

Cuckoo Hashing

Outline for Today

● Towards Perfect Hashing
● Reducing worst-case bounds

● Cuckoo Hashing
● Hashing with worst-case O(1) lookups.

● The Cuckoo Graph
● A framework for analyzing cuckoo hashing.

● Analysis of Cuckoo Hashing
● Just how fast is cuckoo hashing?

Perfect Hashing

Collision Resolution

● Last time, we mentioned three general
strategies for resolving hash collisions:
● Closed addressing: Store all colliding elements in

an auxiliary data structure like a linked list or BST.
● Open addressing: Allow elements to overflow out

of their target bucket and into other spaces.
● Perfect hashing: Choose a hash function with no

collisions.
● We have not spoken on this last topic yet.

Why Perfect Hashing is Hard

● The expected cost of a lookup in a chained
hash table is O(1 + α) for any load factor α.) for any load factor α) for any load factor α..

● For any fixed load factor α) for any load factor α., the expected cost
of a lookup in linear probing is O(1), where
the constant depends on α) for any load factor α..

● However, the expected cost of a lookup in
these tables is not the same as the expected
worst-case cost of a lookup in these tables.

Expected Worst-Case Bounds

● Theorem: Assuming truly random hash
functions, the expected worst-case cost of a
lookup in a chained hash table is
Θ(log n / log log n).

● Theorem: Assuming truly random hash
functions, the expected worst-case cost of a
lookup in a linear probing hash table is
Ω(log n).

● Proofs: Exercise 11-1 and 11-2 from CLRS. ☺

Perfect Hashing

● A perfect hash table is one where
lookups take worst-case time O(1).

● There's a pretty sizable gap between the
expected worst-case bounds from
chaining and linear probing – and that's
on expected worst-case, not worst-case.

● We're going to need to use some more
creative techniques to close this gap.

Multiple-Choice Hashing

Second-Choice Hashing

● Suppose that we distribute n balls into m urns
using the following strategy:
● For each ball, choose two urns totally at random.
● Place the ball into the urn with fewer balls in it.

● Theorem: The expected value of the maximum
number of balls in any urn is Θ(log log n).

● Proof: Nontrivial; see “Balanced Allocations” by
Azar et al.
● The math involved is tricky but interesting – check it out

if you're curious!

Second-Choice Hashing

● Imagine we build a chained hash table with two hash functions
h₁ and h₂.

● To insert an element x, compute h₁(x) and h₂(x) and place x into
whichever bucket is less full.

● To perform a lookup, compute h₁(x) and h₂(x) and search both
buckets for x.

● Theorem: The expected cost of a lookup in such a hash table is
O(1 + α) for any load factor α.).
● This is certainly no worse than chained hashing.

● Theorem: Assuming truly random hash functions, the expected
worst-case cost of a lookup in such a hash table is O(log log n).

● Open problem: What is the smallest k for which there are
k-independent hash functions that match the bounds using truly
random hash functions?

Hashing with Relocation

Robin Hood Hashing

● Robin Hood hashing is a
variation of open addressing
where keys can be moved
after they're placed.

● When an existing key is found
during an insertion that's
closer to its “home” location
than the new key, it's
displaced to make room for it.

● This dramatically decreases
the variance in the expected
number of lookups.

● It also makes it possible to
terminate searches early.

0

412

12

14

1

1

2

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

13

Robin Hood Hashing

● Robin Hood hashing is a
variation of open addressing
where keys can be moved
after they're placed.

● When an existing key is found
during an insertion that's
closer to its “home” location
than the new key, it's
displaced to make room for it.

● This dramatically decreases
the variance in the expected
number of lookups.

● It also makes it possible to
terminate searches early.

0

412

12

13

14 1

1

2

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

Robin Hood Hashing

● Robin Hood hashing is a
variation of open addressing
where keys can be moved
after they're placed.

● When an existing key is found
during an insertion that's
closer to its “home” location
than the new key, it's
displaced to make room for it.

● This dramatically decreases
the variance in the expected
number of lookups.

● It also makes it possible to
terminate searches early.

0

412

12

13

14 1

1

2

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

15

Robin Hood Hashing

● Robin Hood hashing is a
variation of open addressing
where keys can be moved
after they're placed.

● When an existing key is found
during an insertion that's
closer to its “home” location
than the new key, it's
displaced to make room for it.

● This dramatically decreases
the variance in the expected
number of lookups.

● It also makes it possible to
terminate searches early.

