project Topics

● Final project topics have been assigned, 
and we’re really excited to see what you 
end up making!

● We recommend that you make slow and 
steady progress on the project over the 
next couple of weeks.

● We’ll work out a presentation schedule in 
a week or so.



  

Problem Sets

● Problem Set Four is due this Thursday at 
2:30PM.
● Have questions? Stop by office hours or ask on 

Piazza!
● We’re working on grading PS3 right now and 

will try to get it back to you soon.
● PS5 will go out on Thursday and will be due 

one week from this Thursday.
● And that’s it!



  

Later This Week

● Keith will be out of town through the end 
of the week.

● Rafa and Mitchell will be covering 
Keith’s office hours at the regular time 
(2PM – 4PM) in the Huang Basement.

● Sam will be giving Thursday’s lecture on 
cuckoo hashing (super interesting stuff!)



  



  

GTGTC Exec Applications

● Girls Teaching Girls to Code (GTGTC) is 
looking for people to serve on next year’s 
executive committee.

● This is an excellent program that’s been 
around for years. It’s a great way to 
make an impact.

● Interested? Apply here by this Sunday.

http://bit.ly/gtgtcexec2018


  

Back to CS166!



  

Analyzing Linear Probing



  

You probably saw an analysis of chained 
hash tables in CS161.

What makes linear probing different, 
interesting, or noteworthy?



  

Why Linear Probing is Different

● In chained hashing, 
collisions only occur when 
two values have exactly the 
same hash code.

● In linear probing, collisions 
can occur between 
elements with entirely 
different hash codes.

● To analyze linear probing, 
we need to know more than 
just how many elements 
collide with us.

0

412

13

14

11 1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15



  

Why Linear Probing is Different

● In chained hashing, 
collisions only occur when 
two values have exactly the 
same hash code.

● In linear probing, collisions 
can occur between 
elements with entirely 
different hash codes.

● To analyze linear probing, 
we need to know more than 
just how many elements 
collide with us.

0

412

13

14

11 1

2

3

10

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

11



  

Why Linear Probing is Different

● In chained hashing, 
collisions only occur when 
two values have exactly the 
same hash code.

● In linear probing, collisions 
can occur between 
elements with entirely 
different hash codes.

● To analyze linear probing, 
we need to know more than 
just how many elements 
collide with us.

0

412

13

14

11 1

2

3

10 11

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15



  

Why Linear Probing is Different

● In chained hashing, 
collisions only occur when 
two values have exactly the 
same hash code.

● In linear probing, collisions 
can occur between 
elements with entirely 
different hash codes.

● To analyze linear probing, 
we need to know more than 
just how many elements 
collide with us.

0

412

13

14

11 1

2

3

10 11

10

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

The lookup time 
here is huge even 
though this key 
only directly 
collides with one 
other.

The lookup time 
here is huge even 
though this key 
only directly 
collides with one 
other.



  

● In 1954, Gene Amdahl, Elaine McGraw, and Arthur Samuel invent linear 
probing as a subroutine for an assembler.

● In 1962, Don Knuth, in his first ever analysis of an algorithm, proves that 
linear probing takes expected time O(1) for lookups if the hash function is 
truly random (n-wise independence).

● In 1995, Schmidt and Siegel proved O(log n)-independent hash functions 
guarantee fast performance for linear probing, but note that such hash 
functions either take a long time to evaluate or require a lot of space.

● In 2006, Anna Pagh et al. proved that 5-independent hash functions give 
expected constant-time lookups. (This is the analysis we’ll see today.) 
These hash functions can be stored in O(1) space and evaluated in O(1) 
time.

● In 2007, Mitzenmacher and Vadhan proved that 2-independence will give 
expected O(1)-time lookups, assuming there’s some measure of 
randomness in the keys.

● In 2010, Pătrașcu and Thorup proved that 5-independence is the minimum 
independence needed for adversarially-chosen keys.

