
  

Fusion Trees
Part One



  

Recap from Last Time



  

Ordered Dictionaries

● An ordered dictionary maintains a set S drawn from an 
ordered universe  and supports these operations: 𝒰 and supports these operations:
● lookup(x), which returns whether x ∈ S;
● insert(x), which adds x to S;
● delete(x), which removes x from S;
● max() / min(), which return the maximum or minimum element 

of S;
● successor(x), which returns the smallest element of S greater 

than x; and
● predecessor(x), which returns the largest element of S smaller 

than x.

Ordered Dictionary : BST      ::      Queue : Linked List



  

Our Machine Model

● We will assume we’re working on a 
machine where memory is segmented 
into w-bit words.

● We’ll assume that the C integer operators 
work in constant time, and will not 
assume we have access to operators 
beyond them.
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Integer Ordered Dictionaries

● Suppose that  = [ 𝒰 and supports these operations: U] = {0, 1, …, U – 1}.
● The y-Fast Trie is an ordered dictionary 

structure for the set [U] where all 
operations run in expected, amortized time 
O(log log U).
● Note that when n = ω(log U), this is 

exponentially better than a binary search tree!
● Space usage is Θ(n), where n is the number 

of elements in the trie.



  

New Stuff!



  

A Key Technique: Word-Level Parallelism



  

Word-Level Parallelism

● On a standard computer, arithmetic and logical 
operations on a machine word take time O(1).

● We can perform certain classes of operations 
(addition, shifts, etc.) on Θ(w) bits in time O(1).
● Think of this as a weak form of parallel 

computation, where we can work over multiple bits 
in parallel with a limited set of operations.

● With some creativity, we can harness these 
primitives to build operations that run in time 
O(1) but work on ω(1) objects.

● Let’s see a quick example...



  

Word-Level Parallelism

 1101110  0101110  1111000  1001101  0101111  0001101  1110111  1100001

a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈

 0011010  1000101  0010100  0100000  1010000  0100010  1000100  0001000

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈



  

Word-Level Parallelism

 1101110  0101110  1111000  1001101  0101111  0001101  1110111  1100001

a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈

 0011010  1000101  0010100  0100000  1010000  0100010  1000100  0001000

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈



  

Word-Level Parallelism

01101110 00101110 01111000 01001101 00101111 00001101 01110111 01100001

a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈

00011010 01000101 00010100 00100000 01010000 00100010 01000100 00001000

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈



  

Word-Level Parallelism

01101110 00101110 01111000 01001101 00101111 00001101 01110111 01100001

00011010 01000101 00010100 00100000 01010000 00100010 01000100 00001000+

10001000 01110011 10001100 01101101 01111111 00101111 10111011 01101001

We’ve performed eight 
logical additions with a 
single add instruction!

We’ve performed eight 
logical additions with a 
single add instruction!



  

Where We’re Going

● Today is all about using word-level parallelism to 
speed up integer data structures.

● Today, we’ll see two techniques:
● First, the sardine tree, a fast ordered dictionary for 

extremely small integers.
● Next, a technique for finding the most-significant 

bit of an integer in O(1) machine operations.
● When we come back next time, we’ll see how to 

adapt these techniques into the fusion tree, an 
ordered dictionary for integers that fit into a 
machine word.



  

Sardine Trees

These actually aren’t called sardine trees. 
I couldn’t find a name for them anywhere 

and thought that this title was 
appropriate. Let me know if there’s a 

more proper name to associate with them!

These actually aren’t called sardine trees. 
I couldn’t find a name for them anywhere 

and thought that this title was 
appropriate. Let me know if there’s a 

more proper name to associate with them!



  

The Setup

● Let w denote the machine word size.
● Imagine you want to store a collection of

s-bit integers, where s is small compared 
to w.
● For example, storing 7- bit integers on a 64-

bit machine would have s = 7 and w = 64.
● Can we build an ordered dictionary that 

takes advantage of the small key size?



  

A Refresher: B-Trees

● A B-tree is a multiway tree with a tunable parameter b 
called the order of the tree.

● Each nodes stores Θ(b) keys. The height of the tree is 
Θ(logb n).

● Most operations (lookup, insert, delete, successor, 
predecessor, etc.) perform a top-down search of the tree, 
doing some amount of work per node.

● Runtime of each operation is O(f(b) logb n), where f(b) is 
the amount of work done per node.

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127

… … … …



  

B-Tree Lookups

● When performing a lookup of a key k in a
B-tree node, we need to determine how many 
keys in the node are less than or equal to k.
● This is called the rank of k.

● For example, in the top node:

rank(40) = 0    rank(74) = 2     rank(107) = 3

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127

… … … …



  

B-Tree Lookups

● Knowing rank(k) in a particular node 
tells us which key to compare against 
and which child to descend into.

● Question: How quickly can we 
determine rank(k) in a B-tree node?

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127

… … … …



  

B-Tree Lookups

● We can determine rank(k) with a linear search in each
B-tree node for a total lookup cost of O(b · logb n).

● We can determine rank(k) with a binary search in each B-
tree node for a total lookup cost of

O(logb n · log b) = O(log n).
● Claim: If we can fit all the keys in a node into O(1) 

machine words, we can determine rank(k) in time O(1) 
for total lookup cost of O(logb n).

