

Building Suffix Arrays

Recap from Last Time

Key Intuition: The efficiency in a suffix tree is largely due to
1. keeping the suffixes in sorted order, and
2. exposing branching words.

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

Suffix Arrays

● A suffix array for a
string T is a sorted
array of the suffixes
of the string T$.

● Suffix arrays distill
out just the first
component of suffix
trees: they store
suffixes in sorted
order.

ABANANABANDANA$

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

Storing Suffix Arrays

● Idea: Don’t store
the suffixes
themselves. Just
store the starting
positions of the
suffixes.

● Space: Θ(m), and
with only one
machine word used
per character of
input. ABANANABANDANA$

012345678901234

14
13
0
6
11
4
2
8
1
7
10
12
5
3
9

LCP Arrays

● The LCP array,
often denoted H, is
an array where H[i]
is the length of the
LCP of the ith and
(i+1)st suffixes in
the suffix array.

● LCP arrays can be
computed in time
O(m) using Kasai’s
algorithm.

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ABANANABANDANA$

0
1
4
1
3
3
2
0
3
0
0
2
2
1

Runtime Analysis

● Suffix trees give an

● ⟨O(m), O(n + z)⟩-time data structure for the substring
search problem, and an

● O(m)-time solution for longest repeated substring.

● Suffix arrays, combined with LCP arrays, give an

● ⟨O(m), O(n + log m + z)⟩-time data structure for the
substring search problem, and an

● O(m)-time solution for longest repeated substring.

● All of these analyses assume that

● we can build a suffix tree in time O(m), and

● we can build a suffix array in time O(m).

● Question: How is this possible?

New Stuff!

Suffix Tree
Suffix Array

+
LCP Array

O(m)

$ A

$ B
A
N

A
N
A
B
A
N
D
A
N
A
$

 D
 A
 N
 A
 $

B
A
N

A
N
A
B
A
N
D
A
N
A
$

 D
 A
 N
 A
 $

 D
 A
 N
 A
 $

 N

$ B
A
N
D
A
N
A
$

 N
 A
 B
 A
 N
 D
 A
 N
 A
 $

 A D
 A
 N
 A
 $

 N

$ B
A
N
D
A
N
A
$

 N
 A
 B
 A
 N
 D
 A
 N
 A
 $

 A D
 A
 N
 A
 $

ABANANABANDANA$

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

Track the length of the
label on the last internal

node backtracked through.

Track the length of the
label on the last internal

node backtracked through.

0
1
4
1
3
3
2
0
3
0
0
2
2
1

Do a DFS over the
tree, visiting children

in sorted order.

Do a DFS over the
tree, visiting children

in sorted order.

Suffix Tree
Suffix Array

+
LCP Array

O(m)

O(m)

aabaa$

$

a$

aa$

aabaabaa$

abaa$

abaabaa$

baa$

baabaa$

9

8

7

4

1

5

2

6

3

0

1

2

5

1

4

0

3

w a a b a a b a a $
0 1 2 3 4 5 6 7 8 9

waabaabaa$0
0

0

0

0

3

1

2

4

1

5

aabaa$

$

a$

aa$

aabaabaa$

abaa$

abaabaa$

baa$

baabaa$

9

8

7

4

1

5

2

6

3

w a a b a a b a a $
0 1 2 3 4 5 6 7 8 9

waabaabaa$0

0

0

0

3

1

2

4

1

5

a

a

baa

baa

baa

$

$

$

$

baa$

$

baa$

$

baa$

waabaabaa$

aabaa$

$

a$

aa$

aabaabaa$

abaa$

abaabaa$

baa$

baabaa$

9

8

7

4

1

5

2

6

3

w a a b a a b a a $
0 1 2 3 4 5 6 7 8 9

waabaabaa$0

0

0

0 3

1

2

4

1

5a

a

baa

baa

baa

 $

$

$

$

baa$

$

baa$

$

baa$

 waabaabaa$

A Linear-Time Algorithm

● Construct the LCP array for the suffix array.

● Construct a Cartesian tree from that LCP array.

● Run a DFS over the Cartesian tree, adding in
the suffixes in the order they appear whenever
a node has a missing child.

● Fuse together any parent and child nodes with
the same number in them.

● Assign labels to the edges based on the LCP
values.

● Total time: O(m). Question: Why does this work?
As a hint, what’s the connection

between LCP arrays and suffix trees?

Question: Why does this work?
As a hint, what’s the connection

between LCP arrays and suffix trees?

Constructing Suffix Arrays

The Timeline
1973: Weiner
publishes the
first O(m)-time

suffix tree
construction

algorithm
(STCA)

1973: Weiner
publishes the
first O(m)-time

suffix tree
construction

algorithm
(STCA)

1976: McCreight
publishes a simplified,

O(m)-time STCA.

1976: McCreight
publishes a simplified,

O(m)-time STCA.

1990: Manber and Myers
introduce suffix arrays,
give an O(m log m)-time
suffix array construction

algorithm (SACA)

1990: Manber and Myers
introduce suffix arrays,
give an O(m log m)-time
suffix array construction

algorithm (SACA)

1995: Ukkonen
invents a

popular O(m)-
time STCA.

1995: Ukkonen
invents a

popular O(m)-
time STCA.

1997: Farach
invents an O(m)-
time STCA that

works on integer
input alphabets.

1997: Farach
invents an O(m)-
time STCA that

works on integer
input alphabets.

2002: Ko and
Aluru devise an

O(m)-time
SACA.

2002: Ko and
Aluru devise an

O(m)-time
SACA.

2003:
Kärkkäinen et
al devise an
O(m)-time

SACA based on
Farach’s
insights.

2003:
Kärkkäinen et
al devise an
O(m)-time

SACA based on
Farach’s
insights.

2008: Nong et
al build on Ko
and Aluru to
give a faster
O(m)-time

SACA called
SA-IS.

2008: Nong et
al build on Ko
and Aluru to
give a faster
O(m)-time

SACA called
SA-IS.

1973: Weiner
publishes the
first O(m)-time

suffix tree
construction

algorithm
(STCA)

1973: Weiner
publishes the
first O(m)-time

suffix tree
construction

algorithm
(STCA)

1976: McCreight
publishes a simplified,

O(m)-time STCA.

1976: McCreight
publishes a simplified,

O(m)-time STCA.

1990: Manber and Myers
introduce suffix arrays,
give an O(m log m)-time
suffix array construction

algorithm (SACA)

1990: Manber and Myers
introduce suffix arrays,
give an O(m log m)-time
suffix array construction

algorithm (SACA)

1995: Ukkonen
invents a

popular O(m)-
time STCA.

