
  

Building Suffix Arrays



  

Recap from Last Time



  

Key Intuition: The efficiency in a suffix tree is largely due to
1. keeping the suffixes in sorted order, and
2. exposing branching words.
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Suffix Arrays

● A suffix array for a 
string T is a sorted 
array of the suffixes 
of the string T$.

● Suffix arrays distill 
out just the first 
component of suffix 
trees: they store 
suffixes in sorted 
order.
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Storing Suffix Arrays

● Idea: Don’t store 
the suffixes 
themselves. Just 
store the starting 
positions of the 
suffixes.

● Space: Θ(m), and 
with only one 
machine word used 
per character of 
input. ABANANABANDANA$
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LCP Arrays

● The LCP array, 
often denoted H, is 
an array where H[i] 
is the length of the 
LCP of the ith and 
(i+1)st suffixes in 
the suffix array.

● LCP arrays can be 
computed in time 
O(m) using Kasai’s 
algorithm.
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Runtime Analysis

● Suffix trees give an

● ⟨O(m), O(n + z)⟩-time data structure for the substring 
search problem, and an

● O(m)-time solution for longest repeated substring.

● Suffix arrays, combined with LCP arrays, give an

● ⟨O(m), O(n + log m + z)⟩-time data structure for the 
substring search problem, and an

● O(m)-time solution for longest repeated substring.

● All of these analyses assume that

● we can build a suffix tree in time O(m), and

● we can build a suffix array in time O(m).

● Question: How is this possible?



  

New Stuff!



  

Suffix Tree
Suffix Array

+
LCP Array

O(m)
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Suffix Tree
Suffix Array

+
LCP Array

O(m)
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A Linear-Time Algorithm

● Construct the LCP array for the suffix array.

● Construct a Cartesian tree from that LCP array.

● Run a DFS over the Cartesian tree, adding in 
the suffixes in the order they appear whenever 
a node has a missing child.

● Fuse together any parent and child nodes with 
the same number in them.

● Assign labels to the edges based on the LCP 
values.

● Total time: O(m). Question: Why does this work?
As a hint, what’s the connection 

between LCP arrays and suffix trees?

Question: Why does this work?
As a hint, what’s the connection 

between LCP arrays and suffix trees?



  

Constructing Suffix Arrays



  

The Timeline
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publishes the 
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SACA called 
SA-IS.
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Some Observations about Suffix Arrays
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Observation: We can partition 
the suffix array into buckets, 
where each bucket consists of 
all suffixes starting with the 

same first character.
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Theorem: A suffix starting at position k is an S-type suffix if
 

    · Text[k] < Text[k+1], or
    · Text[k] = Text[k+1] and the suffix at index k+1 is S-type, or
    · Text[k] = $.
 

A suffix starting at position k is a L-type suffix if
 

    · Text[k] > Text[k+1], or
    · Text[k] = Text[k+1] and the suffix at position k+1 is L-type.
 

We can tag each suffix as S-type or L-type in time O(m) by 
scanning Text from right-to-left and applying the above rules.
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Where We Stand

● We can efficiently classify each suffix as 
either S-type or L-type in time O(m).

● We know a good amount about the 
relative positioning of the suffixes:

● All suffixes are bucketed by their first 
character.

● All L-type suffixes come before all S-type 
suffixes.

● If we can get everything relatively 
positioned within its group, we’re done!



  

SA-IS at a Glance

● There are three core insights that collectively give us the 
SA-IS algorithm.

● First:

There is a proper subset of the suffixes that, if 
sorted, can be used to recover the order of all the 

remaining suffixes.

● Second: 

Those suffixes can be broken apart into blocks of 
characters such that the order of the suffixes 

depends purely on the order of the blocks.

● Third:

With the proper preprocessing, those suffixes can be 
sorted via a recursive call on a smaller input string.
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These other suffixes starting with A 
are S-type, but suffix 19 is L-type. 

Therefore, suffix 19 wins on tiebreaks.

These other suffixes starting with A 
are S-type, but suffix 19 is L-type. 

