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Outline for Today

● Towards Perfect Hashing
● Reducing worst-case bounds

● Cuckoo Hashing
● Hashing with worst-case O(1) lookups.

● The Cuckoo Graph
● A framework for analyzing cuckoo hashing. 

● Analysis of Cuckoo Hashing
● Just how fast is cuckoo hashing?



  

Perfect Hashing



  

Collision Resolution

● Last time, we mentioned three general 
strategies for resolving hash collisions:
● Closed addressing: Store all colliding elements in 

an auxiliary data structure like a linked list or BST.
● Open addressing: Allow elements to overflow out 

of their target bucket and into other spaces.
● Perfect hashing: Choose a hash function with no 

collisions.
● We have not spoken on this last topic yet.



  

Why Perfect Hashing is Hard

● The expected cost of a lookup in a chained 
hash table is O(1 + α) for any load factor α.) for any load factor α) for any load factor α..

● For any fixed load factor α) for any load factor α., the expected cost 
of a lookup in linear probing is O(1), where 
the constant depends on α) for any load factor α..

● However, the expected cost of a lookup in 
these tables is not the same as the expected 
worst-case cost of a lookup in these tables.



  

Expected Worst-Case Bounds

● Theorem: Assuming truly random hash 
functions, the expected worst-case cost of a 
lookup in a chained hash table is
Θ(log n / log log n).

● Theorem: Assuming truly random hash 
functions, the expected worst-case cost of a 
lookup in a linear probing hash table is 
Ω(log n).

● Proofs: Exercise 11-1 and 11-2 from CLRS. ☺



  

Perfect Hashing

● A perfect hash table is one where 
lookups take worst-case time O(1).

● There's a pretty sizable gap between the 
expected worst-case bounds from 
chaining and linear probing – and that's 
on expected worst-case, not worst-case.

● We're going to need to use some more 
creative techniques to close this gap.



  

Multiple-Choice Hashing



  

Second-Choice Hashing

● Suppose that we distribute n balls into m urns 
using the following strategy:
● For each ball, choose two urns totally at random.
● Place the ball into the urn with fewer balls in it.

● Theorem: The expected value of the maximum 
number of balls in any urn is Θ(log log n).

● Proof: Nontrivial; see “Balanced Allocations” by 
Azar et al.
● The math involved is tricky but interesting – check it out 

if you're curious!



  

Second-Choice Hashing

● Imagine we build a chained hash table with two hash functions 
h₁ and h₂.

● To insert an element x, compute h₁(x) and h₂(x) and place x into 
whichever bucket is less full.

● To perform a lookup, compute h₁(x) and h₂(x) and search both 
buckets for x.

● Theorem: The expected cost of a lookup in such a hash table is 
O(1 + α) for any load factor α.).
● This is certainly no worse than chained hashing.

● Theorem: Assuming truly random hash functions, the expected 
worst-case cost of a lookup in such a hash table is O(log log n).

● Open problem: What is the smallest k for which there are
k-independent hash functions that match the bounds using truly 
random hash functions?



  

Hashing with Relocation



  

Robin Hood Hashing

● Robin Hood hashing is a 
variation of open addressing 
where keys can be moved 
after they're placed.

● When an existing key is found 
during an insertion that's 
closer to its “home” location 
than the new key, it's 
displaced to make room for it.

● This dramatically decreases 
the variance in the expected 
number of lookups.

● It also makes it possible to 
terminate searches early.
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Robin Hood Hashing

● Theorem: The expected cost 
of a lookup in Robin Hood 
hashing, using 5-independent 
hashing, is O(1), assuming a 
constant load factor.

● Proof idea: Each element is 
hashed into the same run as it 
would have been hashed to in 
linear probing. We bounded 
the cost of a lookup in linear 
probing by looking at the cost 
of the run the element was in, 
so the analysis still upper-
bounds the cost.
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Robin Hood Hashing

● Theorem: Assuming 
truly random hash 
functions, the 
variance of the 
expected number of 
probes required in 
Robin Hood hashing 
is O(log log n).

● Proof: Tricky; see 
Celis' Ph.D thesis.
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Where We Stand

● We now have two interesting ideas that might be fun 
to combine:
● Second-choice hashing: Give each element in a hash 

table two choices of where to go, and put it at the least-
loaded location.

● Relocation hashing: Allow objects in a hash table to 
move after being placed.

● Each idea, individually, exponentially decreases the 
worst-case cost of a lookup by decreasing the 
variance in the element distribution.

● What happens if we combine these ideas together?



