
  

Tries and Suffix Trees



  

String Data Structures

● Our next three lectures are all on the wonderful 
world of string data structures.

● Why are they worth studying?
● They’re practical. These data structures were 

developed to meet practical needs in data processing. 
Lots of important data can be encoded as strings.

● They’re different. The questions typically asked about 
strings involve properties of sequences, not individual 
elements, in a way that you don’t normally otherwise see.

● They’re algorithmically interesting. The techniques 
that power these data structures involve some truly 
beautiful connections and observations.



  

Where We’re Going

● Today, we’ll cover tries and suffix trees, two 
powerful data structures for exposing shared 
structures in strings.

● On Thursday, we’ll see the suffix array and 
LCP array, which are a more space-efficient 
way of encoding suffix trees.

● Next Tuesday, we’ll see the SA-IS algorithm, 
which quickly builds suffix trees and suffix 
arrays, and is probably the most beautiful 
divide and conquer algorithm ever invented.



  

Part I: Tries and Patricia Tries



  

A Motivating Problem



  How is this done so quickly?



  

The Autocomplete Problem

● We have a series of text strings T₁, T₂, …, Tₖ of 
total length m. (|T₁| + … + |Tₖ| = m)

● We have a pattern string P of length n. (|P| = n).
● Goal: Find all text strings that start with P.
● If we just do a single query, then we can solve 

this pretty easily.
● Just scan over all the strings and see which ones 

start with P.
● Question: If we have a set of fixed text strings 

and varying patterns, can we speed this up?



  

A Naive Solution
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Each edge is labeled 
with a character.

 

Some nodes are marked 
as representing words.

 

By convention, children 
are stored in sorted 

order.
 

A preorder traversal of 
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the trie prints all words 

in sorted order. 
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Tries

● Recall: The total length 
of our text strings is m, 
and the length of our 
pattern string is n.

● How long does it take to 
build our trie?

● Claim: Ignoring the size 
of the alphabet, the 
runtime is O(m).
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Tries

● Recall: The total length 
of our text strings is m, 
and the length of our 
pattern string is n.

● How long does it take to 
check if the pattern is a 
prefix of any string?

● Claim: Ignoring the size 
of the alphabet, the 
runtime is O(n).
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Tries

● Recall: The total length 
of our text strings is m, 
and the length of our 
pattern string is n.

● How long does it take to 
find all text strings that 
start with the pattern?

● That’s a trickier 
question.
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Tries

● Question: In what format do we 
want our matches?

● Option 1: Just print out all the 
matches.

● Search for the prefix as usual.

● Do a DFS, recording the letters 
seen on each branch, to rebuild all 
the words.

● We can upper-bound runtime at 
O(m + n), but it’s hard to say 
much more than that.

● (We could upper-bound this 
expression at O(m) if we’d like, but 
I like showing both costs here.)
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Tries

● Question: In what format do we 
want our matches?

● Option 2: Assume each text 
string has some numeric ID, and 
we want all matching IDs.

● Ideally, we’d like a time 
complexity of something like 
O(n + z), where z is the number 
of matches.

● Our current DFS can’t achieve 
this; the lengths of the strings 
matter.

● Can we do better?
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The $ symbol is called 
the sentinel or end-
marker. It’s a special 

character that can only 
appear at the ends of 
words. (Think “null 

terminator,” 
Theoryland edition.)
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other characters.
 

(It really is like a null 
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Nodes now fall into one 
of two classes:

 

Leaf nodes correspond 
to words in the trie.

 

Internal nodes 
correspond to routing 

structure.
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A node is a silly node 
if it is a non-root node 
that only has one child.

A node is a silly node 
if it is a non-root node 
that only has one child.

A Patricia trie is a 
trie where silly nodes 
are merged into their 

parents.
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Patricia Tries

● Theorem: The number of nodes in 
a Patricia trie with k words is 
always O(k), regardless of what 
those words are.

Proof Sketch: There are k leaves, 
one per word. Remove all internal 
nodes, leaving a forest of k trees.

Add the internal nodes back one at 
a time. Each addition (except 
possibly root) decreases the 
number of trees in the forest by at 
least one, since each (non-root) 
internal node has at least two 
children. This means there are at 
most k internal nodes, for a total 
of O(k) nodes. ■
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Patricia Tries

● Theorem: The number of nodes in 
a Patricia trie with k words is 
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Patricia Tries

● Theorem: The number of nodes in 
a Patricia trie with k words is 
always O(k), regardless of what 
those words are.

Proof Sketch: There are k leaves, 
one per word. Remove all internal 
nodes, leaving a forest of k trees.