1995: Ukkonen
invents a

popular O(m)-
time STCA.

1997: Farach
invents an O(m)-
time STCA that

works on integer
input alphabets.

1997: Farach
invents an O(m)-
time STCA that

works on integer
input alphabets.

2002: Ko and
Aluru devise an

O(m)-time
SACA.

2002: Ko and
Aluru devise an

O(m)-time
SACA.

2003:
Kärkkäinen et
al devise an
O(m)-time

SACA based on
Farach’s
insights.

2003:
Kärkkäinen et
al devise an
O(m)-time

SACA based on
Farach’s
insights.

The Timeline
2008: Nong et
al build on Ko
and Aluru to
give a faster
O(m)-time

SACA called
SA-IS.

2008: Nong et
al build on Ko
and Aluru to
give a faster
O(m)-time

SACA called
SA-IS.

Some Observations about Suffix Arrays

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

$ A
T
G
T
C
A
T
…

A
T
G
T
C
A
G
…

A
$

A
G
G
A
$

C
A
G
G
A
$

C
A
T
C
G
T
A
…

C
C
C
G
A
T
G
…

C
C
G
A
T
G
T
…

C
G
A
T
G
T
C
…

G
A
$

G
A
T
G
T
C
A
…

G
G
A
$

G
T
C
A
G
G
A
…

G
T
C
A
T
G
T
…

G
T
C
C
C
G
A
…

T
C
A
G
G
A
$

T
C
A
T
G
T
C
…

T
C
C
C
G
A
T
…

T
G
T
C
A
G
G
…

T
G
T
C
A
T
G
…

Observation: We can partition
the suffix array into buckets,
where each bucket consists of
all suffixes starting with the

same first character.

Observation: We can partition
the suffix array into buckets,
where each bucket consists of
all suffixes starting with the

same first character.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

C G A T G T C A T G T C A G G $A

G A T G T C A T G T C A G G $A

S

We’ll call the suffix at position 4
an S-type suffix (S for smaller),

since it lexicographically
precedes the suffix at the

position immediately after it.

We’ll call the suffix at position 4
an S-type suffix (S for smaller),

since it lexicographically
precedes the suffix at the

position immediately after it.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

G $A

A $

L

We’ll call the suffix at position 18
an L-type suffix (L for larger),

since it lexicographically comes
after the suffix at the position

immediately after it.

We’ll call the suffix at position 18
an L-type suffix (L for larger),

since it lexicographically comes
after the suffix at the position

immediately after it.

S

 G T C C G A T G T C A T G T C A G G $
0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

L

C
4

S

C C G A T G T C A T G T C A G G $A

C G A T G T C A T G T C A G G $A

S

 G T C C G A T G T C A T G T C A G $
0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

G
18

L

C
4

S

G G $A

G $A

S L

 G T C C G A T G T C A T G T C A G $
0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

G
18

L

C
4

SS L S

By definition, the suffix starting
at the sentinel is considered an

S-type suffix.

By definition, the suffix starting
at the sentinel is considered an

S-type suffix.

 G T C C G A T G T C A T G T C A G $
0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

G
18

C
4

Theorem: A suffix starting at position k is an S-type suffix if

 · Text[k] < Text[k+1], or
 · Text[k] = Text[k+1] and the suffix at index k+1 is S-type, or
 · Text[k] = $.

A suffix starting at position k is a L-type suffix if

 · Text[k] > Text[k+1], or
 · Text[k] = Text[k+1] and the suffix at position k+1 is L-type.

We can tag each suffix as S-type or L-type in time O(m) by
scanning Text from right-to-left and applying the above rules.

Theorem: A suffix starting at position k is an S-type suffix if

 · Text[k] < Text[k+1], or
 · Text[k] = Text[k+1] and the suffix at index k+1 is S-type, or
 · Text[k] = $.

A suffix starting at position k is a L-type suffix if

 · Text[k] > Text[k+1], or
 · Text[k] = Text[k+1] and the suffix at position k+1 is L-type.

We can tag each suffix as S-type or L-type in time O(m) by
scanning Text from right-to-left and applying the above rules.

S L S S S L S L S L L S L S L L S L L SL

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

S L S S S L S L S L L S L S L L S L L SL

S L L L L LL L L S S SL L S S SL S S S

Since the suffix of just $
is defined to be S-type,

everything in this
bucket is S-type.

Since the suffix of just $
is defined to be S-type,

everything in this
bucket is S-type.

T is the alphabetically
last character, so all

suffixes starting with it
are L-type.

T is the alphabetically
last character, so all

suffixes starting with it
are L-type.

Well that’s
unexpected. What’s

going on here?

Well that’s
unexpected. What’s

going on here?

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

S L S S S L S L S L L S L S L L S L L SL

S L L L L LL L L S S SL L S S SL S S S

$A

A G G $A

A T G T C A G G $A

A T G T C A T G T C A G G $A

19

16

11

6

S

S

S

L

Theorem: Let i and j be indices of two suffixes that start with
the same character. Then if i is L-type and j is S-type, the
suffix beginning at position i lexicographically precedes the
suffix beginning at position j.

Theorem: Let i and j be indices of two suffixes that start with
the same character. Then if i is L-type and j is S-type, the
suffix beginning at position i lexicographically precedes the
suffix beginning at position j.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

S L S S S L S L S L L S L S L L S L L SL

S L L L L LL L L S S SL L S S SL S S S

15

10

2

3

4

L

L

S

S

S

A
A

G
G

G

C G G $A
C T G T C A G G $A
C C C A T G T C A T G T C A …
C C A T G T C A T G T C A G …
C A T G T C A T G T C A G G …

Theorem: Let i and j be indices of two suffixes that start with
the same character. Then if i is L-type and j is S-type, the
suffix beginning at position i lexicographically precedes the
suffix beginning at position j.

Theorem: Let i and j be indices of two suffixes that start with
the same character. Then if i is L-type and j is S-type, the
suffix beginning at position i lexicographically precedes the
suffix beginning at position j.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

S L S S S L S L S L L S L S L L S L L SL

S L L L L LL L L S S SL L S S SL S S S

18

5

17

13

8

0

L

L

S

L

S

S

A
A

A
T
T
T

G $
G T G T C A T G T C A G G $A
G G $
G C A G G $A
G C A T G T C A G G $A
G C C C G A T G T C A T G T …C

Theorem: Let i and j be indices of two suffixes that start with
the same character. Then if i is L-type and j is S-type, the
suffix beginning at position i lexicographically precedes the
suffix beginning at position j.

Theorem: Let i and j be indices of two suffixes that start with
the same character. Then if i is L-type and j is S-type, the
suffix beginning at position i lexicographically precedes the
suffix beginning at position j.

