Fusion Trees

Part Two

Recap from Last Time

Ordered Dictionaries

- An ordered dictionary maintains a set S drawn from an ordered universe \mathscr{U} and supports these operations:
- lookup(x), which returns whether $x \in S$;
- insert(x), which adds x to S;
- delete(x), which removes x from S;
- max() / min(), which return the maximum or minimum element of S;
- successor((x), which returns the smallest element of S greater than x; and
- predecessor (x), which returns the largest element of S smaller than x.

Ordered Dictionary : BST :: Queue : Linked List

Our Machine Model

- We will assume we're working on a machine where memory is segmented into w-bit words.
- We'll assume that the C integer operators work in constant time, and will not assume we have access to operators beyond them.

$$
+ \text { - * / \% << >> \& | ^ == <= }
$$

Word-Level Parallelism

- Last time, we saw five powerful primitives built using word-level parallelism:
- Parallel compare: We can compare a bunch of small numbers in parallel in $O(1)$ machine word operations.
- Parallel tile: We can take a small number and "tile" it multiple times in $\mathrm{O}(1)$ machine word operations.
- Parallel add: If we have a bunch of "flag" bits spread out evenly, we can add them all up in $\mathrm{O}(1)$ machine word operations.
- Parallel rank: We can find the rank of a small number in an array of small numbers in $\mathrm{O}(1)$ machine word operations.
- Most-significant bit: We can compute msb(n) for any w-bit integer n in $O(1)$ machine word operations.

Word-Level Parallelism

- Last time, we saw five powerful primitives built using word-level parallelism:
- Parallel compare: We can compare a bunch of small numbers in parallel in $\mathrm{O}(1)$ machine word operations.
- Parallel tile: We can take a small number and "tile" it multiple times in O(1) machine word operations.
- Parallel add: If we have a bunch of "flag" bits spread out evenly, we can add them all up in $\mathrm{O}(1)$ machine word operations.
- Parallel rank: We can find the rank of a small number in an array of small numbers in $\mathrm{O}(1)$ machine word operations.
- Most-significant bit: We can compute msb(n) for any w-bit integer n in $O(1)$ machine word operations.

Integer LCP

- Computing msb efficiently lets us implement a number of other efficient primitives.
- Given two integers m and n, the longest common prefix of m and n, denoted $\operatorname{lcp}(\boldsymbol{m}, \boldsymbol{n})$, is the length of the longest bitstring they both start with.
- Claim: We can compute this in time $\mathrm{O}(1)$.

0001101001101110011110000100110100101111000011010111011101100001 $\oplus 0001101001000101000101000010000001010000001000100100010000001000$

0000000000101011011001000110110101111111001011110011001101101001

Integer LCP

- Computing msb efficiently lets us implement a number of other efficient primitives.
- Given two integers m and n, the longest common prefix of m and n, denoted $\operatorname{lcp}(\boldsymbol{m}, \boldsymbol{n})$, is the length of the longest bitstring they both start with.
- Claim: We can compute this in time $\mathrm{O}(1)$.

0001101001101110011110000100110100101111000011010111011101100001 $\oplus 0001101001000101000101000010000001010000001000100100010000001000$

Integer LCP

- Computing msb efficiently lets us implement a number of other efficient primitives.
- Given two integers m and n, the longest common prefix of m and n, denoted $\operatorname{lcp}(\boldsymbol{m}, \boldsymbol{n})$, is the length of the longest bitstring they both start with.
- Claim: We can compute this in time O(1).

0001101001101110011110000100110100101111000011010111011101100001 $\oplus 0001101001000101000101000010000001010000001000100100010000001000$

000000000010101101100100011011010111111001011110011001101101001
$63-\operatorname{msb}(m \oplus n)$

New Stuff!

The Sardine Tree Revisited

- Last time, we designed a data structure nicknamed the sardine tree that
- stores s-bit keys, where s is much smaller than w, and
- supports all operations in time $O\left(\log _{w / s} n\right)$.
- Our goal for today will be to generalize this to work with arbitrary integer keys, not just s-bit keys.

