

Tries and Suffix Trees

String Data Structures

● Our next three lectures are all on the wonderful
world of string data structures.

● Why are they worth studying?
● They’re practical. These data structures were

developed to meet practical needs in data processing.
Lots of important data can be encoded as strings.

● They’re different. The questions typically asked about
strings involve properties of sequences, not individual
elements, in a way that you don’t normally otherwise see.

● They’re algorithmically interesting. The techniques
that power these data structures involve some truly
beautiful connections and observations.

Where We’re Going

● Today, we’ll cover tries and suffix trees, two
powerful data structures for exposing shared
structures in strings.

● On Thursday, we’ll see the suffix array and
LCP array, which are a more space-efficient
way of encoding suffix trees.

● Next Tuesday, we’ll see the SA-IS algorithm,
which quickly builds suffix trees and suffix
arrays, and is probably the most beautiful
divide and conquer algorithm ever invented.

Part I: Tries and Patricia Tries

A Motivating Problem

 How is this done so quickly?

The Autocomplete Problem

● We have a series of text strings T₁, T₂, …, Tₖ of
total length m. (|T₁| + … + |Tₖ| = m)

● We have a pattern string P of length n. (|P| = n).
● Goal: Find all text strings that start with P.
● If we just do a single query, then we can solve

this pretty easily.
● Just scan over all the strings and see which ones

start with P.
● Question: If we have a set of fixed text strings

and varying patterns, can we speed this up?

A Naive Solution

a n t

a n t e

a n t i q u e

a n t e l o p e

a n t e a t e r a n t e

We’re spending a lot of
time scanning shared

prefixes. Is there a way
to avoid this?

We’re spending a lot of
time scanning shared

prefixes. Is there a way
to avoid this?

ant
ante
anteater
antelope
antique

ant
ante
anteater
antelope
antique

a

n

t

e

a

t

e

r

o

p

e

 l

 i

q

u

e

ant

ante

anteater antelope

antique

This data structure is
called a trie. It comes

from the word retrieval.
It is not pronounced like

“retrieval.”

This data structure is
called a trie. It comes

from the word retrieval.
It is not pronounced like

“retrieval.”

ant
ante
anteater
antelope
antique

ant
ante
anteater
antelope
antique

a

n

t

e

a

t

e

r

o

p

e

 l

 i

q

u

e

ant

ante

anteater antelope

antique

Each edge is labeled
with a character.

Some nodes are marked
as representing words.

By convention, children
are stored in sorted

order.

A preorder traversal of
the trie prints all words

in sorted order.

Each edge is labeled
with a character.

Some nodes are marked
as representing words.

By convention, children
are stored in sorted

order.

A preorder traversal of
the trie prints all words

in sorted order.

ant
ante
anteater
antelope
antique

ant
ante
anteater
antelope
antique

a n t e

Now, do a
DFS to find
all words

rooted here.

Now, do a
DFS to find
all words

rooted here.

a

n

t

e

a

t

e

r

o

p

e

 l

 i

q

u

e

ant
ante
anteater
antelope
antique

ant
ante
anteater
antelope
antique

a

n

t

e

a

t

e

r

o

p

e

 l

 i

q

u

e

a n t w

We fell off
the trie.

There are no
matches!

We fell off
the trie.

There are no
matches!

Tries

● Recall: The total length
of our text strings is m,
and the length of our
pattern string is n.

● How long does it take to
build our trie?

● Claim: Ignoring the size
of the alphabet, the
runtime is O(m).

a

n

t

e

a

t

e

r

o

p

e

 l

 i

q

u

e

Tries

● Recall: The total length
of our text strings is m,
and the length of our
pattern string is n.

● How long does it take to
check if the pattern is a
prefix of any string?

● Claim: Ignoring the size
of the alphabet, the
runtime is O(n).

a

n

t

e

a

t

e

r

o

p

e

 l

 i

q

u

e

Tries

● Recall: The total length
of our text strings is m,
and the length of our
pattern string is n.

● How long does it take to
find all text strings that
start with the pattern?

● That’s a trickier
question.

a

n

t

e

a

t

e

r

o

p

e

 l

 i

q

u

e

Tries

● Question: In what format do we
want our matches?

● Option 1: Just print out all the
matches.