Some Brief History



  

The Analysis!
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This element is 
far from home. ☹For simplicity, let’s assume 

a load factor of α = ¹/₃.
 

A region of size m is a 
consecutive set of m 

locations in the hash table.

An element x hashes to 
region R if h(x) ∈ R, though 
x may not be placed in R.

On expectation, a region of 
size 2s should have at most 
¹/₃ · 2s elements hash to it.

It would be very unlucky if 
a region had twice as many 
elements in it as expected.

A region of size 2s is 
overloaded if at least 

²/₃ · 2s elements hash to it.

Intuition: If an element ends up 
far from its home location, then 
some large region near its home 

has to be overloaded.

Intuition: If an element ends up 
far from its home location, then 
some large region near its home 

has to be overloaded.



  

Theorem: The probability that an element 
xₐ ends up between 2s and 2s+1 steps from 

its home location is upper-bounded by
 

  c · Pr[ the region of size 2s centered
 c · Pr[ on h(xₐ) is overloaded ]

 

for some fixed constant c independent of s.
 

Proof: Set up some cleverly-chosen ranges 
over the hash table and use the pigeonhole 

principle. See Thorup’s lecture notes.



  

Analyzing the Runtime

● The cost of looking up some key xₐ is bounded from 
above by the length of the run containing xₐ.

● The expected cost of performing a lookup is therefore at 
most

  
● The previous theorem tells us that this cost is

   
● If we can determine the probability that a region of size 

2s is overloaded, we'll have a bound on the expected 
lookup cost for xₐ.

O(1) ⋅∑
s=0

⌈log n⌉

2s+1
⋅Pr [xq  is between 2s  and 2s+1  spots from home]

O(1) ⋅ ∑
s=0

⌈ logn⌉

2s
⋅Pr [the region of size 2s on h(xa) is overloaded ]



  

Overloaded Regions

● Recall: A region is a contiguous span of table slots, and we’ve 
chosen α = ¹/₃.

● An overloaded region has at least ⅔ · 2ˢ elements in it.
● Let the random variable Bₛ represent the number of keys that 

hash into the block of size 2ˢ centered on h(xₐ). We want to 
know

Pr[ Bₛ ≥ ⅔ · 2s ].
● Assuming our hash functions are at least 2-independent, we 

have E[Bₛ] = ⅓ · 2ˢ. Then the above quantity is equivalent to

Pr[ Bₛ ≥ 2·E[Bₛ] ],

and looking up an element takes, on expectation, time

O(1) ⋅ ∑
s=0

⌈ logn⌉

2s
⋅Pr [ Bs ≥ 2⋅E[ Bs] ]



  

Concentration Inequalities

● The expression

Pr[ Bₛ ≥ 2·E[Bₛ] ]

seems like a perfect case to try to use a concentration 
bound, like we did last Thursday.

● Knowing nothing about Bₛ other than the fact that it's 
nonnegative, we could start off by trying to use Markov's 
inequality:

Pr[ X ≥ c ]   ≤   E[X] / c

● Using what we have:

Pr[ Bₛ ≥ 2·E[Bₛ] ]   ≤   E[Bₛ] / 2·E[Bₛ]   =   ½.

● That's a pretty weak bound. What does that do to our 
analysis?



  

A Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

  
● Assuming 2-independent hashing, this is

 

● This bound is not at all useful. We're going to need to do better 
than this!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs > 2⋅E[Bk]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅
1
2

= O(1) ⋅∑
s=0

⌈logn⌉

2s

= O(n)

O(1) ⋅ ∑
s=0

⌈logn⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs] ]
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Concentration Inequalities

● This analysis used Markov’s inequality without any 
additional knowledge about Bₛ.

● Bₛ is the number of elements that hash into the block of 
size 2ˢ near h(xₐ). What does that tell us?