The Sardine Tree Revisited

- At a high level, the sardine tree is a B-tree augmented with extra information to support fast rank queries.
- The branching factor is $\Theta(w / s)$, the number of keys we can fit into a single machine word.
- We use a parallel rank operation at each node to determine which keys to check and which child to descend into.
- Therefore, each operation's cost is $\mathrm{O}\left(\log _{w / s} n\right)$: $\mathrm{O}(1)$ work per each of $\mathrm{O}\left(\log _{w / s} n\right)$ nodes visited.

| 46 | $74 \quad 103$ |
| :--- | :--- | :--- |

The Sardine Tree Revisited

- The sardine tree is a specific case of a more general framework.
- Build a B-tree where each node is augmented with a data structure called a ranker with the following properties:
- The ranker stores $\Theta(K)$ total keys.
- It supports queries of the form $\operatorname{rank}(x)$, which returns the rank of x among those keys, in time $O(1)$.

The Sardine Tree Revisited

- The sardine tree is a specific case of a more general framework.
- Build a B-tree where each node is augmented with a data structure called a ranker with the following properties:
- The ranker stores $\Theta(K)$ total keys.
- It supports queries of the form $\operatorname{rank}(x)$, which returns the rank of x among those keys, in time $\mathrm{O}(1)$.
- The cost of performing a search is then $O\left(\log _{K} n\right)$, since the tree height is $\mathrm{O}\left(\log _{K} n\right)$ and we do $\mathrm{O}(1)$ work per node.
ranker
$46 \quad 74103$
ranker
$\begin{array}{lllll}18 & 27 & 30 & 36 & 40\end{array}$

The Sardine Tree Revisited

- The sardine tree ranker works by packing the $\Theta(w / s)$ keys into a machine word, then using our parallel rank operation from last time.
- Since there are $\Theta(w / s)$ keys per node, the runtime of each B -tree operation is $\mathrm{O}\left(\log _{w / s} n\right)$, though the keys are severely size-limited.

ranker		
46	74	103

ranker

Fusion Trees

- The fusion tree is a B-tree augmented with a ranker that stores w^{ε} keys for some constant ε. Those keys are full w-bit words.
- The cost of a lookup, successor, or predecessor in a fusion tree is therefore

$$
\mathrm{O}\left(\log _{w}{ }^{\varepsilon} n\right)=\mathrm{O}\left(\log n / \log w^{\varepsilon}\right)=\mathbf{O}\left(\log _{w} \boldsymbol{n}\right)
$$

ranker		
46	74	103

ranker

18	27	30	36	40

ranker
109116127

Where We're Going

- The sardine tree solves the following problem:

Support rank queries for a large number of small keys.

- To build the fusion tree, we'll solve this problem:

Support rank queries for a small number of large keys.

Where We're Going

- The parallel rank operation we devised last time permits $\mathrm{O}(1)$-time rank queries, provided that all the keys fit into a machine word.
- In general, we can't assume that a collection of arbitrary keys all fit into a machine word.
- Goal: Compress multiple w-bit keys so that
- they fit in a machine word so we can use parallel rank, and
- the compression preserves enough information about their order so that the ranks we get back are meaningful.

Compressing Our Numbers

- Let's imagine we have a collection of $\boldsymbol{w}^{\varepsilon}$ numbers, each of which is w bits long.
- For simplicity, we're going to assume that those numbers are given to us in advance and in sorted order.
- We'll relax this later on.

Back to Tries

- Think about what happens if we make a trie from these numbers.
- We have few numbers (w^{ε}) and these numbers are large (size w), so most nodes will have one child.
- Idea: Use a Patricia trie!

Back to Tries

- Think about what happens if we make a trie from these numbers.
- We have few numbers (w^{ε}) and these numbers are large (size w), so most nodes will have one child.
- Idea: Use a Patricia trie!

Back to Tries

- Since there are w^{ε} numbers, there are exactly $w^{\varepsilon}-1$ junctions in the Patricia trie.
- Look at each number and focus purely on the bits that correspond to those junctions.

Back to Tries

- Since there are w^{ε} numbers, there are exactly $w^{\varepsilon}-1$ junctions in the Patricia trie.
- Look at each number and focus purely on the bits that correspond to those junctions.

Back to Tries

- Claim: The sorted order of these original numbers matches the lexicographical order of these new bitstrings.
- Proof idea: These new bitstrings represent paths through the Patricia trie.

Back to Tries

- We're ultimately interested in compressing our numbers so they all fit in a machine word.
- There are at most w^{ε} bits in each of these new numbers that's really promising!

000	001	01	10	11
00010100	00010111	00011011	01101001	01101110

Back to Tries

- Problem: While the lexicographic ordering of these new strings matches the original ordering, the numeric ordering does not.
- Our parallel rank algorithm works with numeric values, not string values.