Therefore, suffix 19 wins on tiebreaks.
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This needs to go with the 
other G suffixes. Suffix 18 is 

L-type and the others are
S-type, so suffix 18 wins on 

tiebreaks.

This needs to go with the 
other G suffixes. Suffix 18 is 

L-type and the others are
S-type, so suffix 18 wins on 

tiebreaks.
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L C G G AA $

Suffix 15 needs to go with 
the other C suffixes. Again, 
it’s L-type and the others 
are S-type, so suffix 15 

wins on tiebreaks.

Suffix 15 needs to go with 
the other C suffixes. Again, 
it’s L-type and the others 
are S-type, so suffix 15 

wins on tiebreaks.
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We need to move 
this to the C suffixes.

We need to move 
this to the C suffixes.

We know it precedes 
this S-type suffix.

We know it precedes 
this S-type suffix.

How does it 
compare to this 
L-type suffix?

How does it 
compare to this 
L-type suffix?
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The suffix at index 15 
is C, followed by the 
suffix at index 16.

The suffix at index 15 
is C, followed by the 
suffix at index 16.

Suffix 11

Suffix 16

Conclusion: This suffix goes after 
the L-type suffixes starting with C and 
before S-type suffixes starting with C.

Conclusion: This suffix goes after 
the L-type suffixes starting with C and 
before S-type suffixes starting with C.

The suffix at index 10 
is C, followed by the 
suffix at index 11.

The suffix at index 10 
is C, followed by the 
suffix at index 11.
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We know it precedes 
these S-type suffixes.

We know it precedes 
these S-type suffixes.

How does it 
compare to this 
L-type suffix? 

How does it 
compare to this 
L-type suffix? 
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Suffix 5 is G followed 
by suffix 6.

Suffix 18 is G followed 
by suffix 19.

Suffix 5 is G followed 
by suffix 6.

Suffix 18 is G followed 
by suffix 19.

Suffix 6

Suffix 19
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9 > 10 C T T C GA G A …L

5 G T T C TA G A …L



  

Some Observations

● All the new suffixes we uncover are L-type.

● Whenever we uncover a new suffix:

● that suffix comes before all S-type suffixes in the 
list with the same first character, and

● that suffix comes after all L-type suffixes in the 
list with the same first character.

● Notice that we never make any string 
comparisons in the course of carrying out 
this multiway merge!

● If we can maintain these buckets efficiently, 
we could complete this merge in time O(m).



  

Okay, this next part is pretty cool.
Props to Ko and Aluru for figuring it out.
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We can compute the bucket boundaries in time 
O(m) by just counting up how frequently each 

character appears in the string. If we store 
those boundaries in an array indexed by 

character, we can put each element in the right 
place in time O(1).

Total time so far: O(m).

We can compute the bucket boundaries in time 
O(m) by just counting up how frequently each 

character appears in the string. If we store 
those boundaries in an array indexed by 

character, we can put each element in the right 
place in time O(1).

Total time so far: O(m).
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Watch how we 
implement the multiway 

merge. 

Watch how we 
implement the multiway 

merge. 
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G T C CT TG T T C A G G A

19 1815 10 5 14 9 117 12 7

GG AA

for (each index i in SA) {
   if (SA[i] isn't empty and SA[i] > 0 and
       text[SA[i] - 1] is L-type) {
      put SA[i] - 1 at the next free slot
        at the front of text[SA[i] – 1];
   }
}

for (each index i in SA) {
   if (SA[i] isn't empty and SA[i] > 0 and
       text[SA[i] - 1] is L-type) {
      put SA[i] - 1 at the next free slot
        at the front of text[SA[i] – 1];
   }
}
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Theorem: If you have all the L-type suffixes in sorted 
order, you can use that to induce the order of the S-type 
suffixes by making a reverse pass over the array and 
following a similar algorithm.
 

