

Balanced Trees
Part Two

Outline for Today

● Recap from Last Time
● Review of B-trees, 2-3-4 trees, and red/black

trees.
● Augmented Binary Search Trees

● Leveraging red/black trees.
● Joining and Splitting Trees

● Two powerful BST primitives.

Recap from Last Time

B-Trees

B-tree of order 2
(2-3-4 Tree)

B-tree of order 2
(2-3-4 Tree)

1 2 4 6 7 8 10 12 14 15 17 18 19 21 22 24 26

3 9 11 16 20 25

5 13 23

● A B-tree of order b is a multiway search tree where

● each node has between b–1 and 2b–1 keys, except the root,
which may have as few as one key;

● each node is either a leaf or has one more child than key; and

● all leaves are at the same depth.

Red/Black Trees
● A red/black tree is a BST with

the following properties:
● Every node is either red or black.
● The root is black.
● No red node has a red child.
● Every root-null path in the tree

passes through the same number of
black nodes.

● After we hoist red nodes into
their parents:
● Each “meta node” has 1, 2, or 3

keys in it. (No red node has a red
child.)

● Each “meta node” is either a leaf or
has one more key than node. (Root-
null path property.)

● Each “meta leaf” is at the same
depth. (Root-null path property.)

7

3 5 11

1 2 4 6 8 9 10 12

This is a
2-3-4 tree!

This is a
2-3-4 tree!

Data Structure Isometries

● Red/black trees are an isometry of 2-3-4
trees; they represent the structure of
2-3-4 trees in a different way.

● Accordingly, red/black trees have height
O(log n).

● After inserting or deleting an element
from a red/black tree, the tree invariants
can be fixed up in time O(log n) by
applying rotations and color flips that
simulate a 2-3-4 tree.

A B

>B<A >A
<B

Tree Rotations

A

B

<A

>A
B

A

B

<A >A
B

New Stuff!

Dynamic Problems

Dynamic Problems

● The “classic” algorithms model goes something like this:

Given some input X, compute some interesting
function f(X).

● This assumes that X is specified up-front and doesn’t
change over time.

● These questions typically become more interesting when
they’re made dynamic and the model looks more like this:

Given some input X that changes over time, maintain
a data structure that makes it easy to compute f(X) at

any instant in time.
● Many data structures can essentially be thought of as

solutions to dynamic versions of classical algorithms
problems.

Dynamic Order Statistics

Order Statistics

● In a set S of totally ordered values, the kth order
statistic is the kth smallest value in the set.

● The 0th order statistic is the minimum value.
● The 1st order statistic is the second-smallest value.
● The (n – 1)st order statistic is the maximum value.

● In the static case (when the data set is given to you in
advance), algorithms like quickselect and median-of-
medians give (possibly randomized) O(n)-time solutions
to order statistics.

● Goal: Solve this problem efficiently when the data set
is changing – that is, the underlying set of elements can
have insertions and deletions intermixed with queries.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

6

7

8

10

9

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

6

7

8

10

99

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

5

6

7

8

9

11

1094

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

5

6

7

8

9

11

1094

Problem: After inserting a
new value, we may have to
update Θ(n) values.

Problem: After inserting a
new value, we may have to
update Θ(n) values.

An Observation

● The exact index of each number is a
global property of the tree.
● Depends on all other nodes and their

positions.
● Could we find a local property that lets

us find order statistics?
● That is, something that depends purely on

nearby nodes.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

6

7

8

10

9

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

0

1

2

4

3

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

0

1

2

1

0

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

Each node is annotated
with the number of

children in its left subtree.

Each node is annotated
with the number of

children in its left subtree.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

0

3

1

6

0

1

2

1

090

Since the number just holds the number
of nodes in its left subtree, we only need

to increment the value for nodes that
have the new node in its left subtree.

Since the number just holds the number
of nodes in its left subtree, we only need

to increment the value for nodes that
have the new node in its left subtree.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

0

3

1

6

0

2

3

1

090

160How do we update the
numbers after the rotation?

How do we update the
numbers after the rotation?