● Search for the prefix as usual.

● Do a DFS, recording the letters
seen on each branch, to rebuild all
the words.

● We can upper-bound runtime at
O(m + n), but it’s hard to say
much more than that.

● (We could upper-bound this
expression at O(m) if we’d like, but
I like showing both costs here.)

a

n

t

e

a

t

e

r

o

p

e

 l

 i

q

u

e

Tries

● Question: In what format do we
want our matches?

● Option 2: Assume each text
string has some numeric ID, and
we want all matching IDs.

● Ideally, we’d like a time
complexity of something like
O(n + z), where z is the number
of matches.

● Our current DFS can’t achieve
this; the lengths of the strings
matter.

● Can we do better?

a

n

t

e

a

t

e

r

o

p

e

 l

 i

q

u

e

1

2

3 4

5

ant
ante
anteater
antelope
antique

ant
ante
anteater
antelope
antique

a

n

t

e

a

t

e

r

o

p

e

 l

 i

q

u

e

ant$
ante$
anteater$
antelope$
antique$

ant$
ante$
anteater$
antelope$
antique$

a

n

t

e

a

t

e

r

o

p

e

 l

 i

q

u

e

a

n

t

e

a

t

e

r

$

o

p

e

$

 l

$

$

 i

q

u

e

$

ant$
ante$
anteater$
antelope$
antique$

ant$
ante$
anteater$
antelope$
antique$

The $ symbol is called
the sentinel or end-
marker. It’s a special

character that can only
appear at the ends of
words. (Think “null

terminator,”
Theoryland edition.)

The $ symbol is called
the sentinel or end-
marker. It’s a special

character that can only
appear at the ends of
words. (Think “null

terminator,”
Theoryland edition.)

a

n

t

e

a

t

e

r

$

o

p

e

$

 l

$

$

 i

q

u

e

$

ant$
ante$
anteater$
antelope$
antique$

ant$
ante$
anteater$
antelope$
antique$

By convention, the
sentinel $ precedes all

other characters.

(It really is like a null
terminator!)

By convention, the
sentinel $ precedes all

other characters.

(It really is like a null
terminator!)

a

n

t

e

a

t

e

r

$

o

p

e

$

 l

$

$

 i

q

u

e

$

ant$
ante$
anteater$
antelope$
antique$

ant$
ante$
anteater$
antelope$
antique$

Nodes now fall into one
of two classes:

Leaf nodes correspond
to words in the trie.

Internal nodes
correspond to routing

structure.

Nodes now fall into one
of two classes:

Leaf nodes correspond
to words in the trie.

Internal nodes
correspond to routing

structure.

a

n

t

e

a

t

e

r

$

o

p

e

$

 l

$

$

 i

q

u

e

$

ant$
ante$
anteater$
antelope$
antique$

ant$
ante$
anteater$
antelope$
antique$

A node is a silly node
if it is a non-root node
that only has one child.

A node is a silly node
if it is a non-root node
that only has one child.

A Patricia trie is a
trie where silly nodes
are merged into their

parents.

A Patricia trie is a
trie where silly nodes
are merged into their

parents.

a
n
t

e

a
t
e
r
$

 l
 o
 p
 e
 $

$

$ i
 q
 u
 e
 $

ant$
ante$
anteater$
antelope$
antique$

ant$
ante$
anteater$
antelope$
antique$

A node is a silly node
if it is a non-root node
that only has one child.

A node is a silly node
if it is a non-root node
that only has one child.

A Patricia trie is a
trie where silly nodes
are merged into their

parents.

A Patricia trie is a
trie where silly nodes
are merged into their

parents.

a
n
t

e

a
t
e
r
$

 l
 o
 p
 e
 $

$

$

 i
 q
 u
 e
 $

ant$
ante$
anteater$
antelope$
antique$

ant$
ante$
anteater$
antelope$
antique$

A node is a silly node
if it is a non-root node
that only has one child.

A node is a silly node
if it is a non-root node
that only has one child.

A Patricia trie is a
trie where silly nodes
are merged into their

parents.