Important detail: The ends of each bucket currently 
have some, but not all, of the S-type suffixes in them. 
These items may be out of place because we don’t 
know how they relate to other S-type suffixes. Therefore, 
when doing this backwards pass, we’ll allow ourselves to 
overwrite the old S-type suffixes as we go. Anything that 
wasn’t overwritten was already in the right place.

Theorem: If you have all the L-type suffixes in sorted 
order, you can use that to induce the order of the S-type 
suffixes by making a reverse pass over the array and 
following a similar algorithm.
 

Important detail: The ends of each bucket currently 
have some, but not all, of the S-type suffixes in them. 
These items may be out of place because we don’t 
know how they relate to other S-type suffixes. Therefore, 
when doing this backwards pass, we’ll allow ourselves to 
overwrite the old S-type suffixes as we go. Anything that 
wasn’t overwritten was already in the right place.
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Theorem: If you have all the L-type suffixes in sorted 
order, you can use that to induce the order of the S-type 
suffixes by making a reverse pass over the array and 
following a similar algorithm.
 

Important detail: The ends of each bucket currently 
have some, but not all, of the S-type suffixes in them. 
These items may be out of place because we don’t 
know how they relate to other S-type suffixes. Therefore, 
when doing this backwards pass, we’ll allow ourselves to 
overwrite the old S-type suffixes as we go. Anything that 
wasn’t overwritten was already in the right place.

Theorem: If you have all the L-type suffixes in sorted 
order, you can use that to induce the order of the S-type 
suffixes by making a reverse pass over the array and 
following a similar algorithm.
 

Important detail: The ends of each bucket currently 
have some, but not all, of the S-type suffixes in them. 
These items may be out of place because we don’t 
know how they relate to other S-type suffixes. Therefore, 
when doing this backwards pass, we’ll allow ourselves to 
overwrite the old S-type suffixes as we go. Anything that 
wasn’t overwritten was already in the right place.
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reset the indices of each bucket's next free slot at the end.
for (each index i in SA, in reverse order) {
   if (SA[i] isn't empty and SA[i] > 0 and
       text[SA[i] - 1] is S-type) {
      put SA[i] - 1 at the next free slot
        at the end of text[SA[i] – 1];
   }
}

reset the indices of each bucket's next free slot at the end.
for (each index i in SA, in reverse order) {
   if (SA[i] isn't empty and SA[i] > 0 and
       text[SA[i] - 1] is S-type) {
      put SA[i] - 1 at the next free slot
        at the end of text[SA[i] – 1];
   }
}
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reset the indices of each bucket's next free slot at the end.
for (each index i in SA, in reverse order) {
   if (SA[i] isn't empty and SA[i] > 0 and
       text[SA[i] - 1] is S-type) {
      put SA[i] - 1 at the next free slot
        at the end of text[SA[i] – 1];
   }
}

reset the indices of each bucket's next free slot at the end.
for (each index i in SA, in reverse order) {
   if (SA[i] isn't empty and SA[i] > 0 and
       text[SA[i] - 1] is S-type) {
      put SA[i] - 1 at the next free slot
        at the end of text[SA[i] – 1];
   }
}
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reset the indices of each bucket's next free slot at the end.
for (each index i in SA, in reverse order) {
   if (SA[i] isn't empty and SA[i] > 0 and
       text[SA[i] - 1] is S-type) {
      put SA[i] - 1 at the next free slot
        at the end of text[SA[i] – 1];
   }
}

reset the indices of each bucket's next free slot at the end.
for (each index i in SA, in reverse order) {
   if (SA[i] isn't empty and SA[i] > 0 and
       text[SA[i] - 1] is S-type) {
      put SA[i] - 1 at the next free slot
        at the end of text[SA[i] – 1];
   }
}
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To Recap

● Suppose that – somehow – we can sort the LMS 
suffixes.

● We can then make three linear scans to sort all the 
suffixes:

● one reverse pass over the sorted LMS suffixes, placing 
them at the ends of their buckets;

● one forward pass over the suffix array, placing L-type 
suffixes at the fronts of their buckets; and

● one reverse pass over the suffix array, placing S-type 
suffix at the ends of their buckets (making sure to reset 
the end positions of each bucket first.)

