

Amortized Analysis

Doing the Dishes

● What do I do with
a dirty dish or
kitchen utensil?

● Option 1: Wash
it by hand.

● Option 2: Put it
in the dishwasher
rack, then run
the dishwasher if
it’s full.

Doing the Dishes

● Washing every
individual dish and
utensil by hand is
way slower than
using the dishwasher,
but I always have
access to my plates
and kitchen utensils.

● Running the
dishwasher is faster
in aggregate, but
means I may have to
wait a bit for dishes
to be ready.

Key Idea: Design data structures that
trade per-operation efficiency for

overall efficiency.

Example: The Two-Stack Queue

The Two-Stack Queue

1
Out In

The Two-Stack Queue

1
Out In

2

The Two-Stack Queue

1
Out In

2

3

The Two-Stack Queue

1
Out In

2

3

4

The Two-Stack Queue

1
In

2

3

4
Out

The Two-Stack Queue

In

2

3

4
Out

11

The Two-Stack Queue

1
Clean
Dishes

Dirty
Dishes

2

3

4
Our dirty dishes

are piling up
because we didn’t

do any work to
clean them when

we added them in.

Our dirty dishes
are piling up

because we didn’t
do any work to

clean them when
we added them in.

The Two-Stack Queue

Dirty
Dishes

2

3

4
Clean
Dishes

11

We just cleaned up
our entire mess

and are back to a
pristine state.

We just cleaned up
our entire mess

and are back to a
pristine state.

The Two-Stack Queue

● Maintain an In stack and an Out stack.
● To enqueue an element, push it onto the

In stack.
● To dequeue an element:

● If the Out stack is nonempty, pop it.
● If the Out stack is empty, pop elements from

the In stack, pushing them into the Out
stack, until the bottom of the In stack is
exposed.

The Two-Stack Queue

● Each enqueue takes time O(1).
● Just push an item onto the In stack.

● Dequeues can vary in their runtime.
● Could be O(1) if the Out stack isn’t empty.
● Could be Θ(n) if the Out stack is empty.

n
n–1

3
...

Out In

The Two-Stack Queue

● Intuition: We only do expensive dequeues after a
long run of cheap enqueues.

● Think “dishwasher:” we very slowly introduce a lot
of dirty dishes to get cleaned up all at once.

● Provided we clean up all the dirty dishes at once,
and provided that dirty dishes accumulate slowly,
this is a fast strategy!

In

n
n–1

3
...

Out

The Two-Stack Queue

● Any series of m operations on a two-stack queue will
take time O(m).

● Every element is pushed at most twice and popped at
most twice.

● Key Question: What’s the best way to summarize the
above idea in a useful way?

● This is a bit more subtle than it looks.

In

n
n–1

3
...

Out

Analyzing the Queue

● Initial idea: Summarize our result using
an average-case analysis.
● If we do m total operations, the total work

done is O(m).
● Average amount of work per operation: O(1).

● Based on this argument, we can claim that
the average cost of an enqueue or
dequeue is O(1).

● Claim: While the above statement is true,
it’s not as precise as we might like.

Issue: When we say the average cost of an
operation is O(1), what are we averaging

over?

w
o
rk

time

Total work done: Θ(m)

Total operations: Θ(m)

Average work per element: O(1).

Total work done: Θ(m)

Total operations: Θ(m)

Average work per element: O(1).

Construct

Query

w
o
rk

time

31 41 59 26 53 58 97 93

Fischer-Heun
RMQ

If the array has
size m and we do

m – 1 queries,
the average work
per operation is

O(1).

If the array has
size m and we do

m – 1 queries,
the average work
per operation is

O(1).

Building this dam is
an enormous up-front

cost, but pays for
itself in the long-

term… assuming it
lasts that long. ☹

Building this dam is
an enormous up-front

cost, but pays for
itself in the long-

term… assuming it
lasts that long. ☹

w
o
rk

time

w
o
rk

time

Dishwasher model: Lots of
cheap operations that need

to be made up for by an
expensive one later.

The average work done at
each point in time is low.

Dishwasher model: Lots of
cheap operations that need

to be made up for by an
expensive one later.

The average work done at
each point in time is low.

Dam model: Early,
expensive operation that
pays off in the long term.

The average work done at
each point in time is high
until lots of operations are

performed.

Dam model: Early,
expensive operation that
pays off in the long term.

The average work done at
each point in time is high
until lots of operations are

performed.