46 74 103

18 27 30 36 40 52 58 64 68 78 84 88 93 99 109116127

… … … …



  

How is this possible?



  

Warmup: Comparing Two Values

● Imagine we have two s-bit integers x and 
y and want to determine whether x ≥ y.

● How might we do this?

1 1 0 0
0 0 1 1–

1

10

001

0 0 1 1
1 1 0 0–

11

?
1 1



  

Warmup: Comparing Two Values

● Imagine we have two s-bit integers x and 
y and want to determine whether x ≥ y.

● How might we do this?

1 1 0 0
0 0 1 1–

1

10

001

0 0 1 1
1 1 0 0–

1

1

1

1
0

1
0

0

0001

1 1



  

Warmup: Comparing Two Values

● Imagine we have two s-bit integers x and 
y and want to determine whether x ≥ y.

● How might we do this?

0 0 1 1–
1001

1 1 0 0–
11

0 0
0001

This bit tells us whether the first number 
was as least as big as the second!

This bit tells us whether the first number 
was as least as big as the second!

1 1 0 0
10

0 0 1 1
1

1 1
0

1 1



  

Comparing Multiple Values

● This technique can be extended to work 
on multiple values in parallel.

● For example, here’s how we’d compare 
eight pairs of 7-bit numbers by doing a 
single 64-bit subtraction:

 1101110  0101110  1111000  1001101  0101111  0001101  1110111  1100001

a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈

 0011010  1000101  0010100  0100000  1010000  0100010  1000100  0001000

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈



  

Comparing Multiple Values

● This technique can be extended to work 
on multiple values in parallel.

● For example, here’s how we’d compare 
eight pairs of 7-bit numbers by doing a 
single 64-bit subtraction:

11101110 10101110 11111000 11001101 10101111 10001101 11110111 11100001

a₁ a₂ a₃ a₄ a₅ a₆ a₇ a₈

00011010 01000101 00010100 00100000 01010000 00100010 01000100 00001000

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈



  

Comparing Multiple Values

● This technique can be extended to work 
on multiple values in parallel.

● For example, here’s how we’d compare 
eight pairs of 7-bit numbers by doing a 
single 64-bit subtraction:

11101110 10101110 11111000 11001101 10101111 10001101 11110111 11100001

00011010 01000101 00010100 00100000 01010000 00100010 01000100 00001000–

11010100 01101001 11100100 10101101 01011111 01101011 10110011 11011001



  

Comparing Multiple Values

● This technique can be extended to work 
on multiple values in parallel.

● For example, here’s how we’d compare 
eight pairs of 7-bit numbers by doing a 
single 64-bit subtraction:

11101110 10101110 11111000 11001101 10101111 10001101 11110111 11100001

00011010 01000101 00010100 00100000 01010000 00100010 01000100 00001000–

11010100 01101001 11100100 10101101 01011111 01101011 10110011 11011001



  

Fundamental Primitive: Parallel Compare
 

   1. Pack a list of values x₁, …, xₖ into a
machine word X, separated by 1s.

 

   2. Pack a list of values y₁, …, yₖ into a
machine word Y, separated by 0s.

 

   3. Compute X – Y. The bit preceding
xᵢ – yᵢ is 1 if xᵢ ≥ yᵢ and 0 otherwise.

 

Assuming the packing can be done in O(1) 
time, this compares all the pairs is O(1) 
machine word operations.



  

Back to B-Trees

● Recall: The whole reason we’re interested in 
making these comparisons is so that we can find 
how many keys in a B-tree node are less than or 
equal to a query key k.

● Idea: Store the (s-bit) keys in the B-tree node in 
a single (w-bit) machine word, with zeros 
interspersed:

 0101001  1011101  1100111  1101010  1101011  1101101  1101110  1111111

y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈

41 93 103 106 107 109 110 127



  

Back to B-Trees

● Recall: The whole reason we’re interested in 
making these comparisons is so that we can find 
how many keys in a B-tree node are less than or 
equal to a query key k.

● Idea: Store the (s-bit) keys in the B-tree node in 
a single (w-bit) machine word, with zeros 
interspersed:

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈



  

Rank in O(1)

● To perform a lookup for the key k, form a number by 
replicating k multiple times with 1s interspersed.

Subtract the B-tree key number from it to do a parallel 
comparison.

Count up how many of the sentinel bits in the resulting 
number are equal to 1. This is the number of keys in the 
node less than or equal to k.

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈

1100111

k



  

Rank in O(1)

● To perform a lookup for the key k, form a number by 
replicating k multiple times with 1s interspersed.

Subtract the B-tree key number from it to do a parallel 
comparison.

Count up how many of the sentinel bits in the resulting 
number are equal to 1. This is the number of keys in the 
node less than or equal to k.

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈

 1100111  1100111  1100111  1100111  1100111  1100111  1100111  1100111

k k k k k k k k



  

Rank in O(1)

● To perform a lookup for the key k, form a number by 
replicating k multiple times with 1s interspersed.

● Subtract the B-tree key number from it to do a parallel 
comparison.