15

212

12

13

14 0

1

1

4

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

Robin Hood Hashing

● Robin Hood hashing is a
variation of open addressing
where keys can be moved
after they're placed.

● When an existing key is found
during an insertion that's
closer to its “home” location
than the new key, it's
displaced to make room for it.

● This dramatically decreases
the variance in the expected
number of lookups.

● It also makes it possible to
terminate searches early.

0

412

12

13

14 0

1

2

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

15

Robin Hood Hashing

● Robin Hood hashing is a
variation of open addressing
where keys can be moved
after they're placed.

● When an existing key is found
during an insertion that's
closer to its “home” location
than the new key, it's
displaced to make room for it.

● This dramatically decreases
the variance in the expected
number of lookups.

● It also makes it possible to
terminate searches early.

0

412

12

13

14 0

1

2

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

15

Robin Hood Hashing

● Robin Hood hashing is a
variation of open addressing
where keys can be moved
after they're placed.

● When an existing key is found
during an insertion that's
closer to its “home” location
than the new key, it's
displaced to make room for it.

● This dramatically decreases
the variance in the expected
number of lookups.

● It also makes it possible to
terminate searches early.

0

412

12

13

14 0

1

2

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15
15

Robin Hood Hashing

● Theorem: The expected cost
of a lookup in Robin Hood
hashing, using 5-independent
hashing, is O(1), assuming a
constant load factor.

● Proof idea: Each element is
hashed into the same run as it
would have been hashed to in
linear probing. We bounded
the cost of a lookup in linear
probing by looking at the cost
of the run the element was in,
so the analysis still upper-
bounds the cost.

0

412

12

13

14 0

1

2

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

Robin Hood Hashing

● Theorem: Assuming
truly random hash
functions, the
variance of the
expected number of
probes required in
Robin Hood hashing
is O(log log n).

● Proof: Tricky; see
Celis' Ph.D thesis.

0

412

12

13

14 0

1

2

0 1

2

3

4

5

6
7

89

10

11

12

13

14

15

Where We Stand

● We now have two interesting ideas that might be fun
to combine:
● Second-choice hashing: Give each element in a hash

table two choices of where to go, and put it at the least-
loaded location.

● Relocation hashing: Allow objects in a hash table to
move after being placed.

● Each idea, individually, exponentially decreases the
worst-case cost of a lookup by decreasing the
variance in the element distribution.

● What happens if we combine these ideas together?

Cuckoo Hashing

Cuckoo Hashing

● Cuckoo hashing is a simple hash table
where
● lookups are worst-case O(1);
● deletions are worst-case O(1);
● insertions are amortized, expected O(1); and
● insertions are amortized O(1) with reasonably

high probability.
● Today, we'll explore cuckoo hashing and

work through the analysis.

Cuckoo Hashing

● Maintain two tables,
each of which has m
elements.

● We choose two hash
functions h₁ and h₂
from to [𝒰 to [m].

● Every element x ∈ 𝒰 to [
will either be at
position h₁(x) in the
first table or h₂(x) in
the second.

32

93

58

84

59

97

23

53

26

41

T₁ T₂

Cuckoo Hashing

● Lookups take time O(1)
because only two
locations must be
checked.

Deletions take time
O(1) because only two
locations must be
checked.

32

93

58

84

59

97

23

53

26

41

T₁ T₂

Cuckoo Hashing

● Lookups take time O(1)
because only two
locations must be
checked.

● Deletions take time
O(1) because only two
locations must be
checked.

32

93

58

84

59

97

23

53

26

41

T₁ T₂

Cuckoo Hashing

● Lookups take time O(1)
because only two
locations must be
checked.

● Deletions take time
O(1) because only two
locations must be
checked.

32

93

58

84

59

97

23

53

26

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

93

58

84

97

23

53

26

T₁ T₂

75

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

93

58

84

75

97

23

53

26

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

93

58

84

75

97

23

53

26

T₁ T₂

10

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

84

75

97

23

53

26

T₁ T₂

93

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

84

75

97

23

53

26

93

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

84

75

97

23

53

26

93

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

84

75

97

23

53

26

93

T₁ T₂

6

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

6

75

97

23

53

26

93

T₁ T₂

84

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

6

75

97

23

84

26

93

T₁ T₂

53

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

53

10

58

6

75

97

23

84

26

93

T₁ T₂

32

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

53

10

58

6

75

97

23

84

26

32

93

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

53

10

58

6

75

97

23

84

26

32

93

T₁ T₂

Cuckoo Hashing

58 75

97

23

84

26

32

93

T₁ T₂

● Insertions run into
trouble if we run into a
cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds.