A
B

<A >A
B

A
B

<A

>A
B

A
B

<A >A
B

na

nb

Rotate
Right

Rotate
Left

A
B

<A

>A
B

na

nb – na – 1

nb + na + 1

na
nb

na

Order Statistic Trees

● The tree we just saw is called an order statistics
tree.
● Start with a red/black tree.
● Tag each node with the number of nodes in its left subtree.
● Use the preceding update rules to preserve values during

rotations.
● Propagate other changes up to the root of the tree.

● Only O(log n) values must be updated on an insertion
or deletion and each can be updated in time O(1).

● Supports all BST operations plus select (find kth
order statistic) and rank (tell index of value) in time
O(log n).

Generalizing our Idea

The General Pattern

● This data structure works in the appropriate
time bounds because values only change on
an insertion or deletion
● along the root-leaf access path, and
● during rotations.

● Red/black trees have height O(log n) and
require only O(log n) rotations per insertion
or deletion.

● We can augment red/black trees with any
attributes we'd like as long as they obey
these properties.

Augmented Red/Black Trees

● Let f(node) be a function with the following properties:

● f can be computed in time O(1).
● f can be computed at a node based purely on that

node's key and the values of f computed at node's
children.

● Theorem: The values of f can be cached in the nodes
of a red/black tree without changing the asymptotic
runtime of insertions or deletions.

● Proof sketch: After inserting or deleting a node, the
only values that need to change are along the root-leaf
access path, plus values at nodes that were rotated.
There are only O(log n) of these.

Augmented Red/Black Trees

f can be computed at a node based purely on the key in that node
and the values of f in it that node's children.

Order Statistics

● Note: The approach we took for building order
statistic trees does not fall into this framework.

● Example: The values below denote the number
of nodes in the indicated nodes' left subtrees.
What is the correct value of x?

137 42

x

Order Statistics via Augmentation

● Have each node store two quantities:

● numLeft, the number of nodes in the left subtree.
● numRight, the number of nodes in the right subtree.

● Can compute this information at a node in time O(1)
based on subtree values:

● n.numLeft = n.left.numLeft + n.left.numRight + 1
● n.numRight = n.right.numLeft + n.right.numRight + 1

● This fits into our framework, so we know that red/black
trees can be augmented this way without needing to
reason about tree rotations.

● Useful if we want to show feasibility; we can always
optimize later if we need to.

Example: Hierarchical Clustering

1D Hierarchical Clustering

42 44 60 66 71 86 92 100

42 44 60 66 71 86 92 100

20

20

1D Hierarchical Clustering

42 44 60 66 71 86 92 100

42 44

60 66 71 86 92 100

20

20 43

1D Hierarchical Clustering

42 44 60 66 71 86 92 100

60

66 71

86 92 100

20

20 68.5

42 44

43

1D Hierarchical Clustering

42 44 60 66 71 86 92 100

60

66 71 86 92

100

20

20 68.5

42 44

43 89

1D Hierarchical Clustering

42 44 60 66 71 86 92 100

60 66 71 86 92

100

20

20

42 44

43 8965.67

1D Hierarchical Clustering

42 44 60 66 71 86 92 100

60 66 71 86 92 100

20

20

42 44

43 92.6765.67

1D Hierarchical Clustering

42 44 60 66 71 86 92 100

60 66 71 86 92 100

20

20

42 44

56.6 92.67

1D Hierarchical Clustering

42 44 60 66 71 86 92 100

60 66 71 86 92 100

20

20

42 44

70.13

1D Hierarchical Clustering

42 44 60 66 71 86 92 100

60 66 71 86 92 100

20

20 42 44

64.56

1D Hierarchical Clustering

42 44 60 66 71 86 92 10020

This tree is called
a dendrogram.

This tree is called
a dendrogram.

Analyzing the Runtime

● How efficient is this algorithm?
● Number of rounds: Θ(n).
● Work to find closest pair: O(n).
● Total runtime: Θ(n2).

● Can we do better?

Dynamic 1D Closest Points

● The dynamic 1D closest points
problem is the following:

Maintain a set of real numbers
undergoing insertion and deletion while
efficiently supporting queries of the form

“what is the closest pair of points?”
● Can we build a better data structure for

this?

Dynamic 1D Closest Points

k

max min

A Tree Augmentation

● Augment each node to store the following:
● The maximum value in the tree.
● The minimum value in the tree.
● The closest pair of points in the tree.