● This runs in time O(m) and has excellent locality of 
reference. It’s incredibly fast in practice.



  

SA-IS at a Glance

● There are three core insights that collectively give us the 
SA-IS algorithm.

● First:

There is a proper subset of the suffixes that, if 
sorted, can be used to recover the order of all the 

remaining suffixes.

● Second: 

Those suffixes can be broken apart into blocks of 
characters such that the order of the suffixes 

depends purely on the order of the blocks.

● Third:

With the proper preprocessing, those suffixes can be 
sorted via a recursive call on a smaller input string.



  

SA-IS at a Glance

There are three core insights that collectively give us the 
SA-IS algorithm.

First:

There is a proper subset of the suffixes that, if 
sorted, can be used to recover the order of all the 

remaining suffixes.

● Second: 

Those suffixes can be broken apart into blocks of 
characters such that the order of the suffixes 

depends purely on the order of the blocks.

Third:

With the proper preprocessing, those suffixes can be 
sorted via a recursive call on a smaller input string.



  G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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S L S S S L S L S L L S L S L L S L L SL

C C C G A T G T C A T G T C A G G $A

A T G T C A T G T C A G G $A

G T C A T G T C A G G $A

A T G T C A G G $A

G T C A G G $A

A G G $A

$

Observation: The comparisons 
between these strings seem to be 

boiling down to comparisons 
between their blocks.

 

Why is that?

Observation: The comparisons 
between these strings seem to be 

boiling down to comparisons 
between their blocks.

 

Why is that?



  G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

S L S S S L S L S L L S L S L L S L L SL

C C C G A T G T C A T G T C A G G $A

A T G T C A T G T C A G G $A

G T C A T G T C A G G $A

A T G T C A G G $A

G T C A G G $A

A G G $A

$

An LMS block is a substring of T that either 
spans from one LMS suffix to the next or is 
the sentinel itself, where each character is 

annotated with its L/S type.
  

Each LMS suffix is made of one or more 
(overlapping) LMS blocks.

An LMS block is a substring of T that either 
spans from one LMS suffix to the next or is 
the sentinel itself, where each character is 

annotated with its L/S type.
  

Each LMS suffix is made of one or more 
(overlapping) LMS blocks.

S S S L S L S L L S L S L L S L L SL

S L S L L S L S L L S L L SL

S L L S L S L L S L L SL

S L S L L S L L SL

S L L S L L SL

S L L SL

S



  G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

S L S S S L S L S L L S L S L L S L L SL

C C C G A

A T G

G T C A

A T G

G T C A

A G G $A

$

Theorem: Treat each character in an LMS 
block as a pair of the character itself and its L/S 
type. Then no LMS block is a prefix of another 

LMS block.
 

Corollary: If two different LMS blocks are 
compared factoring in L/S types, a mismatch 
will be found somewhere inside the blocks.

Theorem: Treat each character in an LMS 
block as a pair of the character itself and its L/S 
type. Then no LMS block is a prefix of another 

LMS block.
 

Corollary: If two different LMS blocks are 
compared factoring in L/S types, a mismatch 
will be found somewhere inside the blocks.

S L L SL

S L L S

S L L S

S L S

S L S

S S S L S

S

Claim 1: Every suffix starting at an LMS 
character is a local minimum among the 

suffixes near it in the original string.

Claim 1: Every suffix starting at an LMS 
character is a local minimum among the 

suffixes near it in the original string.

Claim 2: With the exception of the sentinel, 
the types of the characters in an LMS block 

match the regex S+L+S.

Claim 2: With the exception of the sentinel, 
the types of the characters in an LMS block 

match the regex S+L+S.

S L S



  G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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S L S S S L S L S L L S L S L L S L L SL

C C C G A

A T G

G T C A

A T G

G T C A

A G G $A

$

Theorem: Treat each character in an LMS 
block as a pair of the character itself and its L/S 
type. Then no LMS block is a prefix of another 

LMS block.
 