Nuance 1: The average cost of the
operations done on a two-stack queue is
always low, regardless of when we stop

performing operations.

Averaging Over What?

● Compare our two-stack
queue to a chained hash
table.

● Assuming there are at
least as many buckets
as elements, the
expected cost of an
insertion or lookup is
O(1).

● However, it isn’t
guaranteed that the
cost of a lookup or
insertion is O(1).

Averaging Over What?

● Compare our two-stack
queue to a chained hash
table.

● Assuming there are at
least as many buckets
as elements, the
expected cost of an
insertion or lookup is
O(1).

● However, it isn’t
guaranteed that the
cost of a lookup or
insertion is O(1).

w
o
rk

time

Total work done: 16

Total operations: 9

Average work per element: ≈1.8

Total work done: 16

Total operations: 9

Average work per element: ≈1.8

w
o
rk

time

Total work done: Θ(m2)

Total operations: Θ(m)

Average work per element: Θ(m).

Total work done: Θ(m2)

Total operations: Θ(m)

Average work per element: Θ(m).

Grocery stores don’t
need to stock up huge

quantities of every item
because, on average,

people aren’t buying the
same thing.

But if they all want toilet
paper…

Grocery stores don’t
need to stock up huge

quantities of every item
because, on average,

people aren’t buying the
same thing.

But if they all want toilet
paper…

w
o
rk

time

w
o
rk

time

Dishwasher model: Lots of
cheap operations that need

to be made up for by an
expensive one later.

The average work done at
each point in time is low.

Dishwasher model: Lots of
cheap operations that need

to be made up for by an
expensive one later.

The average work done at
each point in time is low.

Grocery store model: It’s
unlikely that there will be

any large operations
because randomization

saves the day.

Except that, every now and
then, we run into trouble…

Grocery store model: It’s
unlikely that there will be

any large operations
because randomization

saves the day.

Except that, every now and
then, we run into trouble…

Nuance 2: The “average” mentioned in a
two-stack queue is not based on any

random variables. There is no chance that
any sequence of operations on a two-stack

queue takes “too long.”

To Summarize

w
o
rk

time

w
o
rk

time

w
o
rk

time

Dishwasher
(Amortization)
Each expensive

operation is
preceded by lots
of cheap ones.

Dishwasher
(Amortization)
Each expensive

operation is
preceded by lots
of cheap ones.

Grocery Store
(Randomization)
Performs well on
expectation, can’t

guarantee
efficiency.

Grocery Store
(Randomization)
Performs well on
expectation, can’t

guarantee
efficiency.

Dam
(Preprocessing)
Early expensive

operations,
cheap later ones.

Dam
(Preprocessing)
Early expensive

operations,
cheap later ones.

What Amortization Means

Key Idea: Backcharge expensive
operations to cheaper ones.

w
o
rk

time

Key Idea: Backcharge expensive
operations to cheaper ones.

w
o
rk

time

Key Idea: Backcharge expensive
operations to cheaper ones.

w
o
rk

time

If we pretend that each
operation takes three units of
time, we never underestimate

the amount of work that we do.

If we pretend that each
operation takes three units of
time, we never underestimate

the amount of work that we do.

Amortized Analysis

● Suppose we perform a series of operations op₁,
op₂, …, opₘ.

● The amount of time taken to execute operation
opᵢ is denoted by t(opi).

● Goal: For each operation opᵢ, pick a value a(opᵢ),
called the amortized cost of opᵢ, such that

∀k ≤ m. ∑
i=1

k

t (opi) ≤ ∑
i=1

k

a(opi).

…the actual cost of
performing those

operations…

…the actual cost of
performing those

operations…

… is at most the amortized
cost of performing those

operations.

… is at most the amortized
cost of performing those

operations.

No matter when we
stop performing

operations…

No matter when we
stop performing

operations…

Amortized Analysis

● Suppose we perform a series of operations op₁,
op₂, …, opₘ.

● The amount of time taken to execute operation
opᵢ is denoted by t(opi).

● Goal: For each operation opᵢ, pick a value a(opᵢ),
called the amortized cost of opᵢ, such that

∀k ≤ m. ∑
i=1

k

t (opi) ≤ ∑
i=1

k

a(opi).

t

a

Amortized Analysis

● The amortized cost of an enqueue or
dequeue in a two-stack queue is O(1).

● Intuition: If you pretend that the actual cost
of each enqueue or dequeue is O(1), you will
never underestimate the total time spent
performing queue operations.