Where We Stand

● We can efficiently classify each suffix as
either S-type or L-type in time O(m).

● We know a good amount about the
relative positioning of the suffixes:

● All suffixes are bucketed by their first
character.

● All L-type suffixes come before all S-type
suffixes.

● If we can get everything relatively
positioned within its group, we’re done!

SA-IS at a Glance

● There are three core insights that collectively give us the
SA-IS algorithm.

● First:

There is a proper subset of the suffixes that, if
sorted, can be used to recover the order of all the

remaining suffixes.

● Second:

Those suffixes can be broken apart into blocks of
characters such that the order of the suffixes

depends purely on the order of the blocks.

● Third:

With the proper preprocessing, those suffixes can be
sorted via a recursive call on a smaller input string.

SA-IS at a Glance

There are three core insights that collectively give us the
SA-IS algorithm.

● First:

There is a proper subset of the suffixes that, if
sorted, can be used to recover the order of all the

remaining suffixes.

Second:

Those suffixes can be broken apart into blocks of
characters such that the order of the suffixes

depends purely on the order of the blocks.

Third:

With the proper preprocessing, those suffixes can be
sorted via a recursive call on a smaller input string.

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

These suffixes are called LMS
suffixes (LeftMost S-type).

A suffix is an LMS suffix if it’s S-type
and the suffix before it is L-type.

These suffixes are called LMS
suffixes (LeftMost S-type).

A suffix is an LMS suffix if it’s S-type
and the suffix before it is L-type.

This suffix isn’t an
LMS suffix because
it isn’t preceded by

a suffix at all!

This suffix isn’t an
LMS suffix because
it isn’t preceded by

a suffix at all!

This suffix isn’t
LMS because the

suffix before it
isn’t L-type.

This suffix isn’t
LMS because the

suffix before it
isn’t L-type.

The sentinel by itself
is always considered

an LMS suffix.

The sentinel by itself
is always considered

an LMS suffix.

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

Key Theorem: If we can get the LMS
suffixes – and just the LMS suffixes – in

sorted order, then we can, in time O(m), get
all the other suffixes in order as well.

The algorithm for doing this is called
induced sorting. This is the “IS” in SA-IS.

Key Theorem: If we can get the LMS
suffixes – and just the LMS suffixes – in

sorted order, then we can, in time O(m), get
all the other suffixes in order as well.

The algorithm for doing this is called
induced sorting. This is the “IS” in SA-IS.

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20191817 >

161514

11109

65

21

>

>

>

>

>

>

>> $

G G AA $

T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

This is a multiway merge! Each list is sorted,
and we want to unify them all together.

This is a multiway merge! Each list is sorted,
and we want to unify them all together.

S

S

S

S

S

S

S

All LMS suffixes and
all L-type suffixes are
here. We’re missing
some S-type suffixes;

we’ll fix that later.

All LMS suffixes and
all L-type suffixes are
here. We’re missing
some S-type suffixes;

we’ll fix that later.

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20191817 >

161514

11109

65

21

>

>

>

>

>

>

>> $

G G AA $

T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

S

S

S

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20

191817

161514

11109

65

21

>

>

>

>

>

>

>>

G G AA $

T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

S

S

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20

191817

161514

11109

65

21

>

>

>

>

>

>

>>

G G AA $

T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

A $L

S

S

S

S

S

S

These other suffixes starting with A
are S-type, but suffix 19 is L-type.

Therefore, suffix 19 wins on tiebreaks.

These other suffixes starting with A
are S-type, but suffix 19 is L-type.

Therefore, suffix 19 wins on tiebreaks.

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20

191817

161514

11109

65

21

>

>

>

>

>

>

>>

G G AA $

T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

A $L

S

S

S

S

S

S

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19

1817

161514

11109

65

21

>

>

>

>

>

>

>

G G AA $

T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

S

S

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19

1817

161514

11109

65

21

>

>

>

>

>

>

>

G G AA $

T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

G A $L

S

S

S

S

S

S

This needs to go with the
other G suffixes. Suffix 18 is

L-type and the others are
S-type, so suffix 18 wins on

tiebreaks.

This needs to go with the
other G suffixes. Suffix 18 is

L-type and the others are
S-type, so suffix 18 wins on

tiebreaks.

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19

161514

11109

65

21

>

>

>

>

>

> G G AA $

T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

S

S

1817 > G A $L

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19

161514

11109

65

21

>

>

>

>

>

> G G AA $

T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

S

S

1817 > G A $L

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16

1514

11109

65

21

>

>

>

>

>

T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

S

1817 > G A $L

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16

1514

11109

65

21

>

>

>

>

>

T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

S

1817 > G A $L

L C G G AA $

Suffix 15 needs to go with
the other C suffixes. Again,
it’s L-type and the others
are S-type, so suffix 15

wins on tiebreaks.

Suffix 15 needs to go with
the other C suffixes. Again,
it’s L-type and the others
are S-type, so suffix 15

wins on tiebreaks.

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16

11109

65

21

>

>

>

> T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

S

1817 > G A $L

1514 > L C G G AA $

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16

11109

65

21

>

>

>

> T T C G G …A G A

T T C T TA G A GC T …A G

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

S

1817 > G A $L

1514 > L C G G AA $

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16

21 > C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

1817 > G A $L

1514 > L C G G AA $

11

109

65 >

>

T T C T TA G A GC T …A GS

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16

21 > C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

1817 > G A $L

1514 > L C G G AA $

11

109

65 >

>

T T C T TA G A GC T …A GS

C T T C G …A G AL

We need to move
this to the C suffixes.

We need to move
this to the C suffixes.

We know it precedes
this S-type suffix.

We know it precedes
this S-type suffix.

How does it
compare to this
L-type suffix?

How does it
compare to this
L-type suffix?

9 >

G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16

65

11

10

21

>

>

T T C T G …A G A

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

1817 > G A $L

1514 > L C G G AA $

C T T C GA G A …L

The suffix at index 15
is C, followed by the
suffix at index 16.

The suffix at index 15
is C, followed by the
suffix at index 16.

Suffix 11

Suffix 16

Conclusion: This suffix goes after
the L-type suffixes starting with C and
before S-type suffixes starting with C.

Conclusion: This suffix goes after
the L-type suffixes starting with C and
before S-type suffixes starting with C.

The suffix at index 10
is C, followed by the
suffix at index 11.

The suffix at index 10
is C, followed by the
suffix at index 11.

