
  

Balanced Trees
Part Two



  

Outline for Today

● Recap from Last Time
● Review of B-trees, 2-3-4 trees, and red/black 

trees.
● Augmented Binary Search Trees

● Leveraging red/black trees.
● Joining and Splitting Trees

● Two powerful BST primitives.



  

Recap from Last Time



  

B-Trees

B-tree of order 2
(2-3-4 Tree)

B-tree of order 2
(2-3-4 Tree)
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3 9 11 16 20 25

5 13 23

● A B-tree of order b is a multiway search tree where

● each node has between b–1 and 2b–1 keys, except the root, 
which may have as few as one key;

● each node is either a leaf or has one more child than key; and

● all leaves are at the same depth.



  

Red/Black Trees
● A red/black tree is a BST with 

the following properties:
● Every node is either red or black.
● The root is black.
● No red node has a red child.
● Every root-null path in the tree 

passes through the same number of 
black nodes.

● After we hoist red nodes into 
their parents:
● Each “meta node” has 1, 2, or 3 

keys in it. (No red node has a red 
child.)

● Each “meta node” is either a leaf or 
has one more key than node. (Root-
null path property.)

● Each “meta leaf” is at the same 
depth. (Root-null path property.)
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This is a
2-3-4 tree!

This is a
2-3-4 tree!



  

Data Structure Isometries

● Red/black trees are an isometry of 2-3-4 
trees; they represent the structure of
2-3-4 trees in a different way.

● Accordingly, red/black trees have height 
O(log n).

● After inserting or deleting an element 
from a red/black tree, the tree invariants 
can be fixed up in time O(log n) by 
applying rotations and color flips that 
simulate a 2-3-4 tree.
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New Stuff!



  

Dynamic Problems



  

Dynamic Problems

● The “classic” algorithms model goes something like this:

Given some input X, compute some interesting 
function f(X).

● This assumes that X is specified up-front and doesn’t 
change over time.

● These questions typically become more interesting when 
they’re made dynamic and the model looks more like this:

Given some input X that changes over time, maintain 
a data structure that makes it easy to compute f(X) at 

any instant in time.
● Many data structures can essentially be thought of as 

solutions to dynamic versions of classical algorithms 
problems.



  

Dynamic Order Statistics



  

Order Statistics

● In a set S of totally ordered values, the kth order 
statistic is the kth smallest value in the set.

● The 0th order statistic is the minimum value.
● The 1st order statistic is the second-smallest value.
● The (n – 1)st order statistic is the maximum value.

● In the static case (when the data set is given to you in 
advance), algorithms like quickselect and median-of-
medians give (possibly randomized) O(n)-time solutions 
to order statistics.

● Goal: Solve this problem efficiently when the data set 
is changing – that is, the underlying set of elements can 
have insertions and deletions intermixed with queries.



  

Finding Order Statistics
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Problem: After inserting a 
new value, we may have to 
update Θ(n) values.

Problem: After inserting a 
new value, we may have to 
update Θ(n) values.



  

An Observation

● The exact index of each number is a 
global property of the tree.
● Depends on all other nodes and their 

positions.
● Could we find a local property that lets 

us find order statistics?
● That is, something that depends purely on 

nearby nodes.



  

Finding Order Statistics
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Finding Order Statistics
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Finding Order Statistics
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Each node is annotated 
with the number of 

children in its left subtree.

Each node is annotated 
with the number of 

children in its left subtree.



  

Finding Order Statistics
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Since the number just holds the number 
of nodes in its left subtree, we only need 

to increment the value for nodes that 
have the new node in its left subtree.

Since the number just holds the number 
of nodes in its left subtree, we only need 

to increment the value for nodes that 
have the new node in its left subtree.



  

Finding Order Statistics
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160How do we update the 
numbers after the rotation?

How do we update the 
numbers after the rotation?
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Order Statistic Trees

● The tree we just saw is called an order statistics 
tree.
● Start with a red/black tree.
● Tag each node with the number of nodes in its left subtree.
● Use the preceding update rules to preserve values during 

rotations.
● Propagate other changes up to the root of the tree.

● Only O(log n) values must be updated on an insertion 
or deletion and each can be updated in time O(1).

● Supports all BST operations plus select (find kth 
order statistic) and rank (tell index of value) in time 
O(log n).



  

Generalizing our Idea



  

The General Pattern

● This data structure works in the appropriate 
time bounds because values only change on 
an insertion or deletion
● along the root-leaf access path, and
● during rotations.

● Red/black trees have height O(log n) and 
require only O(log n) rotations per insertion 
or deletion.

● We can augment red/black trees with any 
attributes we'd like as long as they obey 
these properties.