Corollary: If two different LMS blocks are 
compared factoring in L/S types, a mismatch 
will be found somewhere inside the blocks.

Theorem: Treat each character in an LMS 
block as a pair of the character itself and its L/S 
type. Then no LMS block is a prefix of another 

LMS block.
 

Corollary: If two different LMS blocks are 
compared factoring in L/S types, a mismatch 
will be found somewhere inside the blocks.

S L L SL

S L L S

S L L S

S L S

S L S

S S S L S

S

Claim 2: With the exception of the sentinel, 
the types of the characters in an LMS block 

match the regex S+L+S.

Claim 2: With the exception of the sentinel, 
the types of the characters in an LMS block 

match the regex S+L+S.

S L S

Proof: A comparison of two different LMS 
blocks will result in a mismatch no later than 

the first occurrence of LS.

Proof: A comparison of two different LMS 
blocks will result in a mismatch no later than 

the first occurrence of LS.



  G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

S L S S S L S L S L L S L S L L S L L SL

C C C G T G T C A T G T C A G G $A

A T T C A T G T C A G G $A

G T C T G T C A G G $A

A T T C A G G $A

G T C G G $A

A G G $A

$

If we knew the relative order of the 
LMS blocks, we could compare these 

suffixes very quickly by just 
comparing them one block at a time.

 

Question: How can we get those 
blocks into sorted order?

If we knew the relative order of the 
LMS blocks, we could compare these 

suffixes very quickly by just 
comparing them one block at a time.

 

Question: How can we get those 
blocks into sorted order?

A

G

A

G

A



  

This next bit is totally brilliant.
A huge shoutout to Nong, Zhang, and Chan 

for figuring this one out.
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T T C T TA G A GC T …A G

T C G G AG A $

$
G G AA $

T C T T CG A G AC T T CA G …
T T C G G …A G A

C C G T T CC A G …

20 16 1311 86 2
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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20 16 1311 86 2

These strings are not in the 
right order. They just appear in 
the relative order in which they 

appear in the original string.

These strings are not in the 
right order. They just appear in 
the relative order in which they 

appear in the original string.

Watch what happens 
if we run the rest of 

the induced sort 
here.

Watch what happens 
if we run the rest of 

the induced sort 
here.
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20 16 1311 86 2

G T C G A T G T C A T G T C A G G A

19 18 510 15 9 14 117 7 12

CC

116 013816 43220
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16 6 11 10 15 2 3 4 18 5

S L S S S L

19 9 14 117 7 12013820

A G G
A T T C A T G T C A G …
A T T C A G G $A
C T G T C A G G $A
C G G $A
C C C G T G T C A T G …
C C G T G T C A T G T …
C G T G T C A T G T C …

16

6

11

10

15

2

3

4

18 G A
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A
A

A
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A

G
A
A

These suffixes are 
sorted, at least up 
to the first LMS 
character that 

appears after the 
first letter!

 

(Why?)

These suffixes are 
sorted, at least up 
to the first LMS 
character that 

appears after the 
first letter!

 

(Why?)
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C C C T G T C A T G T C A G G $A
G T C T G T C A G G $A
G T C G G $A
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G
G
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By finding all the LMS suffixes 
in the order in which they 

appear in the above array, we 
get all the LMS blocks into 

sorted order!
 

So, basically, we did a 
mergesort with a list that 

wasn’t sorted and got back a 
list that is. Kinda. 

By finding all the LMS suffixes 
in the order in which they 

appear in the above array, we 
get all the LMS blocks into 

sorted order!
 

So, basically, we did a 
mergesort with a list that 

wasn’t sorted and got back a 
list that is. Kinda. 



  

To Recap

● The relative order of the LMS suffixes 
depends purely on the relative order of 
the LMS blocks.

● The order of the LMS blocks can be 
found by running the induced sorting 
algorithm on a list of all the LMS suffixes 
in any order we’d like!

● We’re almost done!



  

SA-IS at a Glance

● There are three core insights that collectively give us the 
SA-IS algorithm.