9 >

G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16

65

11

10

21

>

>

T T C T G …A G A

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

1817 > G A $L

1514 > L C G G AA $

C T T C GA G A …L

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16

65

11

21

>

>

T T C T G …A G A

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

1817 > G A $L

1514 > L C G G AA $

9 > 10 C T T C GA G A …L

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16

65

11

21

>

>

T T C T G …A G A

C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

S

1817 > G A $L

1514 > L C G G AA $

9 > 10 C T T C GA G A …L

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16 6

5

11

21 > C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

1817 > G A $L

1514 > L C G G AA $

9 > 10 C T T C GA G A …L

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16 6

5

11

21 > C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

1817 > G A $L

1514 > L C G G AA $

9 > 10 C T T C GA G A …L

G T T C TA G A …L

We know it precedes
these S-type suffixes.

We know it precedes
these S-type suffixes.

How does it
compare to this
L-type suffix?

How does it
compare to this
L-type suffix?

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16 6

5

11

21 > C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

1817 > G A $L

1514 > L C G G AA $

9 > 10 C T T C GA G A …L

G T T C TA G A …L

Suffix 5 is G followed
by suffix 6.

Suffix 18 is G followed
by suffix 19.

Suffix 5 is G followed
by suffix 6.

Suffix 18 is G followed
by suffix 19.

Suffix 6

Suffix 19

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16 6

5

11

21 > C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

1817 > G A $L

1514 > L C G G AA $

9 > 10 C T T C GA G A …L

G T T C TA G A …L

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16 611

21 > C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

1817 > G A $L

1514 > L C G G AA $

9 > 10 C T T C GA G A …L

5 G T T C TA G A …L

 G T C C G T T C T T C G G
0 1 3 4 5 7 9 10 12 14 15 17 18 19

A
S L S S L L L L L L L L L L

C A G A G A $
2 6 8 11 13 16 20

S S S S S S S

20 19 16 611

21 > C C G T T CC A G …

1312

7

>

>

T C G G AG A $

T C T T CG A G AC T T CA G …8

S

S

S

1817 > G A $L

1514 > L C G G AA $

9 > 10 C T T C GA G A …L

5 G T T C TA G A …L

Some Observations

● All the new suffixes we uncover are L-type.

● Whenever we uncover a new suffix:

● that suffix comes before all S-type suffixes in the
list with the same first character, and

● that suffix comes after all L-type suffixes in the
list with the same first character.

● Notice that we never make any string
comparisons in the course of carrying out
this multiway merge!

● If we can maintain these buckets efficiently,
we could complete this merge in time O(m).

Okay, this next part is pretty cool.
Props to Ko and Aluru for figuring it out.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A
S L S S S L S L S L L S L S L L S L L SL

81326111620

$
G G AA $

T T C T G …A G A
T T C T TA G A GC G …A G

C C G T T CC A G …
T C G G AG A $
T C T T CG A G AC T T CA G …

20

16

6

11

2

13

8

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A
S L S S S L S L S L L S L S L L S L L SL

81326111620

We can compute the bucket boundaries in time
O(m) by just counting up how frequently each

character appears in the string. If we store
those boundaries in an array indexed by

character, we can put each element in the right
place in time O(1).

Total time so far: O(m).

We can compute the bucket boundaries in time
O(m) by just counting up how frequently each

character appears in the string. If we store
those boundaries in an array indexed by

character, we can put each element in the right
place in time O(1).

Total time so far: O(m).

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A
S L S S S L S L S L L S L S L L S L L SL

81326111620

Watch how we
implement the multiway

merge.

Watch how we
implement the multiway

merge.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A
S L S S S L S L S L L S L S L L S L L SL

81326111620

G T C CT TG T T C A G G A

19 1815 10 5 14 9 117 12 7

GG AA

for (each index i in SA) {
 if (SA[i] isn't empty and SA[i] > 0 and
 text[SA[i] - 1] is L-type) {
 put SA[i] - 1 at the next free slot
 at the front of text[SA[i] – 1];
 }
}

for (each index i in SA) {
 if (SA[i] isn't empty and SA[i] > 0 and
 text[SA[i] - 1] is L-type) {
 put SA[i] - 1 at the next free slot
 at the front of text[SA[i] – 1];
 }
}

$ A
T
G
T
C
A
T
…

A
T
G
T
C
A
G
…

A
$

A
G
G
A
$

C
A
G
G
A
$

C
A
T
C
G
T
A
…

C
C
C
G
A
T
G
…

G
A
$

G
A
T
G
T
C
A
…

G
G
A
$

G
T
C
A
G
G
A
…

G
T
C
A
T
G
T
…

T
C
A
G
G
A
$

T
C
A
T
G
T
C
…

T
C
C
C
G
A
T
…

T
G
T
C
A
G
G
…

T
G
T
C
A
T
G
…

G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A
S L S S S L S L S L L S L S L L S L L SL

81326111620 19 1815 510 14 9 117 12 7

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A
S L S S S L S L S L L S L S L L S L L SL

81326111620 19 1815 510 14 9 117 12 7

Theorem: If you have all the L-type suffixes in sorted
order, you can use that to induce the order of the S-type
suffixes by making a reverse pass over the array and
following a similar algorithm.

Important detail: The ends of each bucket currently
have some, but not all, of the S-type suffixes in them.
These items may be out of place because we don’t
know how they relate to other S-type suffixes. Therefore,
when doing this backwards pass, we’ll allow ourselves to
overwrite the old S-type suffixes as we go. Anything that
wasn’t overwritten was already in the right place.

Theorem: If you have all the L-type suffixes in sorted
order, you can use that to induce the order of the S-type
suffixes by making a reverse pass over the array and
following a similar algorithm.

Important detail: The ends of each bucket currently
have some, but not all, of the S-type suffixes in them.
These items may be out of place because we don’t
know how they relate to other S-type suffixes. Therefore,
when doing this backwards pass, we’ll allow ourselves to
overwrite the old S-type suffixes as we go. Anything that
wasn’t overwritten was already in the right place.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A
S L S S S L S L S L L S L S L L S L L SL

81326111620 19 1815 510 14 9 117 12 7

Theorem: If you have all the L-type suffixes in sorted
order, you can use that to induce the order of the S-type
suffixes by making a reverse pass over the array and
following a similar algorithm.

Important detail: The ends of each bucket currently
have some, but not all, of the S-type suffixes in them.
These items may be out of place because we don’t
know how they relate to other S-type suffixes. Therefore,
when doing this backwards pass, we’ll allow ourselves to
overwrite the old S-type suffixes as we go. Anything that
wasn’t overwritten was already in the right place.

Theorem: If you have all the L-type suffixes in sorted
order, you can use that to induce the order of the S-type
suffixes by making a reverse pass over the array and
following a similar algorithm.