  

Cuckoo Hashing



  

Cuckoo Hashing

● Cuckoo hashing is a simple hash table 
where
● lookups are worst-case O(1);
● deletions are worst-case O(1);
● insertions are amortized, expected O(1); and
● insertions are amortized O(1) with reasonably 

high probability.
● Today, we'll explore cuckoo hashing and 

work through the analysis.



  

Cuckoo Hashing

● Maintain two tables, 
each of which has m 
elements.

● We choose two hash 
functions h₁ and h₂ 
from  to [ 𝒰 to [ m].

● Every element x ∈   𝒰 to [
will either be at 
position h₁(x) in the 
first table or h₂(x) in 
the second.  
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Cuckoo Hashing

● Lookups take time O(1) 
because only two 
locations must be 
checked.

Deletions take time 
O(1) because only two 
locations must be 
checked.
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Cuckoo Hashing

● Lookups take time O(1) 
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Cuckoo Hashing

● To insert an element x, 
start by inserting it 
into table 1.

● If h₁(x) is empty, place 
x there.

Otherwise, place x 
there, evict the old 
element y, and try 
placing y into table 2.

Repeat this process, 
bouncing between 
tables, until all 
elements stabilize.
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Cuckoo Hashing
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● Insertions run into 
trouble if we run into a 
cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

● Multiple rehashes 
might be necessary 
before this succeeds.
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A Note on Cycles

● It's possible for a 
successful insertion 
to revisit the same 
slot twice.

● Cycles only arise if 
we revisit the same 
slot with the same 
element to insert.
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Analyzing Cuckoo Hashing

● Cuckoo hashing can be tricky to analyze 
for a few reasons:
● Elements move around and can be in one of 

two different places.
● The sequence of displacements can jump 

chaotically over the table.
● It turns out there's a beautiful framework 

for analyzing cuckoo hashing.



  

The Cuckoo Graph

● The cuckoo graph is a 
bipartite multigraph 
derived from a cuckoo 
hash table.

● Each table slot is a node.

● Each element is an edge.

● Edges link slots where 
each element can be.

● Each insertion introduces 
a new edge into the 
graph.

16

58 75

19

26

32

T₁ T₂

53

10

6

91

16

10
   

   5
8

91

53

6

26

19



  

The Cuckoo Graph

● An insertion in a 
cuckoo hash table 
traces a path through 
the cuckoo graph.

● An insertion succeeds 
iff the connected 
component 
containing the 
inserted value 
contains at most one 
cycle.
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The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash 
table, the insertion fails if the connected 
component containing x has two or more 
cycles.

● Proof: Each edge represents an element and 
needs to be placed in a bucket.

● If the number of nodes (buckets) in the CC is k, 
then there must be at least k + 1 elements 
(edges) in that CC to have two cycles.

● Therefore, there are too many nodes to place 
into the buckets.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.

Each edge is an element and 
each node is a bucket. The 
arrows show which bucket 
each element belongs to.

Each edge is an element and 
each node is a bucket. The 
arrows show which bucket 
each element belongs to.
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The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.

If there are no cycles, 
eventually the displacement 

chain comes to rest.

If there are no cycles, 
eventually the displacement 

chain comes to rest.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
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component containing x contains either no 
cycles or only one cycle.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.

When we arrive back at this 
node, we can't follow the edge 

back into the cycle because 
it's flipped the wrong way.

When we arrive back at this 
node, we can't follow the edge 

back into the cycle because 
it's flipped the wrong way.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.

We either stabilize inside the 
cycle, avoid the cycle, or get 

kicked out of the cycle.

We either stabilize inside the 
cycle, avoid the cycle, or get 

kicked out of the cycle.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.

● Claim 3: If x is inserted in a connected 
component with k nodes, the insertion process 
does at most 2k displacements.



  

Terminology

● A tree is an undirected, connected 
component with no cycles.

● A unicyclic component is a connected 
component with exactly one cycle.

● A connected component is called complex if 
it's neither a tree nor unicyclic.

● Cuckoo hashing fails iff any of the connected 
components in the cuckoo graph are 
complex.



  

The Gameplan

● To analyze cuckoo hashing, we'll do the 
following.
● First, we'll analyze the probability that a 

connected component is complex. 
● Next, under the assumption that no 

connected component is complex, we'll 
analyze the expected cost of an insertion.

● Finally, we'll put the two together to 
complete the analysis.



  

Time-Out for Announcements!



  

Problem Set Five

● Problem Set Five goes out today. It's due 
one week from today at 2:30PM.
● Play around with randomized data 

structures, both in theory and in practice!
● Problem Set Four was due at 2:30PM 

today.



  

Back to CS166!



  

Step One:
Exploring the Graph Structure



  

Exploring the Graph Structure

● Cuckoo hashing will always succeed in the 
case where the cuckoo graph has no 
complex connected components.