● Claim: Each of these properties can be
computed in time O(1) from the left and right
subtrees.

● These properties can be augmented into a red/
black tree so that insertions and deletions take
time O(log n) and “what is the closest pair of
points?” can be answered in time O(1).

Dynamic 1D Closest Points
137

 Min: ?

 Max: ?

 Closest: ?, ?
42

 Min: -17

 Max: 67

 Closest: 15, 21

271
 Min: 142

 Max: 415

Closest: 300, 310

Dynamic 1D Closest Points
137

 Min: -17

 Max: 415

Closest: 137, 142
42

 Min: -17

 Max: 67

 Closest: 15, 21

271
 Min: 142

 Max: 415

Closest: 300, 310

Some Other Questions

● How would you augment this tree so that
you can efficiently (in time O(1)) compute
the appropriate weighted averages?

● Trickier: Is this the fastest possible
algorithm for this problem?
● What if you’re guaranteed that the keys are

all integers in some nice range?

A Helpful Intuition

Divide-and-Conquer

● Initially, it can be tricky to come up with the
right tree augmentations.

● Useful intuition: Imagine you're writing a
divide-and-conquer algorithm over the
elements and have O(1) time per “conquer”
step.

< k > k

k

Time-Out for Announcements!

Grace Hopper Tickets

● The Stanford CS department will be sponsoring
thirty students to attend the Grace Hopper
Celebration of Women in Computing.
● Adjectives used to describe the experience include

“life-changing,” “transformative,” “incredible,” etc.
● We’re covering tickets, airfare, hotels, and meals.
● Available only to CS majors / grad students;

priority is to students who haven’t attended.
● Highly recommended. Apply online.

https://docs.google.com/forms/d/e/1FAIpQLSdUiRR1Ndk2fvVfjS_DASNdzIIt0FPKBie8KWv6xeXEDAWJWg/viewform?usp=sf_link

FastestRMQ Results

Two hours and twenty minutes of time
testing later, the results are in!

Honorable Mentions

Dana Murphy and Eric Martin

⟨O(n), O(log n)⟩ hybrid.
Linearized sparse table.

Honorable Mentions

Adam Pahlavan and Sumer Sao

⟨O(n), O(log n)⟩ hybrid.
Populate sparse table with SIMD.

Silver Medalists

Shaggy Goel and Kevin Hu

⟨O(n), O(n0.2 log n)⟩ hybrid.
Precompute to-end-of-block queries.

Gold Medalists

Dillon Kanne and Kai Ang

Choose one of the following based on n:
⟨O(n log n), O(1)⟩ sparse table,

one-layer ⟨O(n), O(log n)⟩ hybrid, or
two-layer ⟨O(n), O(log n)⟩ hybrid.

Lessons Learned

● What’s fast in Theoryland isn’t always what’s fastest in practice.
● None of the top ten solutions used Fischer-Heun.

● Locality of reference has a huge effect on runtime.
● Two of the top four solutions aggressively optimized the sparse table

for cache friendliness.
● The top ten solutions all used linear scans as a key part of their

strategy.
● Tuning parameters has a huge effect on runtime.

● Two of the top three solutions changed the block size. The second-
fastest solution abandoned O(log n) for O(n0.2).

● Combine lots of different solutions together.
● Three of the top eight solutions (including the top solution) selected

different data structures based on input size.
● Thanks to everyone who submitted something!

Back to CS166!

Joining and Splitting Trees

Joining Trees

● The operation join(T₁, k, T₂) takes as input

a BST T₁;

a key k, where k is greater than all keys in T₁; and

a BST T₂, where k is less than all keys in T₂; then

destructively modifies T₁ and T₂ to produce a new BST
containing all keys in T₁ and T₂ and the key k.

T₁ T₂
k

Joining Trees

● The operation join(T₁, k, T₂) takes as input

a BST T₁;

a key k, where k is greater than all keys in T₁; and

a BST T₂, where k is less than all keys in T₂; then

destructively modifies T₁ and T₂ to produce a new BST
containing all keys in T₁ and T₂ and the key k.

T

Splitting Trees

● The operation split(T, k) takes as input

a BST T, and

a key k, then

destructively modifies BST T and forms BSTs T₁ and T₂
such that all keys in T₁ are less than or equal to k and
all keys in T₂ are greater than k.