Count up how many of the sentinel bits in the resulting 
number are equal to 1. This is the number of keys in the 
node less than or equal to k.

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈

11100111 11100111 11100111 11100111 11100111 11100111 11100111 11100111

k k k k k k k k



  

Rank in O(1)

● To perform a lookup for the key k, form a number by 
replicating k multiple times with 1s interspersed.

● Subtract the B-tree key number from it to do a parallel 
comparison.

Count up how many of the sentinel bits in the resulting 
number are equal to 1. This is the number of keys in the 
node less than or equal to k.

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

11100111 11100111 11100111 11100111 11100111 11100111 11100111 11100111

–

10111110 10001010 10000000 01111101 01111100 01111010 01111001 01101000



  

Rank in O(1)

● To perform a lookup for the key k, form a number by 
replicating k multiple times with 1s interspersed.

● Subtract the B-tree key number from it to do a parallel 
comparison.

● Count up how many of the sentinel bits in the resulting 
number are equal to 1. This is the number of keys in the 
node less than or equal to k.

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

11100111 11100111 11100111 11100111 11100111 11100111 11100111 11100111

–

10111110 10001010 10000000 01111101 01111100 01111010 01111001 01101000

Rank: 3

How do we 
do this?

How do we 
do this?

Or this?Or this?



  

Back in Base Ten

● Suppose you have a one-digit number m.

● You want to form this base-10 number:

mmm

● Is there a nice series of arithmetical operations that 
will produce this?

● Answer: Compute m × 111.

● Why does this work?

     m × 111 = m × 100 + m × 10 + m × 1

     = m00 + 0m0 + 00m

     = mmm.



  

Back in Base Ten

● Suppose you have a one-digit number m.

● You want to form this base-10 number:

mmm

● Is there a nice series of arithmetical operations that 
will produce this?

● Answer: Compute m × 111.

● Why does this work?

     m × 111 = m  2 + ≪ 2 + m  1 + ≪ 2 + m  0≪ 2 + 

     = m00 + 0m0 + 00m

     = mmm.



  

Back in Base Ten

● Suppose you have a two-digit number mn.

● You want to form this base-10 number:

mnmnmn

● Is there a nice series of arithmetical operations that 
will produce this?

● Answer: Compute mn × 10,101.

● Why does this work?

 mn × 10,101 = mn × 10,000 + mn × 100 + mn × 1

       = mn0000 + 00mn00 + 0000mn

       = mnmnmn.



  

Back in Base Ten

● Suppose you have a two-digit number mn.

● You want to form this base-10 number:

mnmnmn

● Is there a nice series of arithmetical operations that 
will produce this?

● Answer: Compute mn × 10,101.

● Why does this work?

 mn × 10,101 = mn  4 + ≪ 2 + mn  2 + ≪ 2 + mn  0≪ 2 + 

      = mn0000 + 00mn00 + 0000mn

      = mnmnmn.



  

Back in Base Ten

● Suppose you have a one-digit number mn.

● You want to form this base-10 number:

mnmnmn

● Is there a nice series of arithmetical operations that 
will produce this?

● Answer: Compute mn × 10,101.

● Why does this work?

 mn × 10,101 = mn  4 + ≪ 2 + mn  2 + ≪ 2 + mn  0≪ 2 + 

      = mn0000 + 00mn00 + 0000mn

      = mnmnmn.

Add
Shifted
Copies

Multiply By
Constant



  

Back in Base Ten

● Suppose you have a three-digit number mnp.

● You want to form this base-10 number:

mnp000mnp0mnp

● Is there a nice series of arithmetical operations that 
will produce this?

● Answer: Compute mnp × /* something */.

   = mnp000mnp0mnp

   = mnp  10 + ≪ 2 + mnp  4 + ≪ 2 + mnp  0≪ 2 + 

   = mnp × 1010 + mnp × 104 + mnp × 100

   = mnp × 10,000,010,001



  

Back in Base Ten

● Suppose you have a three-digit number mnp.

● You want to form this base-10 number:

mnp000mnp0mnp

● Is there a nice series of arithmetical operations that 
will produce this?

● Answer: Compute mnp × 10,000,010,001.

   = mnp000mnp0mnp

   = mnp  10 + ≪ 2 + mnp  4 + ≪ 2 + mnp  0≪ 2 + 

   = mnp × 1010 + mnp × 104 + mnp × 100

   = mnp × 10,000,010,001



  

Computing Rank in O(1)

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈

1100111

k

const uint64_t kMultiplier = 0b1000000010000000...100000001;

uint64_t tiledK     =  k * kMultiplier;



  

Computing Rank in O(1)

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈

 1100111  1100111  1100111  1100111  1100111  1100111  1100111  1100111

k k k k k k k k

const uint64_t kMultiplier = 0b1000000010000000...100000001;
 

uint64_t tiledK     =  k * kMultiplier;



  

Computing Rank in O(1)

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈

 1100111  1100111  1100111  1100111  1100111  1100111  1100111  1100111

k k k k k k k k

const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     =  k * kMultiplier;



  

Computing Rank in O(1)

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

y₁ y₂ y₃ y₄ y₅ y₆ y₇ y₈

11100111 11100111 11100111 11100111 11100111 11100111 11100111 11100111

k k k k k k k k

const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;



  

Fundamental Primitive: Parallel Tile
 

   1. Form a number M with a 1 bit at the
end of each location to tile k.

 

   2. Compute M × k.
 

Assuming step (1) can be done in time 
O(1), this produces many copies of k in 
time O(1).