● Let Xᵢₛ be an indicator variable that's 1 if xᵢ hashes into 
the region of size 2ˢ centered on h(xₐ) and 0 otherwise. 
Then we can write

 
● Notice that

Bs = ∑
i=1

n

X is .

E [ Bs] = E[∑
i=1

n

X is] = ∑
i=1

n

E [ X is ] .



  

Chernoff Bounds

● Last time, we saw the Chernoff bound, which says that if X ~ 
Binom(n, p) and p < 1/2, then

 
● We just saw that our variable Bₛ is the sum of a number of 

Bernoulli variables Xᵢₛ, so it seems like we might be able to 
apply Chernoff bounds here.

● Problem: These Xᵢₛ variables are not independent of one 
another!
● We know h is k-independent and we know what h(xₐ) is.
● So any other group of k-1 hashes are independent, but 

not all n of them.
● Therefore, Bₛ is not binomially distributed, so we can't use a 

Chernoff bound.

Pr [ X > n/2] < e
−n(1/2−p)

2

2p



  

Chebyshev's Inequality

● The last remaining bound that we used last 
time was Chebyshev's inequality, which 
states that

Pr [ |X – E[X]| ≥ c ] ≤ Var[X] / c2.
● If we can determine Var[Bₛ], then we can try 

using Chebyshev's inequality to bound the 
probability that Bₛ is too large.



  

Var [Bs ] = Var [∑
i=1

n

X is ]

= ∑
i=1

n

Var [ X is ]

≤ ∑
i=1

n

E [X is
2
]

= ∑
i=1

n

E [X is]

= E [∑
i=1

n

X is]

= E [Bs ]

The Variance

Assume, going forward, that 
the Xᵢₛ's are pairwise 
independent.

Assume, going forward, that 
the Xᵢₛ's are pairwise 
independent.

We're already conditioning on 
knowing h(xₐ).
 

This means that we need our 
hash function to be at least
3-independent from this 
point onward.

We're already conditioning on 
knowing h(xₐ).
 

This means that we need our 
hash function to be at least
3-independent from this 
point onward.



  

Var [Bs ] = Var [∑
i=1

n

X is ]

= ∑
i=1

n

Var [ X is ]

≤ ∑
i=1

n

E [X is
2
]

= ∑
i=1

n

E [X is]

= E [∑
i=1

n

X is]

= E [Bs ]

The Variance



  

The Variance

Var [Bs ] = Var [∑
i=1

n

X is ]

= ∑
i=1

n

Var [ X is ]

≤ ∑
i=1

n

E [X is
2
]

= ∑
i=1

n

E [X is]

= E [∑
i=1

n

X is]

= E [Bs ]

Standard technique 
we saw last time: 
use the fact that 
Var[Z] ≤ E[Z2].

Standard technique 
we saw last time: 
use the fact that 
Var[Z] ≤ E[Z2].



  

The Variance

Var [Bs ] = Var [∑
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n
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n
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i=1

n

E [X is
2
]

= ∑
i=1

n

E [X is]

= E [∑
i=1

n

X is]

= E [Bs ]

Standard technique 
we saw last time: if Z 

is an indicator 
variable, then Z2 = Z.

Standard technique 
we saw last time: if Z 

is an indicator 
variable, then Z2 = Z.



  

The Variance
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The Variance

Var [Bs ] = Var [∑
i=1

n

X is ]

= ∑
i=1

n

Var [ X is ]

≤ ∑
i=1

n

E [X is
2
]

= ∑
i=1

n

E [X is]

= E [∑
i=1

n

X is]

= E [Bs ]

More generally: if X is a sum 
of pairwise independent 
indicator variables, then 

Var[X] ≤ E[X].

More generally: if X is a sum 
of pairwise independent 
indicator variables, then 

Var[X] ≤ E[X].