  

Augmented Red/Black Trees

● Let f(node) be a function with the following properties:

● f can be computed in time O(1).
● f can be computed at a node based purely on that 

node's key and the values of f computed at node's 
children.

● Theorem: The values of f can be cached in the nodes 
of a red/black tree without changing the asymptotic 
runtime of insertions or deletions.

● Proof sketch: After inserting or deleting a node, the 
only values that need to change are along the root-leaf 
access path, plus values at nodes that were rotated. 
There are only O(log n) of these.



  

Augmented Red/Black Trees

f can be computed at a node based purely on the key in that node 
and the values of f in it that node's children.



  

Order Statistics

● Note: The approach we took for building order 
statistic trees does not fall into this framework.

● Example: The values below denote the number 
of nodes in the indicated nodes' left subtrees. 
What is the correct value of x?

137 42

x



  

Order Statistics via Augmentation

● Have each node store two quantities:

● numLeft, the number of nodes in the left subtree.
● numRight, the number of nodes in the right subtree.

● Can compute this information at a node in time O(1) 
based on subtree values:

● n.numLeft = n.left.numLeft + n.left.numRight + 1
● n.numRight = n.right.numLeft + n.right.numRight + 1

● This fits into our framework, so we know that red/black 
trees can be augmented this way without needing to 
reason about tree rotations.

● Useful if we want to show feasibility; we can always 
optimize later if we need to.



  

Example: Hierarchical Clustering



  

1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering

42 44 60 66 71 86 92 10020

This tree is called 
a dendrogram.

This tree is called 
a dendrogram.



  

Analyzing the Runtime

● How efficient is this algorithm?
● Number of rounds: Θ(n).
● Work to find closest pair: O(n).
● Total runtime: Θ(n2).

● Can we do better?



  

Dynamic 1D Closest Points

● The dynamic 1D closest points 
problem is the following:

Maintain a set of real numbers 
undergoing insertion and deletion while 
efficiently supporting queries of the form 

“what is the closest pair of points?” 
● Can we build a better data structure for 

this?



  

Dynamic 1D Closest Points

k

max min



  

A Tree Augmentation

● Augment each node to store the following:
● The maximum value in the tree.
● The minimum value in the tree.
● The closest pair of points in the tree.

● Claim: Each of these properties can be 
computed in time O(1) from the left and right 
subtrees.

● These properties can be augmented into a red/
black tree so that insertions and deletions take 
time O(log n) and “what is the closest pair of 
points?” can be answered in time O(1).



  

Dynamic 1D Closest Points
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        Max: 67
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Some Other Questions

● How would you augment this tree so that 
you can efficiently (in time O(1)) compute 
the appropriate weighted averages?

● Trickier: Is this the fastest possible 
algorithm for this problem?
● What if you’re guaranteed that the keys are 

all integers in some nice range?



  

A Helpful Intuition



  

Divide-and-Conquer

● Initially, it can be tricky to come up with the 
right tree augmentations.

● Useful intuition: Imagine you're writing a 
divide-and-conquer algorithm over the 
elements and have O(1) time per “conquer” 
step.

< k > k

k



  

Time-Out for Announcements!



  

Grace Hopper Tickets

● The Stanford CS department will be sponsoring 
thirty students to attend the Grace Hopper 
Celebration of Women in Computing.
● Adjectives used to describe the experience include 

“life-changing,” “transformative,” “incredible,” etc.
● We’re covering tickets, airfare, hotels, and meals.
● Available only to CS majors / grad students; 

priority is to students who haven’t attended.
● Highly recommended. Apply online.

https://docs.google.com/forms/d/e/1FAIpQLSdUiRR1Ndk2fvVfjS_DASNdzIIt0FPKBie8KWv6xeXEDAWJWg/viewform?usp=sf_link


  

FastestRMQ Results



  

Two hours and twenty minutes of time 
testing later, the results are in!



  

Honorable Mentions 

Dana Murphy and Eric Martin

⟨O(n), O(log n)⟩ hybrid.
Linearized sparse table.



  

Honorable Mentions 

Adam Pahlavan and Sumer Sao

⟨O(n), O(log n)⟩ hybrid.
Populate sparse table with SIMD.



  

Silver Medalists 

Shaggy Goel and Kevin Hu

⟨O(n), O(n0.2 log n)⟩ hybrid.
Precompute to-end-of-block queries.



  

Gold Medalists 

Dillon Kanne and Kai Ang

Choose one of the following based on n:
⟨O(n log n), O(1)⟩ sparse table,

one-layer ⟨O(n), O(log n)⟩ hybrid, or
two-layer ⟨O(n), O(log n)⟩ hybrid.



  

Lessons Learned

● What’s fast in Theoryland isn’t always what’s fastest in practice.
● None of the top ten solutions used Fischer-Heun.