  

Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison = tiledK – packedKeys;

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

11100111 11100111 11100111 11100111 11100111 11100111 11100111 11100111



  

Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison =  tiledK – packedKeys;

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

11100111 11100111 11100111 11100111 11100111 11100111 11100111 11100111

–

10111110 10001010 10000000 01111101 01111100 01111010 01111001 01101000



  

Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison = (tiledK – packedKeys) & kOnesMask;

00101001 01011101 01100111 01101010 01101011 01101101 01101110 01111111

11100111 11100111 11100111 11100111 11100111 11100111 11100111 11100111

–

10000000 10000000 10000000 00000000 00000000 00000000 00000000 00000000

How do we count 
how many of these 

bits are set?

How do we count 
how many of these 

bits are set?



  

Summing Up Flags

● After performing our subtraction, we’re left with a 
number like this one, where the highlighted bits 
are “interesting” to us.

● Goal: Add up these “interesting” values using 
O(1) word operations.

a0000000 b0000000 c0000000 d0000000



  

An Initial Idea

● To sum up the flags, we could extract 
each bit individually and add the result.

● The catch: This takes time Θ(r), where r 
is the number of times we tiled our value.

a0000000 b0000000 c0000000 d0000000



  

A Shifty Solution

● Given this number:

a0000000 b0000000 c0000000 d0000000 

we want to compute a + b + c + d.
● We can’t efficiently isolate a, b, c, and d.
● Claim: We don’t have to!

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+



  

A Shifty Solution

● Given this number:

a0000000 b0000000 c0000000 d0000000 

we want to compute a + b + c + d.
● We can’t efficiently isolate a, b, c, and d.
● Claim: We don’t have to!

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+



  

A Shifty Solution

● Given this number:

a0000000 b0000000 c0000000 d0000000 

we want to compute a + b + c + d.
● We can’t efficiently isolate a, b, c, and d.
● Claim: We don’t have to!

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+



  

A Shifty Solution

● Given this number:

a0000000 b0000000 c0000000 d0000000 

we want to compute a + b + c + d.
● We can’t efficiently isolate a, b, c, and d.
● Claim: We don’t have to!

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+



  

A Shifty Solution

● Given this number:

a0000000 b0000000 c0000000 d0000000 

we want to compute a + b + c + d.
● We can’t efficiently isolate a, b, c, and d.
● Claim: We don’t have to!

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+



  

A Shifty Solution

● Given this number:

a0000000 b0000000 c0000000 d0000000 

we want to compute a + b + c + d.
● We can’t efficiently isolate a, b, c, and d.
● Claim: We don’t have to!

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+



  

A Shifty Solution

● Given this number:

a0000000 b0000000 c0000000 d0000000 

we want to compute a + b + c + d.
● We can’t efficiently isolate a, b, c, and d.
● Claim: We don’t have to!

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+



  

A Shifty Solution

● Given this number:

a0000000 b0000000 c0000000 d0000000 

we want to compute a + b + c + d.
● We can’t efficiently isolate a, b, c, and d.
● Claim: We don’t have to!

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+

???????? ???????? ??????su m??????? ???????? ???????? ????????

This is a series of shifts and 
adds. It’s equivalent to 
multiplying our original 

number by some well-chosen 
spreader!

This is a series of shifts and 
adds. It’s equivalent to 
multiplying our original 

number by some well-chosen 
spreader!



  

Fundamental Primitive: Parallel Add
 

   1. Perform a parallel tile with an
appropriate multiplier to place all
leading bits on top of one another.

 

   2. Use a bitmask and bitshift to isolate
those bits.

 

Assuming the multiplier for part (1) and the 
mask and shift for part (2) can be 
computed in time O(1), this takes time 
O(1).



  

Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison = (tiledK – packedKeys) & kOnesMask;

const uint64_t kStacker = 0b10000001000000...10000001;
const uint8_t  kShift   = 31;
const uint64_t kMask    = 0b111;

uint64_t rank = ((comparison * kStacker) >> kShift) & kMask;

a0000000 b0000000 c0000000 d0000000



  

Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison = (tiledK – packedKeys) & kOnesMask;

const uint64_t kStacker = 0b10000001000000...10000001;
const uint8_t  kShift   = 31;
const uint64_t kMask    = 0b111;

uint64_t rank = ((comparison * kStacker;

a0000000 b0000000 c0000000 d0000000



  

Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison = (tiledK – packedKeys) & kOnesMask;

const uint64_t kStacker = 0b10000001000000...10000001;
const uint8_t  kShift   = 31;
const uint64_t kMask    = 0b111;

uint64_t rank = ((comparison * kStacker;

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+



  

Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison = (tiledK – packedKeys) & kOnesMask;

const uint64_t kStacker = 0b10000001000000...10000001;
const uint8_t  kShift   = 31;
const uint64_t kMask    = 0b111;

uint64_t rank =   comparison * kStacker;