  

Using Chebyshev

● We want to know

Pr[ Bₛ ≥ 2·E[Bₛ] ]   =   Pr[ Bₛ – E[Bₛ] ≥ E[Bₛ] ]

● Using Chebyshev's inequality:

Pr[ Bₛ – E[Bₛ] ≥ E[Bₛ] ] ≤  Pr[ |Bₛ – E[Bₛ]| ≥ E[Bₛ] ]

          ≤  Var[Bₛ] / E[Bₛ]2

          ≤  E[Bₛ] / E[Bₛ]2

         =  1 / E[Bₛ]

         =  3 · 2⁻ˢ.



  

A Better Bound

● The expected cost of looking up xₐ in a linear probing table is

  
● Assuming 3-independent hashing, this is

 

● Theorem: This runtime bound is tight (there's an adversarial 
choice of a 3-independent hash function that degrades the 
runtime to this level.)

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs < 2⋅E[Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅3⋅2−s

= O(1) ⋅∑
s=0

⌈logn⌉

3

= O(logn)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs] ]
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Why This Works

● Key idea: Increasing the degree of independence lets us 
control the variance of the distribution.

● With 2-independent hashing, we use one degree of 
independence to condition on knowing where some specific 
key lands. At that point, we only have one more degree of 
independence – not enough to control the variance!

● With 3-independent hashing, we use one degree of 
independence to condition on knowing where the key 
lands. We can then use the two remaining degrees of 
independence to control the variance and use Chebyshev's 
inequality.

● Small increases to the independence of a hash 
function can dramatically tighten concentration 
bounds.



  

Question: If we increase the degree of 
independence further, can we constrain the 

spread of the elements in a way that 
improves our runtime?

(This is the theory version of “can we do 
better?”)



  

Generalizing Variance

● The variance of a random variable X is defined as

Var[X] = E[(X – E[X])2].
● We can generalize this to higher exponents.
● The fourth central moment of X, denoted 

4th[X], is defined as

4th[X] = E[(X – E[X])4].
● Like the variance, 4th[X] measures how likely we 

are to get far away from E[X].
● Because of the fourth-power term, 4th[X] is 

much more sensitive to outliers.



  

Generalizing Chebyshev

● The fourth moment inequality states that

Pr[ |X – E[X]| ≥ c ]  ≤  4th[X] / c4.
● Proof: Let X be a random variable. Then

Pr [ |X – E[X]| ≥ c ]  =  Pr[ (X – E[X])4 ≥ c4 ].

Let Y = (X – E[X])4 . Notice that

E[Y] = E[(X – E[X])4] = 4th[X],

so via Markov's inequality, we have

   Pr[ |X – E[X]| ≥ c ] =  Pr[ Y ≥ c4 ]

          ≤  E[Y] / c4

          =  4th[X] / c4. ■
Good question to ponder: 
why doesn't this work for the 
third central moment, where

3rd[X] = (X – E[X])3?

Good question to ponder: 
why doesn't this work for the 
third central moment, where

3rd[X] = (X – E[X])3?



  

Generalizing Indicator Variance

● Theorem: If X is an indicator variable for the 
event Ɛ, then 4th[X] ≤ E[X].

● Proof: X takes on value 1 with probability Pr[Ɛ] 
and 0 with probability 1 – Pr[Ɛ]. Therefore, we 
have

   4th[X] = E[(X – E[X])4]

    = (1 – Pr[Ɛ])4 · Pr[Ɛ] + Pr[Ɛ]4(1 – Pr[Ɛ])

    ≤ (1 – Pr[Ɛ])3 · Pr[Ɛ] + Pr[Ɛ]4

    = Pr[Ɛ] – Pr[Ɛ]4 + Pr[Ɛ]4

    = Pr[Ɛ]

    = E[X]. ■

Read this on your own 
time – it’s cute!

Read this on your own 
time – it’s cute!



  

Updating our Analysis

● For linear probing, we're ultimately interested in 
bounding

Pr[ Bₛ ≥ 2·E[Bₛ] ]

in the case where Bₛ represents the number of elements 
hitting a particular block.