● Locality of reference has a huge effect on runtime.
● Two of the top four solutions aggressively optimized the sparse table 

for cache friendliness.
● The top ten solutions all used linear scans as a key part of their 

strategy.
● Tuning parameters has a huge effect on runtime.

● Two of the top three solutions changed the block size. The second-
fastest solution abandoned O(log n) for O(n0.2).

● Combine lots of different solutions together.
● Three of the top eight solutions (including the top solution) selected 

different data structures based on input size.
● Thanks to everyone who submitted something!



  

Back to CS166!



  

Joining and Splitting Trees



  

Joining Trees

● The operation join(T₁, k, T₂) takes as input

a BST T₁;

a key k, where k is greater than all keys in T₁; and

a BST T₂, where k is less than all keys in T₂; then

destructively modifies T₁ and T₂ to produce a new BST 
containing all keys in T₁ and T₂ and the key k.

T₁ T₂
k



  

Joining Trees

● The operation join(T₁, k, T₂) takes as input

a BST T₁;

a key k, where k is greater than all keys in T₁; and

a BST T₂, where k is less than all keys in T₂; then

destructively modifies T₁ and T₂ to produce a new BST 
containing all keys in T₁ and T₂ and the key k.

T



  

Splitting Trees

● The operation split(T, k) takes as input

a BST T, and

a key k, then

destructively modifies BST T and forms BSTs T₁ and T₂ 
such that all keys in T₁ are less than or equal to k and 
all keys in T₂ are greater than k.

T

k



  

Splitting Trees

● The operation split(T, k) takes as input

a BST T, and

a key k, then

destructively modifies BST T and forms BSTs T₁ and T₂ 
such that all keys in T₁ are less than or equal to k and 
all keys in T₂ are greater than k.

T₁

k

T₂



  

The Runtimes

● Both of these operations can be implemented 
in time O(n) by completely rebuilding the trees 
from scratch.
● Good exercise: determine how to do this.

● Amazingly, using augmented red/black trees:
● join(T₁, k, T₂) can be made to run in time

Θ(1 + |bhbh₁ – bh₂|), where ), where bh₁ and bh₂ are the 
number of black nodes on any root-null path in T₁ 
and T₂, respectively, and 

● split(T, k) can be made to run in time O(log n).
● How is this possible?



  

Joining 2-3-4 Trees

● The isometry between 2-3-4 trees and 
red/black trees is very useful here.

● Let's see how to join two 2-3-4 trees and 
a key together.

● Based on what we find, we'll develop an 
efficient algorithm for joining red/black 
trees.



  

Joining 2-3-4 Trees
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Joining 2-3-4 Trees
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Joining 2-3-4 Trees

● To join(T₁, k, T₂):
● Assume that T₁ is the taller of the two trees; 

if not, do the following, but mirrored.
● Walk down the right spine of T₁ until a node 
v is found whose height is the height of T₂.

● Add k as a final key of v's parent with T₂ as a 
right child.

● Continue as if you were inserting k into v's 
parent – possibly split the node and 
propagate upward, etc.



  

Analyzing the Runtime

● Assume all 2-3-4 tree nodes are annotated with 
their heights.

● What is the runtime of join(T₁, k, T₂)?
● Runtime is Θ(1 + |h₁ – h₂|).

T₁
T₂

h₁
h₂

h₁ – h₂



  

Joining Red/Black Trees
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Joining Red/Black Trees
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Joining Red/Black Trees
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Joining 2-3-4 Trees

● Define the black height of a node to 
be the number of black nodes on any 
root-null path starting at that node.

● To join(T₁, k, T₂):

● Assume that T₁ is the tree with larger 
black height; if not, do the following, 
but mirrored.

● Walk down the right spine of T₁ until a 
black node v is found whose black 
height is the black height of T₂.

● Insert a new node with key k, left child 
v, and right child T₂ 

● Make this new node the right child of 
v's old parent.

● Continue as if you had just inserted k.

T₂

v

k

Keep applying 
fixup rules to k.

Keep applying 
fixup rules to k.



  

Runtime Analysis

● Need to augment the red/black tree to store the black 
height of each node.

● This fits into our augmentation framework – can be 
computed from the black heights of the left and right 
children and from the node's own color.

● Via the isometry with 2-3-4 trees, the runtime is 
O(1 + |bh₁ – bh₂|).

● This is O(log n₁ + log n₂) in the worst-case.



  

Joining Two Trees

● What if you want to join two red/black 
trees but don't have a key to join them 
with?

● Delete the minimum value from the 
second tree in time O(log n), then use 
that to join the two trees.



  

Implementing split Efficiently



  

Splitting Trees is Hard

● Challenge 1: The 
split procedure 
might cut the 
existing tree into 
lots of smaller 
pieces.