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+
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Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison = (tiledK – packedKeys) & kOnesMask;

const uint64_t kStacker = 0b10000001000000...10000001;
const uint8_t  kShift   = 31;
const uint64_t kMask    = 0b111;

uint64_t rank =   comparison * kStacker;

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000
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Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison = (tiledK – packedKeys) & kOnesMask;

const uint64_t kStacker = 0b10000001000000...10000001;
const uint8_t  kShift   = 31;
const uint64_t kMask    = 0b111;

uint64_t rank =  (comparison * kStacker) >> kShift; & kMask;

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+

???????? ???????? ???????? ???????? ???????? ???????? ?????sum



  

Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison = (tiledK – packedKeys) & kOnesMask;

const uint64_t kStacker = 0b10000001000000...10000001;
const uint8_t  kShift   = 31;
const uint64_t kMask    = 0b111;

uint64_t rank =  (comparison * kStacker) >> kShift;

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+
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Computing Rank in O(1)
const uint64_t kMultiplier = 0b1000000010000000...100000001;
const uint64_t kOnesMask   = 0b1000000010000000...100000001;

uint64_t tiledK     = (k * kMultiplier) | kOnesMask;
uint64_t comparison = (tiledK – packedKeys) & kOnesMask;

const uint64_t kStacker = 0b10000001000000...10000001;
const uint8_t  kShift   = 31;
const uint64_t kMask    = 0b111;

uint64_t rank = ((comparison * kStacker) >> kShift) & kMask;

a0000000 b0000000 c0000000 d0000000

a0000000 b0000000 c0000000 d0000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000

a0000000 b0000000 c0000000 d0000000 00000000 00000000 00000000

+

???????? ???????? ???????? ???????? ???????? ???????? ?????sum



  

Fundamental Primitive: Parallel Rank
 

   1. Perform a parallel tile to create n
copies of the key k, prefixed by 1’s.

 

   2. Perform a parallel compare of the
key k against values x₁, …, xₙ.

 

   3. Perform a parallel add to sum those
values into some total t.

 

4. Return t.
 

Assuming the parallel compare and parallel 
have their internal constants computed in 
advance, this runs in time O(1).



  

The Sardine Tree

● Let w be the word size and s be some (much) smaller 
number of bits.

● A sardine tree is a B-tree of order Θ(w/s) where the 
keys in a node are packed into a single machine word.
● Get it? The keys are “packed” tightly into a machine word! 

I’m funny.
● Each node is annotated with several values (the masks 

and multipliers from the preceding slide), which are 
updated in time O(1) whenever a key is added or 
removed.

● Supports all ordered dictionary operations in time

O(logb n) = O(logw/s n).



  

The Scorecard

● Here’s the performance 
breakdown for the 
sardine tree.

● Notice that the runtime 
performance is strictly 
better than that of a 
BST!

● Notice that the space 
usage is sublinear, 
since each node stores 
multiple keys!

The Sardine Tree
● lookup: O(logw/s n)

● insert: O(logw/s n)

● delete: O(logw/s n)

● max: O(logw/s n)

● succ: O(logw/s n)

● Space: Θ(n · s/w)



  

For Comparison

● Here’s what that 
would look like if we 
used a y-fast trie 
instead.

● Since our keys range 
from 0 to 2s – 1 and 
the y-fast trie 
operations take time 
O(log log U), each 
operation takes time 
O(log s).

The y-Fast Trie
● lookup: O(log s) 

● insert: O(log s)*
 

● delete: O(log s)*
 

● max: O(log s) 

● succ: O(log s) 

● Space: Θ(n)
* Expected, amortized



  

Time-Out for Announcements!



  

Problem Sets

● Problem Set Five was due at 2:30PM 
today.
● Using late days, you can submit it up until 

Saturday at 2:30PM.
● Congrats! You’re done with the 

CS166 problem sets!
● Solutions will go up over the weekend so 

you can prep for the midterm.



  

Midterm Logistics

● Our midterm will be held next Tuesday from 7:00PM – 
10:00PM in Hewlett 200.

● Exam is closed-book, closed-computer, and limited-note. 
You can bring a double-sided 8.5” × 11” sheet of notes 
with you to the exam.

● Topic coverage is material from PS1 – PS5. Topics from 
this week won’t be tested, but are an excellent review of 
the concepts.

● We've released a set of practice problems to help you 
prepare for the exam. They're up on the course website.

● Can't make the exam time? Have OAE accommodations? 
Let us know immediately so we can reserve rooms.



  

Final Project Presentations

● Final project presentations will run Monday, June 4 
to Thursday, June 7.

● Use this link to sign up for a time slot:

http://www.slottr.com/cs166-2018
● This form is now open and will close on Thursday, 

May 31. It's first-come, first-served.
● Presentations will be 15-20 minutes, plus five minutes 

for questions. Please arrive five minutes early to get 
set up.

● Presentations are open to the public, so feel free to 
stop by any of the presentations you're interested in.

http://www.slottr.com/cs166-2018


  

Final Project Logistics

● As a reminder, your final project paper is due 24 hours 
before your presentation.