● If there are no complex CC's, then we will 
not get into a loop and insertion time will 
depend only on the sizes of the CC's.

● It's reasonable to ask, therefore, how likely 
we are to not have complex components.



  

Tricky Combinatorics

● Question: What is the probability that a 
randomly-chosen bipartite multigraph with 
2m nodes and n edges will contain a 
complex connected component?

● Answer: If m = (1 + ε))n, the answer is
Θ(1 / m).

● Source: “Bipartite Random Graphs and 
Cuckoo Hashing” by Reinhard Kutzelnigg.



  

The Main Result

● Theorem: If m = (1 + ε))n for some 
ε) > 0, the probability that the cuckoo 
graph contains a complex connected 
component is O(1 / m).

● I have scoured the literature and cannot 
seem to find a simple proof of this result.

● Challenge Problem: Provide a simple 
proof of this result.



  

The Implications

● If m = (1 + ε))n, then the hash table will have a load 
factor of

n / 2m = 1 / (2 + 2ε)).
● This means that roughly half of the table cells will 

be empty.
● Fact: There is an abrupt phase transition in the 

success probability when the tables get close to half 
full. The likelihood of getting a complex connected 
component is extremely high at that point.

● There are techniques for improving the space usage 
of cuckoo hashing; more on that later on.



  

Step Two:
Analyzing Connected Components



  

Analyzing Connected Components

● The cost of inserting x into a cuckoo hash 
table is proportional to the size of the CC 
containing x.

● Question: What is the expected size of a 
CC in the cuckoo graph?



  

The Result

● Claim: If m ≥ (1 + ε))n for any ε) > 0, 
then on expectation, the cost of an 
insertion in a cuckoo hash table that does 
not trigger a rehash is O(1 + ε)-1).

● Proof idea: Show that the expected 
number of nodes in a connected 
component is at most 1 + ε)-1.

● Let's see how to do this!



  

Sizing a Connected Component

★Binom(n, 1/m)

Binom(n, 1/m)

Binom(n, 1/m)



  

Modeling the DFS

● Fix a start node v.
● The number of nodes 

incident to v is modeled 
by a Binom(n, 1 / m) 
variable.

● For each node u 
connected to v, we can 
upper-bound the 
number of nodes 
connected to u by a 
Binom(n, 1 / m) 
variable.



  

Subcritical Galton-Watson Processes

● The process modeled by this tree is 
called a subcritical Galton-Watson 
process.

● Models a tree where each node has a 
number of children given by i.i.d. copies 
of some variable ξ.

● Constraint: E[ξ] must be less than 1.



  

Subcritical Galton-Watson Processes

● Denote by Xₙ the number of nodes alive at 
depth n. This gives a series of random 
variables X₀, X₁, X₂, … .

● These variables are defined by the 
following recurrence: 

● Here, each ξᵢ,ₙ is an i.i.d. copy of ξ.

Xn+1=∑
i=1

Xn

ξ i ,nX0=1



  

Subcritical Galton-Watson Processes

Lemma: E[Xₙ] = E[ξ]n.

Proof: Conditional expectation. ■



  

Theorem: The expected size of a connected component
in the cuckoo graph is at most 1 + ε)-1.

Proof: We can upper-bound the number of nodes in a CC
with the number of nodes in a subcritical Galton-Watson
process where ξ ~ Binom(n, 1 / m). If we denote by X
the total number of nodes in the CC, we see that

  
Therefore, the expected value of X is given by

  
Note that E[ξ] = n / m ≤ (1 + ε))-1, so

  
Therefore, the expected size of a CC in the cuckoo 
graph is at most 1 + ε)-1. ■

X=∑
i=0

∞

X i

E[ X ] = E[∑
i=0

∞

X i] = ∑
i=0

∞

E[ X i] = ∑
i=0

∞

E[ξ ]
i
=

1
1−E[ξ ]

E[ X ] = (1−
n
m

)
−1

≤ (1−
1

1+ε)
)
−1

=
1+ε)
   ε)

= 1+ε)−1



  

Finishing Touches

Lemma: The expected cost of a single rehash,
assuming that it succeeds, is O(m + nε)-1).

Proof: If the rehash succeeds, each insertion takes
expected time O(1 + ε)-1). There are n insertions,
so the time will be O(n + ε)-1n). We also do O(m) work
reinitializing the buckets, so the total time is
O(m + nε)-1). ■

Lemma: The expected cost of a rehash is O(m + nε)-1).