Important detail: The ends of each bucket currently
have some, but not all, of the S-type suffixes in them.
These items may be out of place because we don’t
know how they relate to other S-type suffixes. Therefore,
when doing this backwards pass, we’ll allow ourselves to
overwrite the old S-type suffixes as we go. Anything that
wasn’t overwritten was already in the right place.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A
S L S S S L S L S L L S L S L L S L L SL

81326111620 19 1815 510 14 9 117 12 7

reset the indices of each bucket's next free slot at the end.
for (each index i in SA, in reverse order) {
 if (SA[i] isn't empty and SA[i] > 0 and
 text[SA[i] - 1] is S-type) {
 put SA[i] - 1 at the next free slot
 at the end of text[SA[i] – 1];
 }
}

reset the indices of each bucket's next free slot at the end.
for (each index i in SA, in reverse order) {
 if (SA[i] isn't empty and SA[i] > 0 and
 text[SA[i] - 1] is S-type) {
 put SA[i] - 1 at the next free slot
 at the end of text[SA[i] – 1];
 }
}

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A
S L S S S L S L S L L S L S L L S L L SL

81326111620 19 1815 510 14 9 117 12 7

reset the indices of each bucket's next free slot at the end.
for (each index i in SA, in reverse order) {
 if (SA[i] isn't empty and SA[i] > 0 and
 text[SA[i] - 1] is S-type) {
 put SA[i] - 1 at the next free slot
 at the end of text[SA[i] – 1];
 }
}

reset the indices of each bucket's next free slot at the end.
for (each index i in SA, in reverse order) {
 if (SA[i] isn't empty and SA[i] > 0 and
 text[SA[i] - 1] is S-type) {
 put SA[i] - 1 at the next free slot
 at the end of text[SA[i] – 1];
 }
}

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A
S L S S S L S L S L L S L S L L S L L SL

81326111620 19 1815 510 14 9 117 12 7

reset the indices of each bucket's next free slot at the end.
for (each index i in SA, in reverse order) {
 if (SA[i] isn't empty and SA[i] > 0 and
 text[SA[i] - 1] is S-type) {
 put SA[i] - 1 at the next free slot
 at the end of text[SA[i] – 1];
 }
}

reset the indices of each bucket's next free slot at the end.
for (each index i in SA, in reverse order) {
 if (SA[i] isn't empty and SA[i] > 0 and
 text[SA[i] - 1] is S-type) {
 put SA[i] - 1 at the next free slot
 at the end of text[SA[i] – 1];
 }
}

G T C C C G A T G T A T G T A G G

611 081316 432

C C A

20

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

$ A
T
G
T
C
A
T
…

A
T
G
T
C
A
G
…

A
$

A
G
G
A
$

C
A
G
G
A
$

C
A
T
C
G
T
A
…

C
C
C
G
A
T
G
…

C
C
G
A
T
G
T
…

C
G
A
T
G
T
C
…

G
A
$

G
A
T
G
T
C
A
…

G
G
A
$

G
T
C
A
G
G
A
…

G
T
C
A
T
G
T
…

G
T
C
C
C
G
A
…

T
C
A
G
G
A
$

T
C
A
T
G
T
C
…

T
C
C
C
G
A
T
…

T
G
T
C
A
G
G
…

T
G
T
C
A
T
G
…

To Recap

● Suppose that – somehow – we can sort the LMS
suffixes.

● We can then make three linear scans to sort all the
suffixes:

● one reverse pass over the sorted LMS suffixes, placing
them at the ends of their buckets;

● one forward pass over the suffix array, placing L-type
suffixes at the fronts of their buckets; and

● one reverse pass over the suffix array, placing S-type
suffix at the ends of their buckets (making sure to reset
the end positions of each bucket first.)

● This runs in time O(m) and has excellent locality of
reference. It’s incredibly fast in practice.

SA-IS at a Glance

● There are three core insights that collectively give us the
SA-IS algorithm.

● First:

There is a proper subset of the suffixes that, if
sorted, can be used to recover the order of all the

remaining suffixes.

● Second:

Those suffixes can be broken apart into blocks of
characters such that the order of the suffixes

depends purely on the order of the blocks.

● Third:

With the proper preprocessing, those suffixes can be
sorted via a recursive call on a smaller input string.

SA-IS at a Glance

There are three core insights that collectively give us the
SA-IS algorithm.

First:

There is a proper subset of the suffixes that, if
sorted, can be used to recover the order of all the

remaining suffixes.

● Second:

Those suffixes can be broken apart into blocks of
characters such that the order of the suffixes

depends purely on the order of the blocks.

Third:

With the proper preprocessing, those suffixes can be
sorted via a recursive call on a smaller input string.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

S L S S S L S L S L L S L S L L S L L SL

C C C G A T G T C A T G T C A G G $A

A T G T C A T G T C A G G $A

G T C A T G T C A G G $A

A T G T C A G G $A

G T C A G G $A

A G G $A

$

Observation: The comparisons
between these strings seem to be

boiling down to comparisons
between their blocks.

Why is that?

Observation: The comparisons
between these strings seem to be

boiling down to comparisons
between their blocks.

Why is that?

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

S L S S S L S L S L L S L S L L S L L SL

C C C G A T G T C A T G T C A G G $A

A T G T C A T G T C A G G $A

G T C A T G T C A G G $A

A T G T C A G G $A

G T C A G G $A

A G G $A

$

An LMS block is a substring of T that either
spans from one LMS suffix to the next or is
the sentinel itself, where each character is

annotated with its L/S type.

Each LMS suffix is made of one or more
(overlapping) LMS blocks.

An LMS block is a substring of T that either
spans from one LMS suffix to the next or is
the sentinel itself, where each character is

annotated with its L/S type.

Each LMS suffix is made of one or more
(overlapping) LMS blocks.

S S S L S L S L L S L S L L S L L SL

S L S L L S L S L L S L L SL

S L L S L S L L S L L SL

S L S L L S L L SL

S L L S L L SL

S L L SL

S

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

S L S S S L S L S L L S L S L L S L L SL

C C C G A

A T G

G T C A

A T G

G T C A

A G G $A

$

Theorem: Treat each character in an LMS
block as a pair of the character itself and its L/S
type. Then no LMS block is a prefix of another

LMS block.

Corollary: If two different LMS blocks are
compared factoring in L/S types, a mismatch
will be found somewhere inside the blocks.

Theorem: Treat each character in an LMS
block as a pair of the character itself and its L/S
type. Then no LMS block is a prefix of another

LMS block.

Corollary: If two different LMS blocks are
compared factoring in L/S types, a mismatch
will be found somewhere inside the blocks.