A Patricia trie is a
trie where silly nodes
are merged into their

parents.

a
n
t

e

a
t
e
r
$

 l
 o
 p
 e
 $

$

$

 i
 q
 u
 e
 $

ant$
ante$
anteater$
antelope$
antique$

ant$
ante$
anteater$
antelope$
antique$

A node is a silly node
if it is a non-root node
that only has one child.

A node is a silly node
if it is a non-root node
that only has one child.

A Patricia trie is a
trie where silly nodes
are merged into their

parents.

A Patricia trie is a
trie where silly nodes
are merged into their

parents.

Observation 1: Every
internal node in a

Patricia trie (except
possibly the root) has
two or more children.

Observation 1: Every
internal node in a

Patricia trie (except
possibly the root) has
two or more children.

a
n
t

e

a
t
e
r
$

 l
 o
 p
 e
 $

$

$

 i
 q
 u
 e
 $

ant$
ante$
anteater$
antelope$
antique$

ant$
ante$
anteater$
antelope$
antique$

A node is a silly node
if it is a non-root node
that only has one child.

A node is a silly node
if it is a non-root node
that only has one child.

A Patricia trie is a
trie where silly nodes
are merged into their

parents.

A Patricia trie is a
trie where silly nodes
are merged into their

parents.

Observation 2:
Leaves correspond to
words; internal nodes
are there for routing

purposes.

Observation 2:
Leaves correspond to
words; internal nodes
are there for routing

purposes.

Patricia Tries

● Theorem: The number of nodes in
a Patricia trie with k words is
always O(k), regardless of what
those words are.

Proof Sketch: There are k leaves,
one per word. Remove all internal
nodes, leaving a forest of k trees.

Add the internal nodes back one at
a time. Each addition (except
possibly root) decreases the
number of trees in the forest by at
least one, since each (non-root)
internal node has at least two
children. This means there are at
most k internal nodes, for a total
of O(k) nodes. ■

a
n
t

e

a
t
e
r
$

 l
 o
 p
 e
 $

$

$

 i
 q
 u
 e
 $

Patricia Tries

● Theorem: The number of nodes in
a Patricia trie with k words is
always O(k), regardless of what
those words are.

Proof Sketch: There are k leaves,
one per word. Remove all internal
nodes, leaving a forest of k trees.

Add the internal nodes back one at
a time. Each addition (except
possibly root) decreases the
number of trees in the forest by at
least one, since each (non-root)
internal node has at least two
children. This means there are at
most k internal nodes, for a total
of O(k) nodes. ■

There are k
leaves, one
per word in
the trie.

There are k
leaves, one
per word in
the trie.

Patricia Tries

● Theorem: The number of nodes in
a Patricia trie with k words is
always O(k), regardless of what
those words are.

Proof Sketch: There are k leaves,
one per word. Remove all internal
nodes, leaving a forest of k trees.

Add the internal nodes back one at
a time. Each addition (except
possibly root) decreases the
number of trees in the forest by at
least one, since each (non-root)
internal node has at least two
children. This means there are at
most k internal nodes, for a total
of O(k) nodes. ■

Think of
this as a

forest of k
different
trees.

Think of
this as a

forest of k
different
trees.

Patricia Tries

● Theorem: The number of nodes in
a Patricia trie with k words is
always O(k), regardless of what
those words are.

Proof Sketch: There are k leaves,
one per word. Remove all internal
nodes, leaving a forest of k trees.

Add the internal nodes back one at
a time. Each addition (except
possibly root) decreases the
number of trees in the forest by at
least one, since each (non-root)
internal node has at least two
children. This means there are at
most k internal nodes, for a total
of O(k) nodes. ■

a
t
e
r
$

 l
 o
 p
 e
 $

$

Adding an internal
node merges two or
more trees together,

decreasing the
number of trees by

at least one.

Adding an internal
node merges two or
more trees together,

decreasing the
number of trees by

at least one.

Patricia Tries

● Theorem: The number of nodes in
a Patricia trie with k words is
always O(k), regardless of what
those words are.

Proof Sketch: There are k leaves,
one per word. Remove all internal
nodes, leaving a forest of k trees.

Add the internal nodes back one at
a time. Each addition (except
possibly root) decreases the
number of trees in the forest by at
least one, since each (non-root)
internal node has at least two
children. This means there are at
most k internal nodes, for a total
of O(k) nodes. ■

a
n
t

e

a
t
e
r
$

 l
 o
 p
 e
 $

$

$

 i
 q
 u
 e
 $

Adding the root might
not decrease the

number of trees, but
there’s only one root.