● Your paper should be an accessible, engaging, and 
technically precise introduction to the data structure.
● Give some background – why should we care about the data 

structure? Who invented it?
● Describe it in as accessible a manner as possible. What are the 

key ideas driving it? Intuitively, why would you expect them to 
work? Then get more specific – how does each operation work?

● Argue correctness and runtime, proving non-obvious results 
along the way and providing a good intuition.

● Then, describe your “interesting” component, and make it 
shine! Tell us why what you did was interesting and what 
you learned in the process.



  

Final Project Logistics

● Presentations should run around 15-20 minutes.
● Your presentation won't be long enough to present 

everything from your paper, and you shouldn't try 
to do that. Instead, focus on what's important and 
interesting. Convey the major ideas, intuitions, 
and why the data structure is so cool!

● We'll ask a few questions at the end of the 
presentation, so be prepared to discuss things in a 
bit more detail.

● Please arrive around five minutes early so that 
you can get set up.



  

Back to CS166!



  

Word-Level Parallelism Tricks #2:
Most-Significant Bits



  

Most-Significant Bits

● The most-significant bit function, denoted 
msb(n), outputs the index of the highest 1 bit 
set in the binary representation of number n.

● Some examples:

msb(0110) = 2   msb(010100) = 4   msb(1111) = 3
● Note that msb(0) is undefined.
● Mathematically, msb(n) is the largest value of k 

such that 2k ≤ n. (Do you see why?)



  

Most-Significant Bits

● Although we didn’t have this name earlier in 
the quarter, you’ve seen a place where we 
needed to efficiently compute msb(n).

● Do you remember where?
● Answer: In the sparse table RMQ structure, 

where computing RMQ(i, j) requires computing 
the largest number k where 2k ≤ j – i + 1.

● That’s exactly the value of msb( j – i + 1)!



  

Most-Significant Bits

● On many architectures, there’s a single 
assembly instruction that computes msb(n).
● on x86, it’s BSR (bit scan reverse).

● On others, nothing like this exists.
● MIPS, for example.

● Question: How would we compute msb(n) 
assuming we only have access to the regular C 
operators?

+  -  *  /  %  <<  >>  &  |  ^  ==  <=



  

Computing msb

● In Problem Set 1, you (probably) computed 
msb(n) by building a lookup table mapping each 
value of n to msb(n).

● The Good: This takes time O(1) to evaluate.
● The Bad: The preprocessing time, and space 

usage, is Θ(U), where U is the maximum value 
we’ll be querying for.

● The Ugly: In the worst case U = 2w.
● Can we do better?



  

Most-Significant Bits

● There’s a simple O(w)-time algorithm for 
computing msb(n) that just checks all the 
bits until a 1 is found:

for (uint8_t bit = 64; bit > 0; bit--) {
    if (n & (uint64_t(1) << (bit - 1))) {
        return bit;
    }
}
flailAndPanic();

● Can we do better?



  

Computing msb

● We can improve this runtime to O(log w) by using a 
binary search:
● Check if any bits in the bottom half of the bits of n are set.
● If so, recursively explore the upper half of n.
● If not, recursively explore the lower half of n.

● We can test whether any bit in a range is set by 
ANDing with a mask of 1s and seeing if the result is 
nonzero:

   

● Can we do better?

11011100 10111011 11000100 11010101 11100110 11110111 11000010 00110010

11111111 11111111 11111111 11111111 00000000 00000000 00000000 00000000∧

11011100 10111011 11000100 11010101 00000000 00000000 00000000 00000000



  

Claim: For any machine word size w, there 
is an algorithm that uses O(1) machine 

operations and O(1) space – independently 
of w – and computes msb(n).

This is not 
obvious!

This is not 
obvious!



  

How is this possible?



  

Not Starting from Scratch

● We’re not going into this problem blind. We’ve seen a 
bunch of useful techniques so far:
● Parallel compare: We can compare a bunch of small 

numbers in parallel in O(1) machine word operations.
● Parallel tile: We can take a small number and “tile” it 

multiple times in O(1) machine word operations.
● Parallel add: If we have a bunch of “flag” bits spread out 

evenly, we can add them all up in O(1) machine word 
operations.

● Parallel rank: We can find the rank of a small number in an 
array of small numbers in O(1) machine word operations.

● This is an impressive array of techniques. Let’s see if 
we can reuse or adapt them.



  

Not Starting from Scratch

● We’re not going into this problem blind. We’ve seen a 
bunch of useful techniques so far:
● Parallel compare: We can compare a bunch of small 

numbers in parallel in O(1) machine word operations.
● Parallel tile: We can take a small number and “tile” it 

multiple times in O(1) machine word operations.
● Parallel add: If we have a bunch of “flag” bits spread out 

evenly, we can add them all up in O(1) machine word 
operations.

● Parallel rank: We can find the rank of a small number in an 
array of small numbers in O(1) machine word operations.

● This is an impressive array of techniques. Let’s see if 
we can reuse or adapt them.



  

MSBs as Ranks

● Recall: msb(n) is the largest value of k for 
which 2k ≤ n.