Patricia Codes

- A bit index i is called interesting if there is a branching node in the trie at that bit index.
- The Patricia code of an integer is the bitstring consisting of just the interesting bits in that number.

Patricia Codes

- A bit index i is called interesting if there is a branching node in the trie at that bit index.
- The Patricia code of an integer is the bitstring consisting of just the interesting bits in that number.

Patricia Codes

- Claim: The relative order of the integers in this trie is the same as the relative numeric order of their Patricia codes.
- Each bit either gives a direction to branch at a decision point, or is in the middle of an edge and doesn't matter.

Datioiciacoces

- Claim: With the right preprocessing, there's a way to (sorta) compute the Patricia code of any number in time $\mathrm{O}(1)$.
- We'll go over the details later today.

Patricia Codes

- Claim: Assuming we pick ε to be sufficiently small, the Patricia codes for our w^{ε} values will fit into a machine word.
- This means that we can preprocess them so that we can compute ranks ${ }_{0}^{0}$ of Patricia codes in time $\mathrm{O}(1)$.

Daticiciacoces

- Our goal is to efficiently compute ranks among the original numbers.
- If all our Patricia codes fit into a single machine word, we can compute rank(x) in time $\mathrm{O}(1)$, though it's a little trickier than it looks.

Computing Ranks

- Suppose we want to determine rank(00010101).
- First, compute its Patricia code:

00010101

Computing Ranks

- Suppose we want to determine rank(00010101).
- First, compute its Patricia code:

Computing Ranks

- Now, compute the rank of its Patricia code across the trie elements.
- Notice that the rank of this number matches the rank of its Patricia code. Cool!

0010
00010101

Computing Ranks

- Unfortunately, things get a bit trickier here. Let's compute rank(01001110).
- First, compute its Patricia code:

01001110

Computing Ranks

- Unfortunately, things get a bit trickier here. Let's compute rank(01001110).
- First, compute its Patricia code:

1111
$0 \underline{1001110}^{\circ}$

Computing Ranks

- Now, compute the rank of its Patricia code across the trie elements.
- Its code has rank 5 , but the number itself has rank 3!
- Why did we get the wrong answer?

Computing Ranks

- Imagine we did a real, proper lookup of this key in the trie.
- Notice that we fall off the trie at the marked point.

1111
01001110

Computing Ranks

- We made some "good" decisions followed by some "bogus" decisions.
- The good decisions are the ones where we were on the trie.
- The bogus decisions were from after we fell off.

1111
01001110

Computing Ranks

- Look at the longest common prefix between our query key and the key next to it.
- Since the LCP has length two, we know that the first two bits of our number stayed on the trie, and then we fell off. 1111 01001110

Computing Ranks

- We fell off the trie by reading a 0 .
- That means that we belong before everything in the subtree after that point.

1111

01001110

Computing Ranks

- Idea: Change our number to put a 0 in all positions after the mismatch, then recompute the Patricia code.
- This means "all previous comparisons are good, and then we lose on tiebreaks to everything else." 1000

01000000

Computing Ranks

- Let's do a second rank query with this new code.
- That places us at rank 3, which is the proper position.

1000
01001110
\square

Rank in $\mathrm{O}(1)$

- To search for a key:
- Compute its Patricia code.
- Use a parallel rank to determine the rank of its Patricia code.
- Use our msb function from earlier to determine the longest matching prefix between the key and the values adjacent to it.
- Based on the next bit, either replace all successive bits in the Patricia code either with 0s or with 1s.
- Run a second parallel rank to determine the actual rank of the element in the sequence.
- Total cost: O(1).
- I'm glossing over a few details here; check the original paper for details.

Time-Out for Announcements!

Midterm Exam

- The midterm is tonight!
- It's from 7PM - 10PM.
- It's in Hewlett 200.
- You get a single, double-sided sheet of $8.5^{\prime \prime} \times 11^{\prime \prime}$ notes with you during the exam.
- Go rock this exam. You're all awesome. Show us how much you've learned.

Final Project Presentations

- We’ve just about finished getting time slot signups from each team.
- Once that schedule is ready, we'll post it to the course website.
- Speaking from experience - these presentations will be a lot of fun. Feel free to pick a few that look interesting and to stop on by!

Back to CS166!