● First:

There is a proper subset of the suffixes that, if 
sorted, can be used to recover the order of all the 

remaining suffixes.

● Second: 

Those suffixes can be broken apart into blocks of 
characters such that the order of the suffixes 

depends purely on the order of the blocks.

● Third:

With the proper preprocessing, those suffixes can be 
sorted via a recursive call on a smaller input string.



  

SA-IS at a Glance

There are three core insights that collectively give us the 
SA-IS algorithm.

First:

There is a proper subset of the suffixes that, if 
sorted, can be used to recover the order of all the 

remaining suffixes.

Second: 

Those suffixes can be broken apart into blocks of 
characters such that the order of the suffixes 

depends purely on the order of the blocks.

● Third:

With the proper preprocessing, those suffixes can be 
sorted via a recursive call on a smaller input string.



  G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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S L S S S L S L S L L S L S L L S L L SL

C C C G T G T C A T G T C A G G $A
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The relative order of the 
LMS suffixes depends 
purely on the relative 

order of the LMS blocks.

The relative order of the 
LMS suffixes depends 
purely on the relative 

order of the LMS blocks.
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We can compute these 
numbers in time O(m). Just 

compare each block to the one 
after it to test for equality.

We can compute these 
numbers in time O(m). Just 

compare each block to the one 
after it to test for equality.
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We need a suffix array for this reduced string!We need a suffix array for this reduced string!

Now we just need to 
get these sequences 

of numbers into 
sorted order.

Now we just need to 
get these sequences 

of numbers into 
sorted order.



  

Recursion to the Rescue

● The SA-IS algorithm handles this step recursively, with a 
very cleverly-chosen base case.

● Base Case: If all blocks are unique, the suffix array can be 
computed manually in time O(m) by writing down the indices 
of 0, 1, 2, …, k.

 

● Recursive Case: Otherwise, recursively invoke SA-IS to get 
the suffix array!

3 2 4 1 0

4 3 1 0 2

0 1 2 3 4

0 1 2 3 4



  

The Whole Algorithm, End-to-End



  G T C C G A T G T C A T G T C A G $
0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20

AG
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C
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S L S S S L S L S L L S L S L L S L L SL

Step One: Scan the 
array from right-to-left 

to label each suffix as S-
type or L-type.

Step One: Scan the 
array from right-to-left 

to label each suffix as S-
type or L-type.
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T C G G AG A $
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G G AA $
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C C G T T CC A G …
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Step Two: Run an 
induced sorting step on 
the LMS suffixes in the 
order they appear. This 
will get the LMS blocks 
(not the LMS suffixes) 

into sorted order.

Step Two: Run an 
induced sorting step on 
the LMS suffixes in the 
order they appear. This 
will get the LMS blocks 
(not the LMS suffixes) 

into sorted order.

Pass One: Place the 
LMS suffixes at the 

ends of their buckets.

Pass One: Place the 
LMS suffixes at the 

ends of their buckets.



  

Pass Two: Place the
L-type suffixes at the 

fronts of their buckets.

Pass Two: Place the
L-type suffixes at the 

fronts of their buckets.
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Step Two: Run an 
induced sorting step on 
the LMS suffixes in the 
order they appear. This 
will get the LMS blocks 
(not the LMS suffixes) 

into sorted order.
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(not the LMS suffixes) 

into sorted order.
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Pass Three: Place the
S-type suffixes at the 
ends of their buckets.

Pass Three: Place the
S-type suffixes at the 
ends of their buckets.

Step Two: Run an 
induced sorting step on 
the LMS suffixes in the 
order they appear. This 
will get the LMS blocks 
(not the LMS suffixes) 

into sorted order.

Step Two: Run an 
induced sorting step on 
the LMS suffixes in the 
order they appear. This 
will get the LMS blocks 
(not the LMS suffixes) 

into sorted order.
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Step Three: Number the 
LMS blocks and form the 

reduced string.

Step Three: Number the 
LMS blocks and form the 

reduced string.
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recursion!