S L L SL

S L L S

S L L S

S L S

S L S

S S S L S

S

Claim 1: Every suffix starting at an LMS
character is a local minimum among the

suffixes near it in the original string.

Claim 1: Every suffix starting at an LMS
character is a local minimum among the

suffixes near it in the original string.

Claim 2: With the exception of the sentinel,
the types of the characters in an LMS block

match the regex S+L+S.

Claim 2: With the exception of the sentinel,
the types of the characters in an LMS block

match the regex S+L+S.

S L S

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

S L S S S L S L S L L S L S L L S L L SL

C C C G A

A T G

G T C A

A T G

G T C A

A G G $A

$

Theorem: Treat each character in an LMS
block as a pair of the character itself and its L/S
type. Then no LMS block is a prefix of another

LMS block.

Corollary: If two different LMS blocks are
compared factoring in L/S types, a mismatch
will be found somewhere inside the blocks.

Theorem: Treat each character in an LMS
block as a pair of the character itself and its L/S
type. Then no LMS block is a prefix of another

LMS block.

Corollary: If two different LMS blocks are
compared factoring in L/S types, a mismatch
will be found somewhere inside the blocks.

S L L SL

S L L S

S L L S

S L S

S L S

S S S L S

S

Claim 2: With the exception of the sentinel,
the types of the characters in an LMS block

match the regex S+L+S.

Claim 2: With the exception of the sentinel,
the types of the characters in an LMS block

match the regex S+L+S.

S L S

Proof: A comparison of two different LMS
blocks will result in a mismatch no later than

the first occurrence of LS.

Proof: A comparison of two different LMS
blocks will result in a mismatch no later than

the first occurrence of LS.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

S L S S S L S L S L L S L S L L S L L SL

C C C G T G T C A T G T C A G G $A

A T T C A T G T C A G G $A

G T C T G T C A G G $A

A T T C A G G $A

G T C G G $A

A G G $A

$

If we knew the relative order of the
LMS blocks, we could compare these

suffixes very quickly by just
comparing them one block at a time.

Question: How can we get those
blocks into sorted order?

If we knew the relative order of the
LMS blocks, we could compare these

suffixes very quickly by just
comparing them one block at a time.

Question: How can we get those
blocks into sorted order?

A

G

A

G

A

This next bit is totally brilliant.
A huge shoutout to Nong, Zhang, and Chan

for figuring this one out.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

S L S S S L S L S L L S L S L L S L L SL

20

16

11

6

2

13

8

T T C T TA G A GC T …A G

T C G G AG A $

$
G G AA $

T C T T CG A G AC T T CA G …
T T C G G …A G A

C C G T T CC A G …

20 16 1311 86 2

$ A
T
G
T
C
A
T
…

A
T
G
T
C
A
G
…

A
G
G
A
$

C
C
C
G
A
T
G
…

G
T
C
A
T
G
T
…

G
T
C
A
G
G
A
…

G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

S L S S S L S L S L L S L S L L S L L SL

20 16 1311 86 2

These strings are not in the
right order. They just appear in
the relative order in which they

appear in the original string.

These strings are not in the
right order. They just appear in
the relative order in which they

appear in the original string.

Watch what happens
if we run the rest of

the induced sort
here.

Watch what happens
if we run the rest of

the induced sort
here.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

S L S S S L S L S L L S L S L L S L L SL

20 16 1311 86 2

G T C G A T G T C A T G T C A G G A

19 18 510 15 9 14 117 7 12

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

S L S S S L S L S L L S L S L L S L L SL

20 16 1311 86 2

G T C G A T G T C A T G T C A G G A

19 18 510 15 9 14 117 7 12

CC

116 013816 43220

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

16 6 11 10 15 2 3 4 18 5

S L S S S L

19 9 14 117 7 12013820

A G G
A T T C A T G T C A G …
A T T C A G G $A
C T G T C A G G $A
C G G $A
C C C G T G T C A T G …
C C G T G T C A T G T …
C G T G T C A T G T C …

16

6

11

10

15

2

3

4

18 G A

$
G

A
A

A
$

A

G
A
A

These suffixes are
sorted, at least up
to the first LMS
character that

appears after the
first letter!

(Why?)

These suffixes are
sorted, at least up
to the first LMS
character that

appears after the
first letter!

(Why?)

S L S L L S L S L L S L L SL

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

10 15 3 4 18 520 16 6 11 2 8 13

S L S S S L S L S L L S L S L L S L L SL

19 9 14 117 7 120

20

6

11

2

8

16

13

$
A G G
A T T C A T G T C A G G $A
A T T C A G G $A
C C C T G T C A T G T C A G G $A
G T C T G T C A G G $A
G T C G G $A

$A
G
G
G A
A
A

By finding all the LMS suffixes
in the order in which they

appear in the above array, we
get all the LMS blocks into

sorted order!

So, basically, we did a
mergesort with a list that

wasn’t sorted and got back a
list that is. Kinda.

By finding all the LMS suffixes
in the order in which they

appear in the above array, we
get all the LMS blocks into

sorted order!

So, basically, we did a
mergesort with a list that

wasn’t sorted and got back a
list that is. Kinda.

To Recap

● The relative order of the LMS suffixes
depends purely on the relative order of
the LMS blocks.

● The order of the LMS blocks can be
found by running the induced sorting
algorithm on a list of all the LMS suffixes
in any order we’d like!

● We’re almost done!

SA-IS at a Glance

● There are three core insights that collectively give us the
SA-IS algorithm.

● First:

There is a proper subset of the suffixes that, if
sorted, can be used to recover the order of all the

remaining suffixes.

● Second:

Those suffixes can be broken apart into blocks of
characters such that the order of the suffixes

depends purely on the order of the blocks.

● Third:

With the proper preprocessing, those suffixes can be
sorted via a recursive call on a smaller input string.

SA-IS at a Glance

There are three core insights that collectively give us the
SA-IS algorithm.

First:

There is a proper subset of the suffixes that, if
sorted, can be used to recover the order of all the

remaining suffixes.

Second:

Those suffixes can be broken apart into blocks of
characters such that the order of the suffixes

depends purely on the order of the blocks.

● Third:

With the proper preprocessing, those suffixes can be
sorted via a recursive call on a smaller input string.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

S L S S S L S L S L L S L S L L S L L SL

C C C G T G T C A T G T C A G G $A

A T T C A T G T C A G G $A

G T C T G T C A G G $A

A T T C A G G $A

G T C G G $A

A G G $A

$

A

G

A

G

A

20

6

11

2

8

16

13

$
A G G
A T
A T
C C C
G T C
G T C

$A
G
G
G A
A
A

The relative order of the
LMS suffixes depends
purely on the relative

order of the LMS blocks.