Proof: Each rehash succeeds with probability 
1 – O(1 / m). Therefore, on expectation, only
1 / (1 – O(1/m)) = O(1) rehashes are necessary.
Since each one takes expected time O(m + nε)-1), the
expected total time is O(m + nε)-1). ■



  

Planned Rehashing

● We need to rehash in two situations:
● A planned rehash, a rehash to ensure that 

m ≥ (1 + ε))n. This needs to happen periodically to 
ensure the table grows.

● An unplanned rehash, where we rehash because there 
is a complex CC in the table.

● If we repeatedly double the size of the table, the 
expected total work done in planned rehashing is 
O(m + nε)-1) across the lifetime of the table.
● Analysis similar to chained hashing. 

● This amortizes out to expected O(1 + ε) + ε)-1) 
additional work per insertion.



  

Theorem: The expected, amortized cost of an insertion
into a cuckoo hash table is O(1 + ε) + ε)-1).

Proof: We have already shown that the amortized overhead
of an insertion due to planned rehashing is O(1 + ε) + ε)-1),
so all we need to do is analyze the expected cost ignoring
planned rehashes.

 With probability 1 – O(1 / m), the expected cost is
O(1 + ε) + ε)-1). With probability O(1 / m), we have to
rehash, which takes expected time O(m + nε)-1). Therefore,
the expected cost of an insert is

   = O(1 + ε) + ε)-1) + O(1 + nε)-1 / m)
   = O(1 + ε) + ε)-1) + O(1 + ε)-1)
    = O(1 + ε) + ε)-1)

 As required. ■ 



  

Some Technical Details



  

A Few Technical Details

● There are a few technical details we glossed 
over in this analysis.

● Stopping time: Typically, cuckoo hashing 
triggers a rehash as soon as C log n elements 
have been displaced, for some constant C.
● If a hash has been going on for that long, 

then it's almost certainly going to fail.
● Need to repeat the analysis to show that this 

addition doesn't cause rehashing with high 
frequency.



  

A Few Technical Details

● There are a few technical details we glossed 
over in this analysis.

● Hash function choice: The hash functions 
chosen need to have a high degree of 
independence for these results to hold.
● It's known that 6-independent hashing isn't 

sufficient, and that O(log n)-independence is.
● In practice, most simple hash functions will 

work, though some particular classes do not. 
See “On the Risks of Using Cuckoo Hashing 
with Simple Universal Hash Classes” by 
Dietzfelbinger et al. for more details.



  

A Few Technical Details

● There are a few technical details we glossed 
over in this analysis.

● Load Factor: Cuckoo hashing's performance is 
highly influenced by the load factor.

● With two tables each of size (1 + ε))n, cuckoo 
hashing performs quite well and rarely needs 
to rehash. This leads to an effective load factor 
of less than ½.

● At higher load factors, cuckoo hashing tends to 
perform dramatically worse and frequently 
needs to rehash. This is due to a phase 
transition in the structure of the cuckoo graph.



  

Variations on Cuckoo Hashing



  

Multiple Tables

● Cuckoo hashing works well with two tables. So 
why not 3, 4, 5, …, or k tables?

● In practice, cuckoo hashing with k ≥ 3 tables 
tends to perform much better than cuckoo 
hashing with k = 2 tables:
● The load factor can increase substantially; with k=3, 

it's only around α) for any load factor α. = 0.91 that you run into trouble 
with the cuckoo graph.

● Displacements are less likely to chain together; they 
only occur when all three hash locations are filled in.



  

Restricting Moves

● Insertions in cuckoo hashing only run into 
trouble when you encounter long chains of 
displacements during insertions.

● Idea: Cap the number of displacements at 
some fixed factor, then store overflowing 
elements in a secondary hash table.

● In practice, this works remarkably well, 
since the auxiliary table doesn't tend to get 
very large.



  

Increasing Bucket Sizes

● What if each slot in a cuckoo hash table 
can store multiple elements?

● When displacing an element, choose a 
random one to move and move it.

● This turns out to work remarkably well in 
practice, since it makes it really unlikely 
that you'll have long chains of 
displacements.



  

More to Explore

● There is another famous dynamic perfect 
hashing scheme called dynamic FKS hashing.

● It works by using closed addressing and 
resolving collisions at the top level with a 
secondary (static) perfect hash table.

● In practice, it's not as fast as these other 
approaches. However, it only requires 2-
independent hash functions.

● Check CLRS for details!



  

An Interesting Fact

● Open Problem: Is there a hash table 
that supports amortized O(1) insertions, 
deletions, and lookups?

● You'd think that we'd know the answer to 
this question, but, sadly, we don't.



  

Next Time

● Integer Data Structures
● Data structures for storing and manipulating 

integers.
● x-Fast and y-Fast Tries

● Searching in o(log n) time for integers.
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