Add the internal nodes back one at 
a time. Each addition (except 
possibly root) decreases the 
number of trees in the forest by at 
least one, since each (non-root) 
internal node has at least two 
children. This means there are at 
most k internal nodes, for a total 
of O(k) nodes. ■

Think of 
this as a 

forest of k 
different 
trees.

Think of 
this as a 

forest of k 
different 
trees.



  

Patricia Tries

● Theorem: The number of nodes in 
a Patricia trie with k words is 
always O(k), regardless of what 
those words are.

Proof Sketch: There are k leaves, 
one per word. Remove all internal 
nodes, leaving a forest of k trees.

Add the internal nodes back one at 
a time. Each addition (except 
possibly root) decreases the 
number of trees in the forest by at 
least one, since each (non-root) 
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Patricia Tries

● Theorem: The number of nodes in 
a Patricia trie with k words is 
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those words are.
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Patricia Tries

● Theorem: The number of nodes in 
a Patricia trie with k words is 
always O(k), regardless of what 
those words are.

● Proof Sketch: There are k leaves, 
one per word. Remove all internal 
nodes, leaving a forest of k trees.

Add the internal nodes back one at 
a time. Each addition (except 
possibly root) decreases the 
number of trees in the forest by at 
least one, since each (non-root) 
internal node has at least two 
children. This means there are at 
most k internal nodes, for a total 
of O(k) nodes. ■
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Patricia Tries

● Claim: If each leaf in a 
Patricia trie is annotated 
with the index of the 
word it comes from, all 
strings starting with a 
given prefix can be 
found in time O(n + z), 
where n is the length of 
that prefix and z is the 
number of matches.

● Question: How is this 
possible?
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Patricia Tries

● Use a two-phase search algorithm!
● (Character-aware) Read the 

prefix to search for, matching 
characters as you walk down the 
Patricia trie.
● Time required: O(n), since we have to 

read all the characters of the prefix.
● (Character-blind) If you didn’t 

walk off the trie, do a DFS below 
your current point to find all leaves, 
ignoring the strings on the edges.
● Time required: O(z). If there are z 

matches, there are z leaves to explore. 
As we saw earlier, in a Patricia trie, a 
subtree with z leaves has O(z) total 
nodes.
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The Story So Far

● Adopting our 
notation from RMQ, a 
Patricia trie gives an 
⟨O(m), O(n + z)⟩ 
solution to prefix 
matching.

● Those runtimes hide 
the effect of the 
alphabet size; take 
some time to evaluate 
those tradeoffs!
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Part II: Suffix Trees



  

Two Motivating Problems



  

The United States Statutes at Large contains all 
legislation ever passed in the United States.

 

Make it searchable.



  

Cancers often have repeated copies the same gene.
 

Given a cancer genome (length ~3,000,000,000),
find the longest repeated DNA sequence.



  

Patricia tries are great tools for finding prefixes.

These problems involve looking for substrings.
  

Can we use what we’ve developed so far?



  

A Fundamental Theorem

● The fundamental theorem of stringology 
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x
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A Fundamental Theorem

● The fundamental theorem of stringology 
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x
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A Fundamental Theorem

● The fundamental theorem of stringology 
says that, given two strings w and x, that

w is a substring of x
if and only if

w is a prefix of a suffix of x
● To find all matches of w in x, we just 

need to find all suffixes of x that start 
with w.
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Suffix Trees

nonsense$
012345678

n  

8

7

4

0

5

2

1
3

6

o   
n   
s   
e   
n   
s   
e   
$   

s
e

n
s
e
$

$   

 n 
 s 
 e 
 $ 

$   

         o
         n
         s
         e
         n
         s
         e
         $

              s
              e

$                e          

$   n
s
e
$

● A suffix tree for
a string T is a 
Patricia trie of all 
suffixes of T.

● Each leaf is 
labeled with the 
starting index of 
that suffix.



  

Substring Search

● Claim: Once we 
have a suffix tree 
for a string T, we 
can find all 
matches of a 
pattern P of length 
n in time O(n + z), 
where z is the 
number of matches.

● Idea: Use the 
standard Patricia 
trie search from 
before!
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Substring Search

● Algorithm: Use 
the standard 
Patricia trie search!

● Look up the pattern 
in the suffix tree, 
then use a DFS to 
find all matches.

● Looking up the 
pattern takes time 
O(n).

● Finding all matches 
takes time O(z). nonsense$
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Cancers often have repeated copies the same gene.
 

Given a cancer genome (length ~3,000,000,000),
find the longest repeated DNA sequence.