The relative order of the
LMS suffixes depends
purely on the relative

order of the LMS blocks.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

S L S S S L S L S L L S L S L L S L L SL

C C C G T G T C A T G T C A G G $A

A T T C A T G T C A G G $A

G T C T G T C A G G $A

A T T C A G G $A

G T C G G $A

A G G $A

$

A

G

A

G

A

20

6

11

2

8

16

13

$
A G G
A T
A T
C C C
G T C
G T C

$A
G
G
G A
A
A

0
1

2

3

4

We can compute these
numbers in time O(m). Just

compare each block to the one
after it to test for equality.

We can compute these
numbers in time O(m). Just

compare each block to the one
after it to test for equality.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A

S L S S S L S L S L L S L S L L S L L SL

C C C G T G T C A T G T C A G G $A

A T T C A T G T C A G G $A

G T C T G T C A G G $A

A T T C A G G $A

G T C G G $A

A G G $A

$

A

G

A

G

A

20

6

11

2

8

16

13

$
A G G
A T
A T
C C C
G T C
G T C

$A
G
G
G A
A
A

0
1

2

3

4

3 2 4 2 4 1 0

2 4 2 4 1 0

4 2 4 1 0

2 4 1 0

4 1 0

1 0

0

We need a suffix array for this reduced string!We need a suffix array for this reduced string!

Now we just need to
get these sequences

of numbers into
sorted order.

Now we just need to
get these sequences

of numbers into
sorted order.

Recursion to the Rescue

● The SA-IS algorithm handles this step recursively, with a
very cleverly-chosen base case.

● Base Case: If all blocks are unique, the suffix array can be
computed manually in time O(m) by writing down the indices
of 0, 1, 2, …, k.

● Recursive Case: Otherwise, recursively invoke SA-IS to get
the suffix array!

3 2 4 1 0

4 3 1 0 2

0 1 2 3 4

0 1 2 3 4

The Whole Algorithm, End-to-End

 G T C C G A T G T C A T G T C A G $
0 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20

AG
18

C
4

S L S S S L S L S L L S L S L L S L L SL

Step One: Scan the
array from right-to-left

to label each suffix as S-
type or L-type.

Step One: Scan the
array from right-to-left

to label each suffix as S-
type or L-type.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

S L S S S L S L S L L S L S L L S L L SL

20

16

11

6

2

13

8

T T C T TA G A GC T …A G

T C G G AG A $

$
G G AA $

T C T T CG A G AC T T CA G …
T T C G G …A G A

C C G T T CC A G …

20 16 1311 86 2

Step Two: Run an
induced sorting step on
the LMS suffixes in the
order they appear. This
will get the LMS blocks
(not the LMS suffixes)

into sorted order.

Step Two: Run an
induced sorting step on
the LMS suffixes in the
order they appear. This
will get the LMS blocks
(not the LMS suffixes)

into sorted order.

Pass One: Place the
LMS suffixes at the

ends of their buckets.

Pass One: Place the
LMS suffixes at the

ends of their buckets.

Pass Two: Place the
L-type suffixes at the

fronts of their buckets.

Pass Two: Place the
L-type suffixes at the

fronts of their buckets.

G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

S L S S S L S L S L L S L S L L S L L SL

20 16 1311 86 2

G T C G A T G T C A T G T C A G G A

19 18 510 15 9 14 117 7 12

Step Two: Run an
induced sorting step on
the LMS suffixes in the
order they appear. This
will get the LMS blocks
(not the LMS suffixes)

into sorted order.

Step Two: Run an
induced sorting step on
the LMS suffixes in the
order they appear. This
will get the LMS blocks
(not the LMS suffixes)

into sorted order.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

S L S S S L S L S L L S L S L L S L L SL

20 16 1311 86 2

G T C G A T G T C A T G T C A G G A

19 18 510 15 9 14 117 7 12

CC

116 013816 43220

Pass Three: Place the
S-type suffixes at the
ends of their buckets.

Pass Three: Place the
S-type suffixes at the
ends of their buckets.

Step Two: Run an
induced sorting step on
the LMS suffixes in the
order they appear. This
will get the LMS blocks
(not the LMS suffixes)

into sorted order.

Step Two: Run an
induced sorting step on
the LMS suffixes in the
order they appear. This
will get the LMS blocks
(not the LMS suffixes)

into sorted order.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

20 16 6 11 10 15 2 3 4 18 5 8 13

S L S S S L S L S L L S L S L L S L L SL

19 9 14 117 7 120

20

6

11

2

8

16

13

$
A G G
A T
A T
C C C
G T C
G T C

$A
G
G
G A
A
A

0
1

2

3

4

3 2 24 4 1 0

3 2 4 2 4 1 0

Step Three: Number the
LMS blocks and form the

reduced string.

Step Three: Number the
LMS blocks and form the

reduced string.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

20 16 6 11 10 15 2 3 4 18 5 8 13

S L S S S L S L S L L S L S L L S L L SL

19 9 14 117 7 120

20

6

11

2

8

16

13

$
A G G
A T
A T
C C C
G T C
G T C

$A
G
G
G A
A
A

0
1

2

3

4

3 2 24 4 1 0

3 2 4 2 4 1 0

recursion!

6 5 3 1 0 4 2

Step Four: Use the suffix
array of the reduced string
to sort the LMS suffixes.

Step Four: Use the suffix
array of the reduced string
to sort the LMS suffixes.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

16 6 11 10 15 2 3 4 18 5

S L S S S L S L S L L S L S L L S L L SL

19 9 14 117 7 12013820

11

8

13

A T T C A G G $A
G T C T G T C A G G $A

G T C G G $A
G
A

A

6 5 3 1 0 4 2

2 C C C T G T C A T G T C A G G $AG A
6 A T T C A T G T C A G G $AG

20

16

$
A G G $A

Step Four: Use the suffix
array of the reduced string
to sort the LMS suffixes.

Step Four: Use the suffix
array of the reduced string
to sort the LMS suffixes.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

16 6 11 10 15 2 3 4 18 5

S L S S S L S L S L L S L S L L S L L SL

19 9 14 117 7 12013820

13 G T C G G $AA

6 5 3 1 0 4 2

C C C T G T C A T G T C A G G $AG A

6 A T T C A T G T C A G G $AG

20 $
16 A G G $A
11 A T T C A G G $AG

8 G T C T G T C A G G $AA

2

Step Four: Use the suffix
array of the reduced string
to sort the LMS suffixes.