Implementing this Idea

Implementing this Idea

- We now have a clever approach for compressing keys based on Patricia tries.
- In this discussion, I've drawn the actual trie off to the side here.
- We used this trie to determine where the "interesting" bits were.

Implementing this Idea

- We can find all the interesting bits in a collection of keys without actually building this trie.
- Idea: There's a connection between branching nodes in the trie and the lcp's of the keys.

00010100
00010111

0010	0011	0101	1100	1111
00010100	00010111	00011011	01101001	01101110

Implementing this Idea

- We can find all the interesting bits in a collection of keys without actually building this trie.
- Idea: There's a connection between branching nodes in the trie and the lcp's of the keys.

00010111
00011011

0010	0011	0101	1100	1111
00010100	00010111	00011011	01101001	01101110

Implementing this Idea

- We can find all the interesting bits in a collection of keys without actually building this trie.
- Idea: There's a connection between branching nodes in the trie and the lcp's of the keys.

00011011
01101001

0010	0011	0101	1100	1111
00010100	00010111	00011011	01101001	01101110

Implementing this Idea

- We can find all the interesting bits in a collection of keys without actually building this trie.
- Idea: There's a connection between branching nodes in the trie and the lcp's of the keys.

01101001
01101110

Implementing this Idea

- Since we don't need the Patricia trie, we can cast it off into the luminiferous aether.
- We can just store the indices of the interesting bits and the Patricia codes of the keys.

Implementing this Idea

- Since we don't need the Patricia trie, we can cast it off into the luminiferous aether.
- We can just store the indices of the interesting bits and the Patricia codes of the keys.

Bit 6

Bit 3
Bit 2

Bit 1

0010	0011	0101	1100	1111
00010100	00010111	00011011	01101001	01101110

Implementing this Idea

- We've assumed up to this point that we can compute Patricia codes in time $\mathrm{O}(1)$.
- This is the last step we need to figure out!
- How do we do this?

0010	0011	0101	1100	1111
00010100	00010111	00011011	01101001	01101110

Extracting Patricia Codes

- We'd like to extract the w^{ε} interesting bits from each machine word, and ideally, to do so quickly.
- We can start by building up a bitmask to mask everything except those interesting bits.
- If we can compact these bits together, we've got the Patricia code!

0001101001101110011110000100110100101111000011010111011101100001 ^ 0001000000000000000101000000000000010000000000100000000000000001

Extracting Patricia Codes

- We now have all the bits we want, but they're spread apart too far.
- We saw last time that by using multiplication by an appropriate constant, we can compact bits together. a0000000b $0000000 \mathbf{c} 0000000 \mathbf{d} 0000000$
a0000000b0000000c0000000d0000000000000000000000000000 a0000000b0000000c0000000d000000000000000000000
a0000000b $0000000 \mathbf{c} 0000000 \mathbf{d} 00000000000000$
a0000000b0000000c0000000d0000000

Extracting Patricia Codes

- The approach we used last time worked well because we knew those bits were evenly-spaced.
- Problem: Our "interesting" bits aren’t wellspaced across the word in question.
- This may make it impossible to get all the bits next to one another purely using a clever multiplication.

a000b000c000d000e000f000g000h000ijkl

- Fortunately, there's an escape hatch.

Approximate Patricia Codes

- Patricia codes are useful because they
- contain enough information to compute ranks, and
- compact that information into a small space.
- Idea: Maintain the second property by doing a "decent" job compacting bits, rather than a "perfect" job.

Approximate Patricia Codes

- Patricia codes are useful because they
- contain enough information to compute ranks, and
- compact that information into a small space.
- Idea: Maintain the second property by doing a "decent" job compacting bits, rather than a "perfect" job.

a00000b00c0d00e000000f

Approximate Patricia Codes

- An approximate Patricia code is a bitstring containing all the interesting bits of a number in the same relative order, with some extra 0 's deterministically interspersed.
- Claim: We can use approximate Patricia codes rather than true Patricia codes to compute ranks. The relative orders of the codes will come back the same.
a00000b00c0d00e000000f

Approximate Patricia Codes

- Theorem: Suppose we have a w^{ε} interesting bits. Then there is a way to compute a multiplier M, a mask K, and a shift S such that

$$
((n \times M) \gg S) \& K
$$

is an approximate Patricia code for n that uses $w^{4 \varepsilon}$ bits, and these values can be computed in time $\mathrm{O}\left(w^{4 \varepsilon}\right)$.