Adding the root might
not decrease the

number of trees, but
there’s only one root.

Patricia Tries

● Theorem: The number of nodes in
a Patricia trie with k words is
always O(k), regardless of what
those words are.

● Proof Sketch: There are k leaves,
one per word. Remove all internal
nodes, leaving a forest of k trees.

Add the internal nodes back one at
a time. Each addition (except
possibly root) decreases the
number of trees in the forest by at
least one, since each (non-root)
internal node has at least two
children. This means there are at
most k internal nodes, for a total
of O(k) nodes. ■

a
n
t

e

a
t
e
r
$

 l
 o
 p
 e
 $

$

$

 i
 q
 u
 e
 $

Patricia Tries

● Claim: If each leaf in a
Patricia trie is annotated
with the index of the
word it comes from, all
strings starting with a
given prefix can be
found in time O(n + z),
where n is the length of
that prefix and z is the
number of matches.

● Question: How is this
possible?

a
n
t

e

a
t
e
r
$

3 4

 l
 o
 p
 e
 $

1

$

2

$

5

 i
 q
 u
 e
 $

Patricia Tries

● Use a two-phase search algorithm!
● (Character-aware) Read the

prefix to search for, matching
characters as you walk down the
Patricia trie.
● Time required: O(n), since we have to

read all the characters of the prefix.
● (Character-blind) If you didn’t

walk off the trie, do a DFS below
your current point to find all leaves,
ignoring the strings on the edges.
● Time required: O(z). If there are z

matches, there are z leaves to explore.
As we saw earlier, in a Patricia trie, a
subtree with z leaves has O(z) total
nodes.

a
n
t

e

a
t
e
r
$

3 4

 l
 o
 p
 e
 $

1

$

2

$

5

 i
 q
 u
 e
 $

The Story So Far

● Adopting our
notation from RMQ, a
Patricia trie gives an
⟨O(m), O(n + z)⟩
solution to prefix
matching.

● Those runtimes hide
the effect of the
alphabet size; take
some time to evaluate
those tradeoffs!

a
n
t

e

a
t
e
r
$

3 4

 l
 o
 p
 e
 $

1

$

2

$

5

 i
 q
 u
 e
 $

Part II: Suffix Trees

Two Motivating Problems

The United States Statutes at Large contains all
legislation ever passed in the United States.

Make it searchable.

Cancers often have repeated copies the same gene.

Given a cancer genome (length ~3,000,000,000),
find the longest repeated DNA sequence.

Patricia tries are great tools for finding prefixes.

These problems involve looking for substrings.

Can we use what we’ve developed so far?

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b b e r t i i b b eg t

b e

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b

b e

b e r t i i b b eg t

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b

b e

b e r t i i b b eg t

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b b e r t i i b b eg t

b e

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b b e r t i i bg

b e

b e t

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x

f l i b b e r t i i bg

b e

b e t

A Fundamental Theorem

● The fundamental theorem of stringology
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x
● To find all matches of w in x, we just

need to find all suffixes of x that start
with w.

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
onsense$
nsense$
sense$
ense$
nse$
se$
e$
$

Suffix Trees

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● A suffix tree for
a string T is a
Patricia trie of all
suffixes of T.

● Each leaf is
labeled with the
starting index of
that suffix.

Substring Search

● Claim: Once we
have a suffix tree
for a string T, we
can find all
matches of a
pattern P of length
n in time O(n + z),
where z is the
number of matches.

● Idea: Use the
standard Patricia
trie search from
before!

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

Substring Search

● Algorithm: Use
the standard
Patricia trie search!

● Look up the pattern
in the suffix tree,
then use a DFS to
find all matches.

● Looking up the
pattern takes time
O(n).

● Finding all matches
takes time O(z). nonsense$

012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

Cancers often have repeated copies the same gene.

Given a cancer genome (length ~3,000,000,000),
find the longest repeated DNA sequence.

The Anatomy of a Suffix Tree

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● Think back to Cartesian
trees. We can describe
them in two ways.
● Mechnically: Hoist

the minimum element
up to the root, then
recursively process the
two subarrays.