● Idea: Imagine we have an array of all the 
powers of two that we can represent in a 
machine word. Then msb(n) is the rank of 
n in that array!

20 21 22 23 24 25 26 … 250 251 252 253 254 255 256 257 258 … 261 262 263

00000000 00000000 00100000 00000010 00000000 00100000 00100001 00101111



  

The Problem

● We can compute the rank of a value in an array 
assuming that
● all the array entries fit into a single machine word, and
● the value in question is the same size as the array 

entries.
● Neither of these requirements hold here.
● Question: Can we reduce the size of our number?

20 21 22 23 24 25 26 … 250 251 252 253 254 255 256 257 258 … 261 262 263

00000000 00000000 00100000 00000010 00000000 00100000 00100001 00101111



  

A Nice Decomposition

● Imagine we want to compute the most-significant bit of a 
w-bit integer.
● In what follows, we’ll pick w = 64, but this works for any w.

● We ultimately want to be finding the MSB of numbers with 
way fewer than w bits.

● Idea: Split w into some number of blocks of size b. Then,
● find the index of the highest block with at least one 1 bit set, 

then
● find the index of the highest bit within that block.

0000000000000000001100001001101001011110000110101110111011000010

0111



  

A Nice Decomposition

● Imagine we want to compute the most-significant bit of a 
w-bit integer.
● In what follows, we’ll pick w = 64, but this works for any w.

● We ultimately want to be finding the MSB of numbers with 
way fewer than w bits.

● Idea: Split w into some number of blocks of size b. Then,
● find the index of the highest block with at least one 1 bit set, 

then
● find the index of the highest bit within that block.

0000000000000000001100001001101001011110000110101110111011000010

0111
Compute msb for a 
w/b-bit number.

Compute msb for a 
w/b-bit number.



  

0111

A Nice Decomposition

● Imagine we want to compute the most-significant bit of a 
w-bit integer.
● In what follows, we’ll pick w = 64, but this works for any w.

● We ultimately want to be finding the MSB of numbers with 
way fewer than w bits.

● Idea: Split w into some number of blocks of size b. Then,
● find the index of the highest block with at least one 1 bit set, 

then
● find the index of the highest bit within that block.

0000000000000000001100001001101001011110000110101110111011000010



  

0111

A Nice Decomposition

● Imagine we want to compute the most-significant bit of a 
w-bit integer.
● In what follows, we’ll pick w = 64, but this works for any w.

● We ultimately want to be finding the MSB of numbers with 
way fewer than w bits.

● Idea: Split w into some number of blocks of size b. Then,
● find the index of the highest block with at least one 1 bit set, 

then
● find the index of the highest bit within that block.

0000000000000000001100001001101001011110000110101110111011000010

Compute msb for a
b-bit number.

Compute msb for a
b-bit number.



  

A Nice Decomposition

● We will compute the MSB for w-bit integers by 
solving MSB for b and w/b-bit integers.

● What choice of b minimizes max{b, w/b}?

● Answer: Pick b = w½.
● So now we need to see how to

● solve msb(n) for integers with w½ bits, and
● replace each block with a bit indicating whether that 

block contains a 1.

00111101

0000000000000000001100001001101001011110000110100000000011000010
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solving MSB for b and w/b-bit integers.
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● solve msb(n) for integers with w½ bits, and
● replace each block with a bit indicating whether that 

block contains a 1.
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A Nice Decomposition

● We will compute the MSB for w-bit integers by 
solving MSB for b and w/b-bit integers.

● What choice of b minimizes max{b, w/b}?

● Answer: Pick b = w½.
● So now we need to see how to

● solve msb(n) for integers with w½ bits, and
● replace each block with a bit indicating whether that 

block contains a 1.

00111101

0000000000000000001100001001101001011110000110100000000011000010



  

MSB for w½ Bits

● Recall: We can compute msb(n) by counting how many 
powers of two are less than or equal to n.

● If our numbers have size w½, there are w½ powers of 
two to compare against.

● Each of those powers of two has w½ bits, so all of those 
powers of two can be packed into a single machine 
word!

● Idea: Use our O(1)-time rank algorithm!

 00000001 00000010 00000100 00001000 00010000 00100000 01000000 10000000



  

MSB for w½ Bits

● If our numbers have size w½, there are w½ 
powers of two to compare against, each of 
which has w½ bits.

● Our parallel comparison prepends an extra bit 
to each number to compare.

That’s barely – just barely – too many bits to fit 
into a machine word.

 00000001 00000010 00000100 00001000 00010000 00100000 01000000 10000000



  

MSB for w½ Bits

● If our numbers have size w½, there are w½ 
powers of two to compare against, each of 
which has w½ bits.

● Our parallel comparison prepends an extra bit 
to each number to compare.

● That’s barely – just barely – too many bits to fit 
into a machine word.

000000001000000010000000100000001000000010000000100000001000000010000000



  

MSB for w½ Bits

● Claim: This is an engineering problem at this point.
● Option 1: Split the powers of two into two different 

machine words and do two rank calculations.
● Option 2: Special-case the most-significant bit to 

reduce the number of bits to check.
● Either way, we find that the work done here is O(1) 

machine operations, with no dependency on the 
word size w!