Step Four: Use the suffix
array of the reduced string
to sort the LMS suffixes.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

S L S S S L S L S L L S L S L L S L L SL

81326111620

$
G G AA $

T T C T G …A G A
T T C T TA G A GC G …A G

C C G T T CC A G …
T C G G AG A $
T C T T CG A G AC T T CA G …

20

16

6

11

2

13

8

Step Five: Run an
induced sorting step on
the sorted LMS suffixes
to produce the overall

suffix array.

Step Five: Run an
induced sorting step on
the sorted LMS suffixes
to produce the overall

suffix array.

Pass One: Place the
sorted LMS suffixes at

the ends of their buckets.

Pass One: Place the
sorted LMS suffixes at

the ends of their buckets.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

S L S S S L S L S L L S L S L L S L L SL

81326111620

G T C CT TG T T C A G G A

19 1815 10 5 14 9 117 12 7

GG AA

Step Five: Run an
induced sorting step on
the sorted LMS suffixes
to produce the overall

suffix array.

Step Five: Run an
induced sorting step on
the sorted LMS suffixes
to produce the overall

suffix array.

Pass Two: Place the
L-type suffixes at the
fronts of their blocks.

Pass Two: Place the
L-type suffixes at the
fronts of their blocks.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

S L S S S L S L S L L S L S L L S L L SL

81326111620 19 1815 510 14 9 117 12 7

Step Five: Run an
induced sorting step on
the sorted LMS suffixes
to produce the overall

suffix array.

Step Five: Run an
induced sorting step on
the sorted LMS suffixes
to produce the overall

suffix array.

Pass Three: Place the
S-type suffixes at the
ends of their blocks.

Pass Three: Place the
S-type suffixes at the
ends of their blocks.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

S L S S S L S L S L L S L S L L S L L SL

81326111620 19 1815 510 14 9 117 12 7

G T C C C G A T G T A T G T A G G

611 081316 432

C C A

20

Step Five: Run an
induced sorting step on
the sorted LMS suffixes
to produce the overall

suffix array.

Step Five: Run an
induced sorting step on
the sorted LMS suffixes
to produce the overall

suffix array.

Pass Three: Place the
S-type suffixes at the
ends of their blocks.

Pass Three: Place the
S-type suffixes at the
ends of their blocks.

 G T C C C G A T G T C A T G T C A G G $
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

$

A

T

C

G

A

20 19 16 11 6 15 10 2 3 4 18 5 17 13 8 0 14 9 1 712

$ A
T
G
T
C
A
T
…

A
T
G
T
C
A
G
…

A
$

A
G
G
A
$

C
A
G
G
A
$

C
A
T
C
G
T
A
…

C
C
C
G
A
T
G
…

C
C
G
A
T
G
T
…

C
G
A
T
G
T
C
…

G
A
$

G
A
T
G
T
C
A
…

G
G
A
$

G
T
C
A
G
G
A
…

G
T
C
A
T
G
T
…

G
T
C
C
C
G
A
…

T
C
A
G
G
A
$

T
C
A
T
G
T
C
…

T
C
C
C
G
A
T
…

T
G
T
C
A
G
G
…

T
G
T
C
A
T
G
…

SA-IS, End-to-End

SA-IS(T):
 Scan T from right-to-left to mark each character as S-type or L-type.
 Identify all the LMS suffixes of T.

 Run induced sorting using the LMS suffixes in the order they appear in in T.

 Scan the result, gathering LMS suffixes in the order they ended up in.
 Number the LMS blocks, assigning duplicate blocks the same number.
 Form the reduced string T’ from the block numbers.

 If all blocks are unique, get a suffix array for T’ by directly inverting T’.
 Otherwise, get a suffix array for T’ by calling SA-IS(T’).

 Use the suffix array for T’ to sort the LMS suffixes of T.
 Do a second induced sorting pass of T using the LMS suffixes in sorted order.

SA-IS(T):
 Scan T from right-to-left to mark each character as S-type or L-type.
 Identify all the LMS suffixes of T.

 Run induced sorting using the LMS suffixes in the order they appear in in T.

 Scan the result, gathering LMS suffixes in the order they ended up in.
 Number the LMS blocks, assigning duplicate blocks the same number.
 Form the reduced string T’ from the block numbers.

 If all blocks are unique, get a suffix array for T’ by directly inverting T’.
 Otherwise, get a suffix array for T’ by calling SA-IS(T’).

 Use the suffix array for T’ to sort the LMS suffixes of T.
 Do a second induced sorting pass of T using the LMS suffixes in sorted order.

The Overall Runtime

● The SA-IS algorithm does O(m) work, then (optionally)
makes a recursive call on the reduced string.

● The size of the reduced string is equal to the number
of LMS characters.

● Claim: There are at most m/2 LMS characters.

● Each LMS character appears when an L-type suffix is
followed by an S-type suffix, and in the worst case the suffix
types alternate between L-type and S-type.

● Recurrence relation is

T(m) ≤ T(m/₂) + O(m).

● Applying the Master Theorem, this solves to O(m)
total work!

Wow! What a nifty algorithm!

In Practice

● SA-IS is extremely fast in both theory and in practice.

● Excellent locality of reference in the induced sorting and
block numbering steps.

● Recursive step usually has a great compression ratio.

● With a creative implementation, the memory overhead
is minimal.

● There’s further work beyond what’s shown here about
reducing the total memory usage by being clever and
recycling space.

● The current fastest suffix array construction algorithm,
DivSufSort, is essentially a highly optimized version of
SA-IS using a slightly different approach to sorting
LMS suffixes.

Why Study SA-IS?

● Explore the theoretical structure of suffix arrays.

● The relative ordering of L-type and S-type suffixes, the idea of
induced sorting, and the bit about LMS blocks are all really
beautiful theoretical results.

● See the idea of simulating one algorithm with
another.

● Induced sorting is basically a multiway merge sort implemented
really well, yet there’s little evidence of this in the final code!

● Look at a really, really clever divide-and-conquer
algorithm.

● Did you expect to see the suffix array reduced that way?

● Probe the interface between theory and practice.

● This algorithm has an asymptotically optimal runtime, and it’s
really fast in practice!

More to Explore

● Constructing LCP using induced sorting.
(Fischer and Kurpicz, 2011)

● Kasai’s LCP algorithm was the first linear-time LCP
algorithm. Turns out you can augment SA-IS to
produce both the suffix array and the LCP array
much, much faster than this.

● Reducing SA-IS memory usage. (Nong, 2013)

● A variation of SA-IS (by one of its original authors!)
that cuts down on the memory usage and improves
performance.

Next Time

● Balanced Trees

● Fast, flexible data structures for sorted sequences.

● B-Trees

● Built for databases, now popular in RAM!

● 2-3-4 Trees

● One of the simplest balanced trees around.

● Red/Black Trees

● Where do they come from?