T

k

Splitting Trees

● The operation split(T, k) takes as input

a BST T, and

a key k, then

destructively modifies BST T and forms BSTs T₁ and T₂
such that all keys in T₁ are less than or equal to k and
all keys in T₂ are greater than k.

T₁

k

T₂

The Runtimes

● Both of these operations can be implemented
in time O(n) by completely rebuilding the trees
from scratch.
● Good exercise: determine how to do this.

● Amazingly, using augmented red/black trees:
● join(T₁, k, T₂) can be made to run in time

Θ(1 + |bhbh₁ – bh₂|), where), where bh₁ and bh₂ are the
number of black nodes on any root-null path in T₁
and T₂, respectively, and

● split(T, k) can be made to run in time O(log n).
● How is this possible?

Joining 2-3-4 Trees

● The isometry between 2-3-4 trees and
red/black trees is very useful here.

● Let's see how to join two 2-3-4 trees and
a key together.

● Based on what we find, we'll develop an
efficient algorithm for joining red/black
trees.

Joining 2-3-4 Trees

21 31

41

16 91

86

26 36 8156

51

46 71

66

61

76

58

166

161

110107

106

103

109

99

Joining 2-3-4 Trees

21 31

41

16 91

86

26 36 8156

51

46 71

66

61

76

58

166

161

110107

106

103

109

99

Joining 2-3-4 Trees

7 9

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

6181 32

5

Joining 2-3-4 Trees

7 9

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

6181 32

5

Joining 2-3-4 Trees

7 9

11

21

31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

6181 32

5

Joining 2-3-4 Trees

7 9

11

21

31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

6181 32

5

Joining 2-3-4 Trees

● To join(T₁, k, T₂):
● Assume that T₁ is the taller of the two trees;

if not, do the following, but mirrored.
● Walk down the right spine of T₁ until a node
v is found whose height is the height of T₂.

● Add k as a final key of v's parent with T₂ as a
right child.

● Continue as if you were inserting k into v's
parent – possibly split the node and
propagate upward, etc.

Analyzing the Runtime

● Assume all 2-3-4 tree nodes are annotated with
their heights.

● What is the runtime of join(T₁, k, T₂)?
● Runtime is Θ(1 + |h₁ – h₂|).

T₁
T₂

h₁
h₂

h₁ – h₂

Joining Red/Black Trees

……

………

Joining Red/Black Trees

……

………

Joining Red/Black Trees

……

………

Joining Red/Black Trees

……

………

Joining 2-3-4 Trees

● Define the black height of a node to
be the number of black nodes on any
root-null path starting at that node.

● To join(T₁, k, T₂):

● Assume that T₁ is the tree with larger
black height; if not, do the following,
but mirrored.

● Walk down the right spine of T₁ until a
black node v is found whose black
height is the black height of T₂.

● Insert a new node with key k, left child
v, and right child T₂

● Make this new node the right child of
v's old parent.

● Continue as if you had just inserted k.

T₂

v

k

Keep applying
fixup rules to k.

Keep applying
fixup rules to k.

Runtime Analysis

● Need to augment the red/black tree to store the black
height of each node.

● This fits into our augmentation framework – can be
computed from the black heights of the left and right
children and from the node's own color.

● Via the isometry with 2-3-4 trees, the runtime is
O(1 + |bh₁ – bh₂|).

● This is O(log n₁ + log n₂) in the worst-case.

Joining Two Trees

● What if you want to join two red/black
trees but don't have a key to join them
with?

● Delete the minimum value from the
second tree in time O(log n), then use
that to join the two trees.

Implementing split Efficiently

Splitting Trees is Hard

● Challenge 1: The
split procedure
might cut the
existing tree into
lots of smaller
pieces.

Challenge 2:
Cutting a
red/black tree into
two pieces doesn't
necessarily give
you two red/black
trees.

Splitting Trees is Hard

● Challenge 1: The
split procedure
might cut the
existing tree into
lots of smaller
pieces.

● Challenge 2:
Cutting a
red/black tree into
two pieces doesn't
necessarily give
you two red/black
trees.

An Observation

● Suppose we want
to perform a split
on some key k.