  

The Anatomy of a Suffix Tree
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● Think back to Cartesian 
trees. We can describe 
them in two ways.
● Mechnically: Hoist 

the minimum element 
up to the root, then 
recursively process the 
two subarrays.

● Operationally: It’s a 
min-heap whose 
inorder traversal gives 
the original array.

● We now have a 
mechanical definition of 
a suffix tree. Can we get 
can operational one?



  

The Anatomy of a Suffix Tree
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● The leaves of a 
suffix tree 
correspond to 
the suffixes of 
the text string T.

● Question: What 
do the internal 
nodes of the 
suffix tree 
correspond to?



  

The Anatomy of a Suffix Tree
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● In this suffix tree, 
there are internal 
nodes for the 
substrings e, n, nse, 
and se.

● All these substrings 
appear at least twice 
in the original string!

● More generally: if 
there is an internal 
node for a substring 
α, then α appears at 
least twice in the 
original text.



  

The Anatomy of a Suffix Tree
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● Question: why is 
there an internal node 
for the substring n, 
but isn’t there an 
internal node for the 
substring ns?

● Every occurrence of 
ns can be extended by 
appending the same 
character (e)

● Not all occurrences of 
n can be extended by 
appending the same 
character.



  

The Anatomy of a Suffix Tree
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● A branching word in 
T$ is a string ω such 
that there are 
characters a ≠ b 
where ωa and ωb are 
substrings of T$.
● Edge case: the empty 

string is always 
considered branching.

● Theorem: The suffix 
tree for a string T has 
an internal node for a 
string ω if and only if 
ω is a branching word 
in T$.



  

The Anatomy of a Suffix Tree
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● Combining our previous 
points together, we can 
give a (partial) 
operational definition of 
a suffix tree:

The leaves of a suffix 
tree for T correspond 
to suffixes of T$, and 
the internal nodes of 

a suffix tree for T 
correspond to 

branching words of 
T$.

● We’ll make extensive 
use of this fact going 
forward.



  

Longest Repeated Substrings

● Theorem: The longest repeated substring of 
a string T must be a branching word in T$.

● Proof idea: If ω isn’t branching, it can’t be 
the longest repeated substring.

f l i b b e r t i i b b eg t



  

Longest Repeated Substrings

f l i b i b b eg tb e r t i

The substring berti isn’t 
repeated.

  

It therefore can’t be the 
longest repeated substring.

The substring berti isn’t 
repeated.

  

It therefore can’t be the 
longest repeated substring.

● Theorem: The longest repeated substring of 
a string T must be a branching word in T$.

● Proof idea: If ω isn’t branching, it can’t be 
the longest repeated substring.



  

Longest Repeated Substrings

f l i e r t i i eg tb bb b

● Theorem: The longest repeated substring of 
a string T must be a branching word in T$.

● Proof idea: If ω isn’t branching, it can’t be 
the longest repeated substring.



  

Longest Repeated Substrings

f l i r t i ig tb bb be e

Every instance of bb 
can be extended to bbe.

 

It therefore can’t be the 
longest repeated 

substring.

Every instance of bb 
can be extended to bbe.

 

It therefore can’t be the 
longest repeated 

substring.

● Theorem: The longest repeated substring of 
a string T must be a branching word in T$.

● Proof idea: If ω isn’t branching, it can’t be 
the longest repeated substring.
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● Theorem: The 
longest repeated 
substring of T is a 
branching word in 
T$.

● To find the 
longest repeated 
substring of a 
string T, we just 
need to find the 
internal node with 
the longest label!



  

Longest Repeated Substrings
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● Given a suffix tree for a 
string T of length m, 
there is an O(m)-time 
algorithm for finding the 
longest repeated 
substring of m.

● Basic idea: Run a DFS 
over the tree and find 
the internal node with 
the longest string on its 
path from the root.

● There are some subtle 
details required to get 
this to run in time O(m). 
Think this over! See 
what you find.

s
e

e          n  
              s
              e



  

More to Explore

● We’ve barely scratched the surface of suffix trees. 
They can be used for tons of other problems.

● A sampling:
● Generalized suffix trees: Solves fast substring 

searching over multiple text strings, not just a single 
text string.

● Approximate string matching: Given a text string T 
and a pattern P, see the closest match to P in T.

● Fast matrix multiplication: The matrix multiplications 
needed in computing word embeddings can, amazingly, 
be optimized using suffix trees.

● This is a rich space to explore for a research 
project, if that’s something you’d like to do!



  

Next Time

● Suffix Arrays
● A space-efficient alternative to suffix trees.

● LCP Arrays
● Implicitly capturing suffix tree structure.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