∀k ≤ m. ∑
i=1

k

t (opi) ≤ ∑
i=1

k

a(opi).

t

a

Major Questions

● In what situations can we nicely amortize
the cost of expensive operations?

● How do we choose the amortized costs
we want to use?

● How do we design data structures with
amortization in mind?

When Amortization Works

When Amortization Works

H He Li Be B C N O F Ne Na Mg Al Si P S

Most appends take time O(1) and
consume some free space.

Every now and then, an append takes
time O(n), but produce a lot of free space.

With a little math, you can show that the
amortized cost of any append is O(1).

Most appends take time O(1) and
consume some free space.

Every now and then, an append takes
time O(n), but produce a lot of free space.

With a little math, you can show that the
amortized cost of any append is O(1).

When Amortization Works

4

63

9

10

When Amortization Works

4

93

6 10

When Amortization Works

4

93

6 101

2

When Amortization Works

4

92

6 101 3

When Amortization Works

4

92

6 101 3

1285

7 11

When Amortization Works

7

104

8 112 5

12961 3

Most insertions take time O(log n) and unbalance the tree. Some
insertions do more work, but balance large parts of the tree.

With the right strategy for rebuilding trees, all insertions
can be shown to run in amortized time O(log n) each.

(This is called a scapegoat tree.)

Key Intuition: Amortization works best if

(1) imbalances accumulate slowly, and
(2) imbalances get cleaned up quickly.

Performing Amortized Analyses

Performing Amortized Analyses

● You have a data structure where
● imbalances accumulate slowly, and
● imbalances get cleaned up quickly.

● You’re fairly sure the cleanup costs will
amortize away nicely.

● How do you assign amortized costs?

The Banker's Method

● In the banker's method, operations can place credits on the
data structure or spend credits that have already been placed.

● Placing a credit on the data structure takes time O(1).

● Spending a credit previously placed on the data structure
takes time -O(1). (Yes, that’s negative time!)

● The amortized cost of an operation is then

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● There aren’t any real credits anywhere. They’re just an
accounting trick.

t

a

+ – + + + – –

The Two-Stack Queue

1
Out In

$

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

This credit will pay for the
work to pop this element
later on and push it onto

the other stack.

This credit will pay for the
work to pop this element
later on and push it onto

the other stack.

The Two-Stack Queue

1
Out In

2

$

$

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

The Two-Stack Queue

1
Out In

2

3

$

$

$

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

The Two-Stack Queue

1
Out In

2

3

4

$

$

$

$Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

The Two-Stack Queue

In

2

3

4
Out

11

Actual work: Θ(k)
Credits spent: k

Amortized cost: O(1)

Actual work: Θ(k)
Credits spent: k

Amortized cost: O(1)

Why This Works

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi) + O(1)⋅(addedi−removedi))

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)

= ∑
i=1

k

t (opi) + O(1)(∑
i=1

k

addedi − ∑
i=1

k

removedi)

= ∑
i=1

k

t (opi) + O(1)⋅(netcreditsadded)

≥ ∑
i=1

k

t (opi)
(Assuming we
never spend
credits we

don’t have.)

(Assuming we
never spend
credits we

don’t have.)

Using the Banker’s Method

● To perform an amortized analysis using the
banker’s method, do the following:
● Figure out the actual runtimes of each operation.
● Indicate where you’ll place down credits, and

compute the amortized cost of operations that
place credits this way.

● Indicate where you’ll spend credits, and justify
why the credits you intend to spend are
guaranteed to be there. Then, compute the
amortized cost of each operation that spends
credits this way.

An Observation

● The amortized cost of an operation is

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● Equivalently, this is

a(opᵢ) = t(opᵢ) + O(1) · Δcreditsᵢ.

● Some observations:

● It doesn't matter where these credits are placed
or removed from.

● The total number of credits added and removed
doesn't matter; all that matters is the difference
between these two.

The Potential Method

● In the potential method, we define a potential
function Φ that maps a data structure to a non-
negative real value.