6 5 3 1 0 4 2

Step Four: Use the suffix 
array of the reduced string 
to sort the LMS suffixes.

Step Four: Use the suffix 
array of the reduced string 
to sort the LMS suffixes.
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2 C C C T G T C A T G T C A G G $AG A
6 A T T C A T G T C A G G $AG
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Step Four: Use the suffix 
array of the reduced string 
to sort the LMS suffixes.

Step Four: Use the suffix 
array of the reduced string 
to sort the LMS suffixes.
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C C C T G T C A T G T C A G G $AG A
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16 A G G $A
11 A T T C A G G $AG
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Step Four: Use the suffix 
array of the reduced string 
to sort the LMS suffixes.

Step Four: Use the suffix 
array of the reduced string 
to sort the LMS suffixes.
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Step Five: Run an 
induced sorting step on 
the sorted LMS suffixes 
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SA-IS, End-to-End

 

SA-IS(T):
   Scan T from right-to-left to mark each character as S-type or L-type.
   Identify all the LMS suffixes of T.
 

   Run induced sorting using the LMS suffixes in the order they appear in in T.
 

   Scan the result, gathering LMS suffixes in the order they ended up in.
   Number the LMS blocks, assigning duplicate blocks the same number.
   Form the reduced string T’ from the block numbers.
 

   If all blocks are unique, get a suffix array for T’ by directly inverting T’.
   Otherwise, get a suffix array for T’ by calling SA-IS(T’).
 

   Use the suffix array for T’ to sort the LMS suffixes of T.
   Do a second induced sorting pass of T using the LMS suffixes in sorted order.
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The Overall Runtime

● The SA-IS algorithm does O(m) work, then (optionally) 
makes a recursive call on the reduced string.

● The size of the reduced string is equal to the number 
of LMS characters.

● Claim: There are at most m/2 LMS characters.

● Each LMS character appears when an L-type suffix is 
followed by an S-type suffix, and in the worst case the suffix 
types alternate between L-type and S-type.

● Recurrence relation is

T(m) ≤ T(m/₂) + O(m).

● Applying the Master Theorem, this solves to O(m) 
total work!



  

Wow! What a nifty algorithm!



  

In Practice

● SA-IS is extremely fast in both theory and in practice.

● Excellent locality of reference in the induced sorting and 
block numbering steps.

● Recursive step usually has a great compression ratio.

● With a creative implementation, the memory overhead 
is minimal.

● There’s further work beyond what’s shown here about 
reducing the total memory usage by being clever and 
recycling space.

● The current fastest suffix array construction algorithm, 
DivSufSort, is essentially a highly optimized version of 
SA-IS using a slightly different approach to sorting 
LMS suffixes.



  

Why Study SA-IS?

● Explore the theoretical structure of suffix arrays.

● The relative ordering of L-type and S-type suffixes, the idea of 
induced sorting, and the bit about LMS blocks are all really 
beautiful theoretical results.

● See the idea of simulating one algorithm with 
another.

● Induced sorting is basically a multiway merge sort implemented 
really well, yet there’s little evidence of this in the final code!

● Look at a really, really clever divide-and-conquer 
algorithm.

● Did you expect to see the suffix array reduced that way?

● Probe the interface between theory and practice.

● This algorithm has an asymptotically optimal runtime, and it’s 
really fast in practice!



  

More to Explore

● Constructing LCP using induced sorting. 
(Fischer and Kurpicz, 2011)

● Kasai’s LCP algorithm was the first linear-time LCP 
algorithm. Turns out you can augment SA-IS to 
produce both the suffix array and the LCP array 
much, much faster than this.

● Reducing SA-IS memory usage. (Nong, 2013)

● A variation of SA-IS (by one of its original authors!) 
that cuts down on the memory usage and improves 
performance.



  

Next Time

● Balanced Trees

● Fast, flexible data structures for sorted sequences.

● B-Trees

● Built for databases, now popular in RAM!

● 2-3-4 Trees

● One of the simplest balanced trees around.

● Red/Black Trees

● Where do they come from?