000000001000000010000000100000001000000010000000100000001000000010000000



  

A Nice Decomposition

● We need to see how to
● solve msb(n) for integers with w½ bits, and
● replace each block with a bit indicating 

whether that block contains a 1.

00111101

0000000000000000001100001001101001011110000110100000000011000010



  

A Nice Decomposition

● We need to see how to
● solve msb(n) for integers with w½ bits, and
● replace each block with a bit indicating 

whether that block contains a 1.

00111101
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A Nice Decomposition

● We need to see how to
● solve msb(n) for integers with w½ bits, and
● replace each block with a bit indicating 

whether that block contains a 1.

00111101

0000000000000000001100001001101001011110000110100000000011000010



  

A Nice Decomposition

● We need to see how to
● solve msb(n) for integers with w½ bits, and
● replace each block with a bit indicating 

whether that block contains a 1.

00111101

0000000000000000001100001001101001011110000110100000000011000010



  

Finding the Highest Block Set

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.



  

Finding the Highest Block Set

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.



  

Finding the Highest Block Set

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

∧



  

Finding the Highest Block Set

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

High bit set?



  

High bit set?

Finding the Highest Block Set

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.



  

Finding the Highest Block Set

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

0

25

112

26

0

26

110

2

A number’s lower 7 bits 
contain a 1 if and only if 

the numeric value of 
those bits is at least 1.

A number’s lower 7 bits 
contain a 1 if and only if 

the numeric value of 
those bits is at least 1.



  

High bit set?

Finding the Highest Block Set

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.



  

High bit set?

Finding the Highest Block Set

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

10000000 10011001 11110000 10011010 10000000 10011010 11101110 11000010

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001

01111111 10011000 11101111 10011001 01111111 10011001 11101101 11000001

∧

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.



  

High bit set?

Finding the Highest Block Set

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

10000000 10011001 11110000 10011010 10000000 10011010 11101110 11000010

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001

01111111 10011000 11101111 10011001 01111111 10011001 11101101 11000001

∧

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.



  

High bit set?

Finding the Highest Block Set

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

10000000 10011001 11110000 10011010 10000000 10011010 11101110 11000010

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001

00000000 10000000 10000000 10000000 00000000 10000000 10000000 10000000

∧

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Low bits set?



  

Finding the Highest Block Set

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

00000000 10000000 10000000 10000000 00000000 10000000 10000000 10000000

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

High bit set?

Low bits set?



  

Finding the Highest Block Set

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

Observation: A block contains 
a 1 bit if its first bit is 1 or
its lower 7 bits contain a 1.

00000000 00000000 10000000 10000000 10000000 00000000 10000000 10000000

00000000 10000000 10000000 10000000 00000000 10000000 10000000 10000000

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

00000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000

High bit set?

Low bits set?

Any bits set?



  

Finding the Highest Block Set

● We now have a word holding flags telling us 
which blocks have a 1 bit set.

● We need to find the highest set flag.
● There are only w½ flags. If we could compact 

them into w½ adjacent bits, we could use our 
earlier algorithm to find the highest one set! 

b₁ b₂ b₃ b₄ b₅ b₆ b₇ b₈

00000000 00011001 11110000 10011010 10000000 00011010 11101110 11000010

00000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000



  

Finding the Highest Block Set

● Idea: Adapt the shifting technique we used to 
compute ranks.

● Instead of shifting the bits on top of one another, 
shift the bits next to one another:

a0000000100000000000000000000000

10000000b000000000000000000000000000000

1000000010000000c00000000000000000000000000000

100000001000000000000000d0000000000000000000000000000

+

a0000000b0000000c0000000d0000000



  

Finding the Highest Block Set

● Idea: Adapt the shifting technique we used to 
compute ranks.

● Instead of shifting the bits on top of one another, 
shift the bits next to one another:

a0000000b0000000c0000000d0000000

a0000000b0000000c0000000d00000000000000

a0000000b0000000c0000000d000000000000000000000

a0000000b0000000c0000000d0000000000000000000000000000

+

?????????????????????abcd????????????????????????????

a0000000b0000000c0000000d0000000



  

Fundamental Primitive: Parallel Pack
 

   1. Perform a parallel tile with an
appropriate multiplier to place all
leading bits adjacent to one another.

 

   2. Use a bitmask and bitshift to isolate
those bits.

 

Assuming the multiplier for part (1) and the 
mask and shift for part (2) can be 
computed in time O(1), this takes time 
O(1).



  

Putting It All Together

● Use a bitmask to identify all blocks whose high 
bit is set.

● Use a parallel tile and a parallel compare to 
identify all blocks with a 1 bit aside from the 
first.

● Use a parallel pack to pack those bits together.
● Use a parallel rank to determine the highest of 

those bits set, which gives the block index.
● Use a parallel rank to determine the highest 

bit set within that block.



  

The Finished Product

● I’ve posted a link to a working 
implementation of this algorithm for 64-
bit integers on the course website.

● Feel free to check it out – it’s really 
magical seeing all the techniques come 
together!



  

Next Time

● Patricia Codes
● Compressing a small number of big integers 

into a small number of small integers.
● Fusion Trees

● Combining all these techniques together!
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