- Proof: Some very clever arguments involving induction and modular arithmetic. Check Fredman and Willard's paper for details!
- Challenge: Find a simple, visual, intuitive explanation for this algorithm.

Closing In on Fusion Trees

- Our goal is to build a data structure that holds w^{ε} integers with w bits each in a way that supports rank in time $\mathrm{O}(1)$.
- Given w^{ε} integers, we can do some preprocessing to form $w^{48-b i t}$ approximate Patricia codes for them.
- Storing those approximate codes requires $w^{5 \varepsilon}$ bits.
- Observation: Suppose we pick $\varepsilon=1 / 6$. Then we can store all of those codes in a single machine word!

> What is $w^{1 / 6}$ on a real computer?
> We have a ways to go before this strategy will have any chance of being practical.

Fusion Trees

- A fusion tree is a B-tree augmented with the preceding strategy for computing ranks quickly.
- The B-tree has order $w^{1 / 6}$, so its height is $\mathrm{O}\left(\log _{w} n\right)$.
- Since the rank of a key in a node can be computed in time $\mathrm{O}(1)$, the cost of a lookup, predecessor, or successor operation is $\mathrm{O}\left(\log _{w} n\right)$.

Fusion Trees

- Here's the final scorecard for fusion trees.
- Notice that lookup and successor queries are unconditionally asymptotically faster

The Fusion Tree

- lookup: $\mathrm{O}\left(\log _{w} n\right)$
- insert: $\mathrm{O}\left(w^{2 / 3} \log _{w} n\right)$
- delete: $\mathrm{O}\left(w^{2 / 3} \log _{w} n\right)$
- max: $\mathrm{O}\left(\log _{w} n\right)$
- succ: $\mathrm{O}\left(\log _{w} n\right)$
- Space: $\Theta(n)$ than a regular balanced BST!

Fusion Trees

- The mutating operations insert and delete are expensive.
- Idea: Adapt the technique from y-fast tries: rather than have one big fusion tree, have a bunch of smaller data structures

The Fusion Tree

- lookup: $\mathrm{O}\left(\log _{w} n\right)$
- insert: $\mathrm{O}\left(w^{2 / 3} \log _{w} n\right)$
- delete: $\mathrm{O}\left(w^{2 / 3} \log _{w} n\right)$
- max: $\mathrm{O}\left(\log _{w} n\right)$
- succ: $O\left(\log _{w} n\right)$
- Space: $\Theta(n)$ linked together by fusion trees.

Fusion Trees

- In 1996, Arne Andersson devised the exponential tree, a variation on fusion trees with these indicated runtimes.
- Intuition: Instead of having a constant branching factor at each level of the tree, have the branching factor decay exponentially.
- This still keeps the tree height low, but makes the amortized cost of each operation small.

The Exponential Tree

- lookup: $\mathrm{O}\left(\log _{w} n\right)$
- insert: $\mathrm{O}\left(\log _{w} n+\log \log n\right)^{*}$
- delete: $\mathrm{O}\left(\log _{w} n+\log \log n\right)^{*}$
- max: $\mathrm{O}\left(\log _{w} n\right)$
- succ: $O\left(\log _{w} n\right)$
- Space: $\Theta(n)$
* Amortized

A Cool Application: Integer Sorting

Integer Sorting

- Suppose you're given a list of b-bit integers $\chi_{1}, \chi_{2}, \ldots, \chi_{n}$ to sort.
- Heapsort takes time $O(n \log n)$.
- Base-2 radix sort takes time $O(n b)$.
- Base-n radix sort takes time $O(n b / \log n)$.
- A y-fast trie takes expected time $\mathrm{O}(n \log b)$.
- An exponential tree takes time $\mathrm{O}\left(n \log _{b} n\right)$.

Integer Sorting

- These algorithms are asymptotically incomparable, since b and n are independent quantities.

\boldsymbol{y}-Fast Trie Sort

$$
\mathrm{O}(n \log b)
$$

Exponential Tree Sort

$$
\mathrm{O}\left(n \log _{b} n\right)
$$

- Question: What is the crossover point?

Integer Sorting

- These algorithms are asymptotically

$$
n \log b=n \log _{b} n
$$ incomparable, since b and n are independent quantities.

\boldsymbol{y}-Fast Trie Sort $\mathrm{O}(n \log b)$

Exponential Tree Sort $\mathrm{O}\left(n \log _{b} n\right)$

- Question: What is the crossover point?