53

10

6

91

A Note on Cycles

● It's possible for a
successful insertion
to revisit the same
slot twice.

● Cycles only arise if
we revisit the same
slot with the same
element to insert.

97 75

59

23

84

26

32

93

T₁ T₂

53

10

6

91

18

Analyzing Cuckoo Hashing

● Cuckoo hashing can be tricky to analyze
for a few reasons:
● Elements move around and can be in one of

two different places.
● The sequence of displacements can jump

chaotically over the table.
● It turns out there's a beautiful framework

for analyzing cuckoo hashing.

The Cuckoo Graph

● The cuckoo graph is a
bipartite multigraph
derived from a cuckoo
hash table.

● Each table slot is a node.

● Each element is an edge.

● Edges link slots where
each element can be.

● Each insertion introduces
a new edge into the
graph.

16

58 75

19

26

32

T₁ T₂

53

10

6

91

16

10

 5
8

91

53

6

26

19

The Cuckoo Graph

● An insertion in a
cuckoo hash table
traces a path through
the cuckoo graph.

● An insertion succeeds
iff the connected
component
containing the
inserted value
contains at most one
cycle.

16

58 75

19

26

32

T₁ T₂

53

10

6

91

16

10

 5
8

91

53

6

26

19

88

The Cuckoo Graph

● An insertion in a
cuckoo hash table
traces a path through
the cuckoo graph.

● An insertion succeeds
iff the connected
component
containing the
inserted value
contains at most one
cycle.

91

10 75

19

26

32

6

T₁ T₂

53

16

88

58

16

10

 5
8

91

53

6

26

19

88

The Cuckoo Graph

● An insertion in a
cuckoo hash table
traces a path through
the cuckoo graph.

● An insertion succeeds
iff the connected
component
containing the
inserted value
contains at most one
cycle.

91

10 75

19

26

32

6

T₁ T₂

53

16

88

58

16

10

 5
8

91

53

6

26

19

88

4

 4

The Cuckoo Graph

● An insertion in a
cuckoo hash table
traces a path through
the cuckoo graph.

● An insertion succeeds
iff the connected
component
containing the
inserted value
contains at most one
cycle.

91

10 75

19

26

32

6

T₁ T₂

53

16

88

58

16

10

91

53

6

26

19

88

4

 4 5
8

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion fails if the connected
component containing x has two or more
cycles.

● Proof: Each edge represents an element and
needs to be placed in a bucket.

● If the number of nodes (buckets) in the CC is k,
then there must be at least k + 1 elements
(edges) in that CC to have two cycles.

● Therefore, there are too many nodes to place
into the buckets.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

Each edge is an element and
each node is a bucket. The
arrows show which bucket
each element belongs to.

Each edge is an element and
each node is a bucket. The
arrows show which bucket
each element belongs to.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

If there are no cycles,
eventually the displacement

chain comes to rest.

If there are no cycles,
eventually the displacement

chain comes to rest.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

When we arrive back at this
node, we can't follow the edge

back into the cycle because
it's flipped the wrong way.

When we arrive back at this
node, we can't follow the edge

back into the cycle because
it's flipped the wrong way.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

We either stabilize inside the
cycle, avoid the cycle, or get

kicked out of the cycle.

We either stabilize inside the
cycle, avoid the cycle, or get

kicked out of the cycle.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

● Claim 3: If x is inserted in a connected
component with k nodes, the insertion process
does at most 2k displacements.

Terminology

● A tree is an undirected, connected
component with no cycles.

● A unicyclic component is a connected
component with exactly one cycle.

● A connected component is called complex if
it's neither a tree nor unicyclic.

● Cuckoo hashing fails iff any of the connected
components in the cuckoo graph are
complex.

The Gameplan

● To analyze cuckoo hashing, we'll do the
following.
● First, we'll analyze the probability that a

connected component is complex.
● Next, under the assumption that no

connected component is complex, we'll
analyze the expected cost of an insertion.

● Finally, we'll put the two together to
complete the analysis.

Time-Out for Announcements!

Problem Set Five

● Problem Set Five goes out today. It's due
one week from today at 2:30PM.
● Play around with randomized data

structures, both in theory and in practice!
● Problem Set Four was due at 2:30PM

today.

Back to CS166!