● Begin by
searching for k.
If we find it,
search for its
inorder
successor.

● Cut all links
found along the
way.

An Observation

● Suppose we want
to perform a split
on some key k.

● Begin by
searching for k.
If we find it,
search for its
inorder
successor.

● Cut all links
found along the
way.

An Observation

● Notice that
we're left with a
collection of
pennants, trees
whose roots
have just one
child.

An Observation

● Let's imagine
uncoloring all of
these pennant
roots.

● The trees below
them are almost
red/black trees,
but their roots
might be red.

● Let's recolor all
the roots black.

An Observation

● Let's imagine
uncoloring all of
these pennant
roots.

● The trees below
them are almost
red/black trees,
but their roots
might be red.

● Let's recolor all
the roots black.

An Observation

● We now have a
bunch of
red/black trees
hanging off of
pennants.

● Key idea: Find
a way to join
these trees back
together to form
the two trees
we want.

Fleshing Out the Algorithm
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃

R₂p₆

● Do a search for the inorder
successor of k, cutting each
link followed.

● For each pennant, color its
child black. We now have a
collection of red/black trees
hanging off of random nodes.

● Categorize each hanging tree
as of type L or type R
depending on whether it's a
left or right child of its
pennant.

Fleshing Out the Algorithm
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃

R₂p₆

● Observation 1: Look at any
two consecutive L trees or R
trees and the root of the
pennant of the first tree.
Then the key in the pennant
root is strictly between all the
values of those two trees.

● Observation 2: There are at
most two trees of each black
height hanging off of the
pennants.

Fleshing Out the Algorithm

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

All keys here are less
than or equal to k.

All keys here are
greater than k.

Fleshing Out the Algorithm

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

Key idea: join all the L trees back
together and all the R trees back

together, using the nodes at the root of
the pennants as the joining key.

Because the height differences are low,
the runtime works out to O(log n).

Key idea: join all the L trees back
together and all the R trees back

together, using the nodes at the root of
the pennants as the joining key.

Because the height differences are low,
the runtime works out to O(log n).

Analyzing the Runtime

● Suppose there is one tree of each black height in L.

● What is the runtime of joining the trees in reverse
order of black heights?

● Each join takes time O(1 + |), where bh₁ – bh₂|), where) = O(1).

● At most O(log n) joins (the access path has length
O(log n))

● Runtime is O(log n).

Analyzing the Runtime

● Suppose there are trees of very different black heights.

● What is the runtime of joining the trees in reverse
order of black heights?

● Each join takes time O(1 + bhₛ₊₁ – bhₛ)

● Summing across all joins:

● The number of trees (k) is O(log n) and the maximum
black height is O(log n). Runtime: O(log n).

∑
i=1

k−1

O(1+bhi+1−bhi) = O(∑
i=1

k−1

(1+bhi+1−bhi))

= O(k+∑
i=1

k−1

(bhi+1−bhi))

= O(k+bhk−bh1)

The Split Algorithm

● Split the tree into L pennants and R
pennants, as before.

● Iterate across the pennants in ascending
order of heights, joining each of the
corresponding trees together using the
pennant node as the join key. This takes time
O(log n).

● There will be O(1) leftover pennant nodes.
Insert them in time O(log n) into the proper
trees.

● Net runtime: O(log n).

The Big Summary

Thinking about balanced multiway search
trees made it easier for us to think about

balanced binary search trees.

7

3 5 11

1 2 4 6 8 9 10 12

Multiway trees, and B-trees in particular,
are great choices for storing large data

structures on disk.

1 2 4 6 7 8 10 12 14 15 17 18 19 21 22 24 26

3 9 11 16 20 25

5 13 23

Augmented BSTs let us solve
challenging dynamic problems.

137
 Min: -17

 Max: 415

Closest: 137, 142
42

 Min: -17

 Max: 67

 Closest: 15, 21

271
 Min: 142

 Max: 415

Closest: 300, 310

Red/black trees can be split and joined
together using some clever algorithms.

T₂

v

k

Next Time

● Amortized Analysis
● Lying about runtime costs in an honest

manner.
● Frameworks for Amortization

● How can we think about assigning costs?
● Revisiting Earlier Structures

● Queues, Cartesian trees, and 2-3-4 trees.

