CS166 Handout 06P
Spring 2020 April 14, 2020

Problem Set 1: RMQ

This problem set is all about range minimum queries and the techniques that power those data struc-
tures. In the course of working through it, you'll fill in some gaps from lecture and will get to see
how to generalize these techniques to other settings. Plus, you'll get the chance to implement the
techniques from lecture, which will help solidify your understanding.

You are welcome to work on this problem set either individually or in a pair. If you work with a
partner, you should submit a single joint submission on GradeScope, rather than two separate sub-
missions.

Due Tuesday, April 21 at 2:30PM Pacific time.

2/4

Problem One: Skylines

A skyline is a geometric figure consisting of a number of variable-height boxes of width 1 placed next to
one another that all share the same baseline. Here’s some example skylines, which might give you a better
sense of where the name comes from:

4 2 3 1 2 7 1 8 3 0 5 4 4 3 2 1 1 3 7 4 2

Notice that a skyline can contain boxes of height 0. However, skylines can’t contain boxes of negative
height.

You're interested in finding the area of the largest axis-aligned rectangle that fits into a given skyline. For
example, here are the largest rectangles you can fit into the above skylines:

r_

2 7 1 8 3 0 5 4 4 3 2 1 1 3 7 4 2

4 2 3 1

Design an O(n)-time algorithm for this problem, where n is the number of constituent rectangles in the
skyline. For simplicity, you can assume that no two boxes in the skyline have the same height. Follow the
advice from our Assignment Policies handout when writing up your solution — give a brief overview of
how your algorithm works, describe it as clearly as possible, formally prove correctness, and then argue
why the runtime is O(n).

3/4

Problem Two: Area Minimum Queries
In what follows, if A is a 2D array, we'll denote by A[i, j] the entry at row i, column j, zero-indexed.

This problem concerns a two-dimensional variant of RMQ called the area minimum query problem, or
AMQ. In AMQ, you are given a fixed, two-dimensional array of values and will have some amount of
time to preprocess that array. You'll then be asked to answer queries of the form “what is the smallest
number contained in the rectangular region with upper-left corner (i, j) and lower-right corner (k, [)?”

following array:

3114159 26|53 58|97
93123 84 |64 |33 83|27
95| 2 | 88 41|97 16 | 93
9937151 5 89 |74
94145192 30|78 16 | 40
62| 8 |20 89|98 62| 80

Here, A[O, 0] is the upper-left corner, and A[S5, 6] is the lower-right corner. In this setting:
* AMQ4((0,0), (5,6)) =2
* AMQA((0, 0), (0, 6)) =26
* AMOQA4((2,2),(3,3))=5
For the purposes of this problem, let m denote the number of rows in A and n the number of columns.
i. Design and describe an (O(mn), O(min{m, n}))-time data structure for AMQ.
ii. Design and describe an (O(mn log m log n), O(1))-time data structure for AMQ.

You can improve these bounds all the way down to (O(mn), O(1)) using some very clever techniques.
This might make for a fun research project topic if you’ve liked our discussion of RMQ so far!

474

Problem Three: Hybrid RMQ Structures
Let’s begin with some new notation. For any k > 0, let's define the function log® n to be the function
log log log ... log n (k times)
For example:
log”n=n log" n=1logn log® n =1log log n log® n =log log log n
This question explores these sorts of repeated logarithms in the context of range minimum queries.

1. Using the hybrid framework, show that that for any fixed k > 1, there is an RMQ data structure
with time complexity (O(n log® n), O(1)). For notational simplicity, we'll refer to the kth of these
structures as Dk.

(Yes, we know that the Fischer-Heun structure is a (O(n), O(1)) solution to RMQ and therefore
technically meets these requirements. But for the purposes of this question, let’s imagine that you
didn’t know that such a structure existed and were instead curious to see how fast an RMQ struc-
ture you could make without resorting to the Method of Four Russians. ©)

ii. Although for each fixed k the Dk data structure has query time O(1), the query times on the Dk
structures will increase as k increases. Explain why this is the case and why this doesn’t contradict
your result from part (i).

(The rest of this section is just for fun.)
The iterated logarithm function, denoted log* n, is defined as follows:
log* n is the smallest natural number k for which log® n < 1

Intuitively, log* n measures the number of times that you have to take the logarithm of »n before n drops
to one. For example:

log*1=0 log*2 =1 log* 4 =2 log* 16 =3 log* 65,536 = 4 log* 2993 = 5

This function grows extremely slowly. For reference, the number of atoms in the universe is estimated to
be about 10* ~ 2**°, and from the values above you can see that log* 10* is 5.

For arrays of length n, the data structure Do, is an (O(n log* n), O(log* n)) solution to RMQ. Given that
log* n is, practically speaking, a constant, that makes for a fast RMQ data structure!

Problem Four: On Constant Factors
The Fischer-Heun RMQ structure picks

b=Yilog n

as its block size. Explain what would happen if we instead picked b = log, n. Specifically, address the im-
pact, if any, on the correctness and runtime of the data structure.

Generally speaking, it’s good to interrogate constant factors and other seemingly arbitrary design decisions
in a data structure. Sometimes, those choices really are arbitrary and can be tuned for performance rea-
sons. Other times, those choices are there for a specific reason, and seeing why helps you better under -
stand why things work the way they do.