Step One:
Exploring the Graph Structure

Exploring the Graph Structure

● Cuckoo hashing will always succeed in the
case where the cuckoo graph has no
complex connected components.

● If there are no complex CC's, then we will
not get into a loop and insertion time will
depend only on the sizes of the CC's.

● It's reasonable to ask, therefore, how likely
we are to not have complex components.

Tricky Combinatorics

● Question: What is the probability that a
randomly-chosen bipartite multigraph with
2m nodes and n edges will contain a
complex connected component?

● Answer: If m = (1 + ε))n, the answer is
Θ(1 / m).

● Source: “Bipartite Random Graphs and
Cuckoo Hashing” by Reinhard Kutzelnigg.

The Main Result

● Theorem: If m = (1 + ε))n for some
ε) > 0, the probability that the cuckoo
graph contains a complex connected
component is O(1 / m).

● I have scoured the literature and cannot
seem to find a simple proof of this result.

● Challenge Problem: Provide a simple
proof of this result.

The Implications

● If m = (1 + ε))n, then the hash table will have a load
factor of

n / 2m = 1 / (2 + 2ε)).
● This means that roughly half of the table cells will

be empty.
● Fact: There is an abrupt phase transition in the

success probability when the tables get close to half
full. The likelihood of getting a complex connected
component is extremely high at that point.

● There are techniques for improving the space usage
of cuckoo hashing; more on that later on.

Step Two:
Analyzing Connected Components

Analyzing Connected Components

● The cost of inserting x into a cuckoo hash
table is proportional to the size of the CC
containing x.

● Question: What is the expected size of a
CC in the cuckoo graph?

The Result

● Claim: If m ≥ (1 + ε))n for any ε) > 0,
then on expectation, the cost of an
insertion in a cuckoo hash table that does
not trigger a rehash is O(1 + ε)-1).

● Proof idea: Show that the expected
number of nodes in a connected
component is at most 1 + ε)-1.

● Let's see how to do this!

Sizing a Connected Component

★Binom(n, 1/m)

Binom(n, 1/m)

Binom(n, 1/m)

Modeling the DFS

● Fix a start node v.
● The number of nodes

incident to v is modeled
by a Binom(n, 1 / m)
variable.

● For each node u
connected to v, we can
upper-bound the
number of nodes
connected to u by a
Binom(n, 1 / m)
variable.

Subcritical Galton-Watson Processes

● The process modeled by this tree is
called a subcritical Galton-Watson
process.

● Models a tree where each node has a
number of children given by i.i.d. copies
of some variable ξ.

● Constraint: E[ξ] must be less than 1.

Subcritical Galton-Watson Processes

● Denote by Xₙ the number of nodes alive at
depth n. This gives a series of random
variables X₀, X₁, X₂, … .

● These variables are defined by the
following recurrence:

● Here, each ξᵢ,ₙ is an i.i.d. copy of ξ.

Xn+1=∑
i=1

Xn

ξ i ,nX0=1

Subcritical Galton-Watson Processes

Lemma: E[Xₙ] = E[ξ]n.

Proof: Conditional expectation. ■

Theorem: The expected size of a connected component
in the cuckoo graph is at most 1 + ε)-1.

Proof: We can upper-bound the number of nodes in a CC
with the number of nodes in a subcritical Galton-Watson
process where ξ ~ Binom(n, 1 / m). If we denote by X
the total number of nodes in the CC, we see that

Therefore, the expected value of X is given by

Note that E[ξ] = n / m ≤ (1 + ε))-1, so

Therefore, the expected size of a CC in the cuckoo
graph is at most 1 + ε)-1. ■

X=∑
i=0

∞

X i

E[X] = E[∑
i=0

∞

X i] = ∑
i=0

∞

E[X i] = ∑
i=0

∞

E[ξ]
i
=

1
1−E[ξ]

E[X] = (1−
n
m

)
−1

≤ (1−
1

1+ε)
)
−1

=
1+ε)
 ε)

= 1+ε)−1

Finishing Touches

Lemma: The expected cost of a single rehash,
assuming that it succeeds, is O(m + nε)-1).

Proof: If the rehash succeeds, each insertion takes
expected time O(1 + ε)-1). There are n insertions,
so the time will be O(n + ε)-1n). We also do O(m) work
reinitializing the buckets, so the total time is
O(m + nε)-1). ■

Lemma: The expected cost of a rehash is O(m + nε)-1).