● Using 2-independent hashing, the best bound we could 
use was Markov's inequality, which gave an extremely 
weak bound.

● Using 3-independent hashing, we could use 
Chebyshev's inequality, which gave an inverse 
exponential bound.

● Question: If we use stronger hash functions, can we 
tighten this bound using the fourth moment inequality?



  

What is 4th[Bₛ]?



  

The Limits of Our Generalization
● There’s a lovely little expression for Var[X]:

Var[X] = E[X2] – E[X]2.
● That’s because

 Var[X] = E[(X – E[X])2]

    = E[X2 – 2X·E[X] + E[X]2]

    = E[X2] – 2E[X] · E[X] + E[X]2

    = E[X2] – 2E[X]2 + E[X]2

    = E[X2] – E[X]2.
● We can try this for fourth moments, but, well, um...

 4th[X] = E[(X – E[X])4]

    = E[X4 – 4X3 · E[X] + 6X2 · E[X]2 – 4X · E[X]3 + E[X]4]

    = E[X4] – 4E[X]·E[X3] + 6E[X]2E[X2] – 4E[X] · E[X]3 + E[X4]

    = E[X4] – 4E[X]·E[X3] + 6E[X]2E[X2] – 3E[X]4

    = ¯\_(ツ )_/¯



  

The Fourth Moment

● Let’s see if we can bound 4th[Bₛ].

● So now we “just” need to simplify this expression. 😃

4th[Bs ] =  E[(Bs−E[Bs])
4
]

= E[(∑
i=1

n

X is−∑
i=1

n

E[ X is])
4

]

= E[(∑
i=1

n

(X is−E[ X is]))
4

]

= E[∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

(X is−E[X is])(X js−E[ X js])(X ks−E[ Xks])(X ls−E[ X ls])]

= ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[ X js])(X ks−E[ Xks])(X ls−E[ X ls])]
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Increasing our Independence

● We now have this lovely expression:

● Recall: If our hash function is k-independent, then 
we've already used one degree of independence 
conditioning on knowing where h(xₐ) is. That leaves us 
with k-1 degrees of independence.

● Let's suppose we're using a 5-independent hash 
function, meaning that any four hash values are 
independent of one another.

● This allows us to dramatically simplify this expression.

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[ X js ])(X ks−E[ Xks])(X ls−E[ X ls])]



  

Exploring this Summation

● The terms of this summation might sometimes range over 
the same variables at the same time:

 

● Claim: Any term in the above summation where Xᵢₛ is a 
different random variable than Xⱼₛ, Xₖₛ, and Xₗₛ is zero.

● Proof: Suppose that Xᵢₛ is a different random variable from 
the others. Then since Xᵢₛ, Xⱼₛ, Xₖₛ, and Xₗₛ are independent, 
we have

  = E[ (Xᵢₛ – E[Xᵢₛ])(Xⱼₛ – E[Xⱼₛ])(Xₖₛ – E[Xₖₛ])(Xₗₛ – E[Xₗₛ]) ]

  = E[Xᵢₛ – E[Xᵢₛ]] · E[(Xⱼₛ – E[Xⱼₛ])(Xₖₛ – E[Xₖₛ])(Xₗₛ – E[Xₗₛ]) ]

  = 0 · E[(Xⱼₛ – E[Xⱼₛ])(Xₖₛ – E[Xₖₛ])(Xₗₛ – E[Xₗₛ]) ]

  = 0

4th[Bs] = ∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

n

E[(X is−E[X is])(X js−E[ X js ])( X ks−E[ Xks])(X ls−E[ X ls])]



  

Exploring this Summation

● The terms of this summation might sometimes range over 
the same variables at the same time:

 

● Claim: Every term in this sum is zero except for the 
following:

● Terms where i = j = k = l.
● Terms where two of i, j, k, and l refer to one value and 

the other two of i, j, k, and l refer to another.
● Proof: If a variable appears exactly one time, then by our 

previous logic the term evaluates to zero. If a variable 
appears exactly three times, then the other variable 
appears exactly once and the term evaluates to zero. That 
leaves behind the two remaining cases here.
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∑
i=1

n

E[(X is−E[ X is])
4
] + (42) ∑

p=1

n

∑
q=p+1

n

E[(Xps−E[Xps])
2
(Xqs−E[ Xqs])

2
]
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What’s the 
first value?