Integer Sorting

- These algorithms are asymptotically incomparable, since b and n are independent quantities.

\boldsymbol{y}-Fast Trie Sort $\mathrm{O}(n \log b)$

Exponential Tree Sort $\mathrm{O}\left(n \log _{b} n\right)$

- Question: What is the crossover point?

Integer Sorting

- These algorithms are asymptotically incomparable, since b and n are independent quantities.

\boldsymbol{y}-Fast Trie Sort $\mathrm{O}(n \log b)$

Exponential Tree Sort

$$
\mathrm{O}\left(n \log _{b} n\right)
$$

- Question: What is the crossover point?

Integer Sorting

- These algorithms are asymptotically incomparable, since b and n are independent quantities.

\boldsymbol{y}-Fast Trie Sort $\mathrm{O}(n \log b)$

$$
\begin{aligned}
n \log b & =n \log _{b} n \\
\log b & =\log _{b} n \\
\log b & =\frac{\log n}{\log b} \\
\log ^{2} b & =\log n
\end{aligned}
$$

Exponential Tree Sort

$$
\mathrm{O}\left(n \log _{b} n\right)
$$

- Question: What is the crossover point?

Integer Sorting

- These algorithms are asymptotically incomparable, since b and n are independent quantities.

\boldsymbol{y}-Fast Trie Sort

$$
\mathrm{O}(n \log b)
$$

$$
\begin{aligned}
n \log b & =n \log _{b} n \\
\log b & =\log _{b} n \\
\log b & =\frac{\log n}{\log b} \\
\log ^{2} b & =\log n
\end{aligned}
$$

Exponential Tree Sort

$$
\mathrm{O}\left(n \log _{b} n\right)
$$

$$
\log b=\sqrt{\log n}
$$

- Question: What is the crossover point?

Integer Sorting

- These algorithms are asymptotically incomparable, since b and n are independent quantities.

\boldsymbol{y}-Fast Trie Sort

 $\mathrm{O}(n \log b)$Exponential Tree Sort $\mathrm{O}\left(n \log _{b} n\right)$

- Question: What is the crossover point?

Integer Sorting

- These algorithms are asymptotically incomparable, since b and n are independent quantities.

\boldsymbol{y}-Fast Trie Sort

$$
\mathrm{O}(n \log b)
$$

Exponential Tree Sort $\mathrm{O}\left(n \log _{b} n\right)$

- Question: What is the crossover point?
- Theorem: There is a randomized, $\mathrm{O}(n \sqrt{\log n})$-time integer sorting algorithm.
- Proof: If $b \leq 2^{\sqrt{\log n}}$, use exponential tree sort.
Otherwise, use y-fast trie sort.

More to Explore

- In 1994, Fredman and Willard (the creators of the fusion tree) invented the AF-heap, a variation on a Fibonacci heap with extract-min taking time $\mathrm{O}(\log n / \log \log n)$ and used it to get a linear time algorithm for computing minimum spanning trees.
- In 1995, Andersson et al adapted the size-reduction techniques from fusion trees to develop signature sort, a randomized sorting algorithm for integers. Assuming $w=\lg ^{2+\varepsilon} n$, it runs in expected time $O(n)$.
- In 1997, using the linear-time MST algorithm, Thorup developed a linear-time algorithm for undirected SSSP. (Want to learn more? Your classmates will be presenting it next Wednesday at 10:30AM!)
- In 2002, Han developed a deterministic $\mathbf{O}(\boldsymbol{n} \log \log \boldsymbol{n})$-time algorithm for integer sorting that uses only linear space, and with Thorup developed a randomized $\mathbf{O}(\boldsymbol{n} \sqrt{\boldsymbol{\operatorname { l o g }} \boldsymbol{\operatorname { l o g }} \boldsymbol{n}})$-time algorithm for integer sorting that only uses linear space.
- In 2002, Andersson and Thorup developed a deterministic, worst-case efficient integer ordered dictionary with each operation costing $\mathbf{O}\left(\sqrt{\frac{\log n}{\log \log n}}\right)$, which is provably optimal under reasonable assumptions.

Next Time

- Dynamic Connectivity
- Maintaining connectivity in a changing world.
- Euler Tour Trees
- Dynamic connectivity in forests.
- Dynamic Graphs
- A hierarchical data structure for dynamic connectivity in general undirected graphs.