● Operationally: It’s a
min-heap whose
inorder traversal gives
the original array.

● We now have a
mechanical definition of
a suffix tree. Can we get
can operational one?

The Anatomy of a Suffix Tree

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● The leaves of a
suffix tree
correspond to
the suffixes of
the text string T.

● Question: What
do the internal
nodes of the
suffix tree
correspond to?

The Anatomy of a Suffix Tree

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● In this suffix tree,
there are internal
nodes for the
substrings e, n, nse,
and se.

● All these substrings
appear at least twice
in the original string!

● More generally: if
there is an internal
node for a substring
α, then α appears at
least twice in the
original text.

The Anatomy of a Suffix Tree

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● Question: why is
there an internal node
for the substring n,
but isn’t there an
internal node for the
substring ns?

● Every occurrence of
ns can be extended by
appending the same
character (e)

● Not all occurrences of
n can be extended by
appending the same
character.

The Anatomy of a Suffix Tree

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● A branching word in
T$ is a string ω such
that there are
characters a ≠ b
where ωa and ωb are
substrings of T$.
● Edge case: the empty

string is always
considered branching.

● Theorem: The suffix
tree for a string T has
an internal node for a
string ω if and only if
ω is a branching word
in T$.

The Anatomy of a Suffix Tree

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● Combining our previous
points together, we can
give a (partial)
operational definition of
a suffix tree:

The leaves of a suffix
tree for T correspond
to suffixes of T$, and
the internal nodes of

a suffix tree for T
correspond to

branching words of
T$.

● We’ll make extensive
use of this fact going
forward.

Longest Repeated Substrings

● Theorem: The longest repeated substring of
a string T must be a branching word in T$.

● Proof idea: If ω isn’t branching, it can’t be
the longest repeated substring.

f l i b b e r t i i b b eg t

Longest Repeated Substrings

f l i b i b b eg tb e r t i

The substring berti isn’t
repeated.

It therefore can’t be the
longest repeated substring.

The substring berti isn’t
repeated.

It therefore can’t be the
longest repeated substring.

● Theorem: The longest repeated substring of
a string T must be a branching word in T$.

● Proof idea: If ω isn’t branching, it can’t be
the longest repeated substring.

Longest Repeated Substrings

f l i e r t i i eg tb bb b

● Theorem: The longest repeated substring of
a string T must be a branching word in T$.

● Proof idea: If ω isn’t branching, it can’t be
the longest repeated substring.

Longest Repeated Substrings

f l i r t i ig tb bb be e

Every instance of bb
can be extended to bbe.

It therefore can’t be the
longest repeated

substring.

Every instance of bb
can be extended to bbe.

It therefore can’t be the
longest repeated

substring.

● Theorem: The longest repeated substring of
a string T must be a branching word in T$.

● Proof idea: If ω isn’t branching, it can’t be
the longest repeated substring.

Longest Repeated Substrings

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● Theorem: The
longest repeated
substring of T is a
branching word in
T$.

● To find the
longest repeated
substring of a
string T, we just
need to find the
internal node with
the longest label!

Longest Repeated Substrings

nonsense$
012345678

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

$

$ n
s
e
$

● Given a suffix tree for a
string T of length m,
there is an O(m)-time
algorithm for finding the
longest repeated
substring of m.

● Basic idea: Run a DFS
over the tree and find
the internal node with
the longest string on its
path from the root.

● There are some subtle
details required to get
this to run in time O(m).
Think this over! See
what you find.

s
e

e n
 s
 e

More to Explore

● We’ve barely scratched the surface of suffix trees.
They can be used for tons of other problems.

● A sampling:
● Generalized suffix trees: Solves fast substring

searching over multiple text strings, not just a single
text string.

● Approximate string matching: Given a text string T
and a pattern P, see the closest match to P in T.

● Fast matrix multiplication: The matrix multiplications
needed in computing word embeddings can, amazingly,
be optimized using suffix trees.

● This is a rich space to explore for a research
project, if that’s something you’d like to do!

Next Time

● Suffix Arrays
● A space-efficient alternative to suffix trees.

● LCP Arrays
● Implicitly capturing suffix tree structure.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