What’s the 
first value?

What’s the second? 
(It must be different 

than the first!)

What’s the second? 
(It must be different 

than the first!)

Which of i, j, k, and l 
refer to the first 

value?

Which of i, j, k, and l 
refer to the first 

value?
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We’ll use i and j as our 
summation variables, since 

that’s easier to read.

We’ll use i and j as our 
summation variables, since 

that’s easier to read.
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i=1

n

4th[X is] + 6∑
i=1

n

∑
j=i+1

n

Var[X is ]Var[ X js ]
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i=1

n

4th[X is] + 3∑
i≠ j

Var[X is ]Var[X js ]
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i=1

n

4th[X is] + 3(∑
i=1

n

Var[ X is ])
2

= ∑
i=1

n

4th[X is] + 3Var[Bs]
2

≤ ∑
i=1

n

E[X is] + 3E[Bs]
2

= E[Bs] + 3E[Bs]
2

≤ 4E[Bs]
2
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The Net Result

● We've just shown that

4th[B] ≤ 4·E[B]2

● Phew! That was crazy. But at least we 
now have a bound on the fourth moment, 
which lets us use the fourth moment 
inequality!



  

Fourth Moments for Victory

● Using the fourth moment inequality:

Pr[ Bₛ ≥ 2E[Bₛ] ] = Pr[ Bₛ – E[Bₛ] ≥ E[Bₛ] ]

         ≤  4th[Bₛ] / E[Bₛ]4

         ≤  4·E[Bₛ]2 / E[Bₛ]4

          =  4 / E[Bₛ]2

          =  4 / (¹/₃ · 2s)2

         =  36 · 2-2s.
● Notice that this is exponentially better 

than our previous bound!



  

A Strong Runtime Bound

● The expected cost of looking up xₐ in a linear probing table is

  
● Assuming 5-independent hashing, this is

 

● We've finally obtained an O(1) bound on the cost of operations in 
a chained hash table – provided that we use 5-independent 
hashing!

O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅Pr [Bs < 2⋅E[Bs]]

≤ O(1) ⋅∑
s=0

⌈logn⌉

2s
⋅36⋅2−2s

= O(1) ⋅∑
s=0

⌈logn⌉

36⋅2−s

= O(1)

O(1) ⋅ ∑
s=0

⌈logn ⌉

2s
⋅Pr [Bs ≥ 2⋅E [Bs] ]
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What Just Happened?

● With one degree of independence, we could obtain the 
expected value and use that to bound the probability 
with Markov's inequality.

● Using two degrees of independence, we could obtain 
the variance and use that to bound the probability with 
Chebyshev's inequality.

● Using four degrees of independence, we could obtain 
the fourth central moment and use that to bound the 
probability with the fourth moment bound.

● Increasing the strength of a hash function allows us to 
obtain more central moments and, therefore, to tighten 
our bound more than might initially be suspected.



  

More to Explore

● Mitzenmacher and Vadhan’s paper “Why 
Simple Hash Functions Work” provides a 
fundamentally different strategy for 
analyzing linear probing.

● Pătrașcu and Thorup’s paper on the 
lower bound for 5-independence here 
gives a glimpse of how you’d argue that 
these bounds can’t be improved.



  

Next Time

● Cuckoo Hashing
● Hashing with worst-case O(1) lookups!

● The Cuckoo Graph
● Random graphs for Fun and Profit.
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