Proof: Each rehash succeeds with probability
1 – O(1 / m). Therefore, on expectation, only
1 / (1 – O(1/m)) = O(1) rehashes are necessary.
Since each one takes expected time O(m + nε)-1), the
expected total time is O(m + nε)-1). ■

Planned Rehashing

● We need to rehash in two situations:
● A planned rehash, a rehash to ensure that

m ≥ (1 + ε))n. This needs to happen periodically to
ensure the table grows.

● An unplanned rehash, where we rehash because there
is a complex CC in the table.

● If we repeatedly double the size of the table, the
expected total work done in planned rehashing is
O(m + nε)-1) across the lifetime of the table.
● Analysis similar to chained hashing.

● This amortizes out to expected O(1 + ε) + ε)-1)
additional work per insertion.

Theorem: The expected, amortized cost of an insertion
into a cuckoo hash table is O(1 + ε) + ε)-1).

Proof: We have already shown that the amortized overhead
of an insertion due to planned rehashing is O(1 + ε) + ε)-1),
so all we need to do is analyze the expected cost ignoring
planned rehashes.

 With probability 1 – O(1 / m), the expected cost is
O(1 + ε) + ε)-1). With probability O(1 / m), we have to
rehash, which takes expected time O(m + nε)-1). Therefore,
the expected cost of an insert is

 = O(1 + ε) + ε)-1) + O(1 + nε)-1 / m)
 = O(1 + ε) + ε)-1) + O(1 + ε)-1)
 = O(1 + ε) + ε)-1)

 As required. ■

Some Technical Details

A Few Technical Details

● There are a few technical details we glossed
over in this analysis.

● Stopping time: Typically, cuckoo hashing
triggers a rehash as soon as C log n elements
have been displaced, for some constant C.
● If a hash has been going on for that long,

then it's almost certainly going to fail.
● Need to repeat the analysis to show that this

addition doesn't cause rehashing with high
frequency.

A Few Technical Details

● There are a few technical details we glossed
over in this analysis.

● Hash function choice: The hash functions
chosen need to have a high degree of
independence for these results to hold.
● It's known that 6-independent hashing isn't

sufficient, and that O(log n)-independence is.
● In practice, most simple hash functions will

work, though some particular classes do not.
See “On the Risks of Using Cuckoo Hashing
with Simple Universal Hash Classes” by
Dietzfelbinger et al. for more details.

A Few Technical Details

● There are a few technical details we glossed
over in this analysis.

● Load Factor: Cuckoo hashing's performance is
highly influenced by the load factor.

● With two tables each of size (1 + ε))n, cuckoo
hashing performs quite well and rarely needs
to rehash. This leads to an effective load factor
of less than ½.

● At higher load factors, cuckoo hashing tends to
perform dramatically worse and frequently
needs to rehash. This is due to a phase
transition in the structure of the cuckoo graph.

Variations on Cuckoo Hashing

Multiple Tables

● Cuckoo hashing works well with two tables. So
why not 3, 4, 5, …, or k tables?

● In practice, cuckoo hashing with k ≥ 3 tables
tends to perform much better than cuckoo
hashing with k = 2 tables:
● The load factor can increase substantially; with k=3,

it's only around α) for any load factor α. = 0.91 that you run into trouble
with the cuckoo graph.

● Displacements are less likely to chain together; they
only occur when all three hash locations are filled in.

Restricting Moves

● Insertions in cuckoo hashing only run into
trouble when you encounter long chains of
displacements during insertions.

● Idea: Cap the number of displacements at
some fixed factor, then store overflowing
elements in a secondary hash table.

● In practice, this works remarkably well,
since the auxiliary table doesn't tend to get
very large.

Increasing Bucket Sizes

● What if each slot in a cuckoo hash table
can store multiple elements?

● When displacing an element, choose a
random one to move and move it.

● This turns out to work remarkably well in
practice, since it makes it really unlikely
that you'll have long chains of
displacements.

More to Explore

● There is another famous dynamic perfect
hashing scheme called dynamic FKS hashing.

● It works by using closed addressing and
resolving collisions at the top level with a
secondary (static) perfect hash table.

● In practice, it's not as fast as these other
approaches. However, it only requires 2-
independent hash functions.

● Check CLRS for details!

An Interesting Fact

● Open Problem: Is there a hash table
that supports amortized O(1) insertions,
deletions, and lookups?

● You'd think that we'd know the answer to
this question, but, sadly, we don't.

Next Time

● Integer Data Structures
● Data structures for storing and manipulating

integers.
● x-Fast and y-Fast Tries

● Searching in o(log n) time for integers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