Challenge 2: 
Cutting a 
red/black tree into 
two pieces doesn't 
necessarily give 
you two red/black 
trees.
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An Observation

● Suppose we want 
to perform a split 
on some key k.

● Begin by 
searching for k. 
If we find it, 
search for its 
inorder 
successor.

● Cut all links 
found along the 
way.



  

An Observation
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to perform a split 
on some key k.

● Begin by 
searching for k. 
If we find it, 
search for its 
inorder 
successor.

● Cut all links 
found along the 
way.



  

An Observation

● Notice that 
we're left with a 
collection of 
pennants, trees 
whose roots 
have just one 
child.



  

An Observation

● Let's imagine 
uncoloring all of 
these pennant 
roots.

● The trees below 
them are almost 
red/black trees, 
but their roots 
might be red.

● Let's recolor all 
the roots black.



  

An Observation

● Let's imagine 
uncoloring all of 
these pennant 
roots.

● The trees below 
them are almost 
red/black trees, 
but their roots 
might be red.

● Let's recolor all 
the roots black.



  

An Observation

● We now have a 
bunch of 
red/black trees 
hanging off of 
pennants.

● Key idea: Find 
a way to join 
these trees back 
together to form 
the two trees 
we want.



  

Fleshing Out the Algorithm
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃ 

R₂p₆

● Do a search for the inorder 
successor of k, cutting each 
link followed.

● For each pennant, color its 
child black. We now have a 
collection of red/black trees 
hanging off of random nodes.

● Categorize each hanging tree 
as of type L or type R 
depending on whether it's a 
left or right child of its 
pennant.



  

Fleshing Out the Algorithm
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃ 

R₂p₆

● Observation 1: Look at any 
two consecutive L trees or R 
trees and the root of the 
pennant of the first tree. 
Then the key in the pennant 
root is strictly between all the 
values of those two trees.

● Observation 2: There are at 
most two trees of each black 
height hanging off of the 
pennants.



  

Fleshing Out the Algorithm

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

All keys here are less 
than or equal to k.

All keys here are 
greater than k.



  

Fleshing Out the Algorithm

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

Key idea: join all the L trees back 
together and all the R trees back 

together, using the nodes at the root of 
the pennants as the joining key. 

Because the height differences are low, 
the runtime works out to O(log n).

Key idea: join all the L trees back 
together and all the R trees back 

together, using the nodes at the root of 
the pennants as the joining key. 

Because the height differences are low, 
the runtime works out to O(log n).



  

Analyzing the Runtime

● Suppose there is one tree of each black height in L.

● What is the runtime of joining the trees in reverse 
order of black heights?

● Each join takes time O(1 + |), where bh₁ – bh₂|), where ) = O(1).

● At most O(log n) joins (the access path has length 
O(log n))

● Runtime is O(log n).



  

Analyzing the Runtime

● Suppose there are trees of very different black heights.

● What is the runtime of joining the trees in reverse 
order of black heights?

● Each join takes time O(1 + bhₛ₊₁ – bhₛ)

● Summing across all joins:

  
 

● The number of trees (k) is O(log n) and the maximum 
black height is O(log n). Runtime: O(log n).

∑
i=1

k−1

O(1+bhi+1−bhi) = O(∑
i=1

k−1

(1+bhi+1−bhi))

= O(k+∑
i=1

k−1

(bhi+1−bhi))

= O(k+bhk−bh1)



  

The Split Algorithm

● Split the tree into L pennants and R 
pennants, as before.

● Iterate across the pennants in ascending 
order of heights, joining each of the 
corresponding trees together using the 
pennant node as the join key. This takes time 
O(log n).

● There will be O(1) leftover pennant nodes. 
Insert them in time O(log n) into the proper 
trees.

● Net runtime: O(log n).



  

The Big Summary



  

Thinking about balanced multiway search 
trees made it easier for us to think about 

balanced binary search trees.

7

3 5 11

1 2 4 6 8 9 10 12



  

Multiway trees, and B-trees in particular, 
are great choices for storing large data 

structures on disk.

1 2 4 6 7 8 10 12 14 15 17 18 19 21 22 24 26

3 9 11 16 20 25

5 13 23



  

Augmented BSTs let us solve
challenging dynamic problems.

137
        Min: -17

        Max: 415

Closest: 137, 142
42

        Min: -17

        Max: 67

  Closest: 15, 21

271
        Min: 142

        Max: 415

Closest: 300, 310



  

Red/black trees can be split and joined 
together using some clever algorithms.

T₂

v
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Next Time

● Amortized Analysis
● Lying about runtime costs in an honest 

manner.
● Frameworks for Amortization

● How can we think about assigning costs?
● Revisiting Earlier Structures

● Queues, Cartesian trees, and 2-3-4 trees. 