● Define a(opᵢ) as

a(opᵢ) = t(opᵢ) + O(1) · ΔΦᵢ

● Here, ΔΦᵢ is the change in the value of Φ during the
execution of operation opᵢ.

t

a

+1 -1 +1 +1 0 0 -2 +1

The Two-Stack Queue

1
Out In

Φ = Height
of In Stack

Φ = Height
of In Stack

Actual work: O(1)
ΔΦ: +1

Amortized cost: O(1)

Actual work: O(1)
ΔΦ: +1

Amortized cost: O(1)

The Two-Stack Queue

1
Out In

2

Φ = Height
of In Stack

Φ = Height
of In Stack

Actual work: O(1)
ΔΦ: +1

Amortized cost: O(1)

Actual work: O(1)
ΔΦ: +1

Amortized cost: O(1)

The Two-Stack Queue

1
Out In

2

3

Φ = Height
of In Stack

Φ = Height
of In Stack

Actual work: O(1)
ΔΦ: +1

Amortized cost: O(1)

Actual work: O(1)
ΔΦ: +1

Amortized cost: O(1)

The Two-Stack Queue

1
Out In

2

3

4

Φ = Height
of In Stack

Φ = Height
of In Stack

Actual work: O(1)
ΔΦ: +1

Amortized cost: O(1)

Actual work: O(1)
ΔΦ: +1

Amortized cost: O(1)

The Two-Stack Queue

In

2

3

4
Out

11

Φ = Height
of In Stack

Φ = Height
of In Stack

Actual work: Θ(k)
ΔΦ: -k

Amortized cost: O(1)

Actual work: Θ(k)
ΔΦ: -k

Amortized cost: O(1)

Why This Works

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi) + O(1)⋅ΔΦi)

= ∑
i=1

k

t (opi) + O(1)⋅∑
i=1

k

ΔΦi

= ∑
i=1

k

t (opi) + O(1)⋅(net change in potential)

≥ ∑
i=1

k

t (opi)

Think “fundamental theorem of calculus,”
but for discrete derivatives!

Think “fundamental theorem of calculus,”
but for discrete derivatives!

∫
a

b

f '(x)dx = f (b)− f (a) ∑
x=a

b

Δ f (x) = f (b+1)− f (a)

Look up finite calculus if you’re curious to learn more!

Why This Works

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi) + O(1)⋅ΔΦi)

= ∑
i=1

k

t (opi) + O(1)⋅∑
i=1

k

ΔΦi

= ∑
i=1

k

t (opi) + O(1)⋅(net change in potential)

≥ ∑
i=1

k

t (opi)
(Assuming our

potential doesn’t
end up below

where it started)

(Assuming our
potential doesn’t

end up below
where it started)

Using the Potential Method

● To perform an amortized analysis using the
potential method, do the following:
● Figure out the actual runtimes of each

operation.
● Define your potential function Φ, and explain

why it’s initially zero or otherwise account
for a nonzero start potential.

● For each operation, determine its ΔΦ.
● Compute the amortized costs of each operation.

The Story So Far

● We assign amortized costs to operations, which
are different than their real costs.

● The requirement is that the sum of the amortized
costs never underestimates the sum of the real
costs.

● The banker’s method works by placing credits
on the data structure and adjusting costs based
on those credits.

● The potential method works by assigning a
potential function to the data structure and
adjusting costs based on the change in potential.

Deleting from a BST

BST Deletions

● We’ve seen how to do insertions into a 2-3-4
tree.
● Put the key into the appropriate leaf.
● Keep splitting big nodes and propagating keys

upward as necessary.
● Using our isometry, we can use this to derive

insertion rules for red/black trees.
● Question: How do you delete from a 2-3-4

tree or red/black tree?

Dead Simple Deletions

● Idea: Delete things in the laziest way possible.

17

6

12

4 8

15

5

1

2

3

14

13 16

25

19

23 27

18 21

24 26

28

29

22

7 10

209 11

30

Dead Simple Deletions

● Each key is either dead (removed) or
alive (still there).

● To remove a key, just mark it dead.
● Do lookups as usual, but pretend missing

keys aren’t there.
● When inserting, if a dead version of the

key is found, resurrect it.

Dead Simple Deletions

● Problem: What happens if too many keys die?

17

6

12

4 8

15

5

1

2

3

14

13 16

25

19

23 27

18 21

24 26

28

29

22

7 10

209 11

30

Dead Simple Deletions

● Problem: What happens if too many keys die?

1

2

3

16

21

24 26

28

22

7

2011

5 14 18

9

30

4 8

10

6

13

12

17

19

23 27

28

25

15

Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.

17

6

12

4 8

15

5

1

2

3

14

13 16

25

19

23 27

18 21

24 26

28

29

22

7 10

209 11

30

Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.

6 12

5

2 14

13

16

19 27

18 21 24

229

30

We can rebuild this tree in time
O(n). We can get the keys in

sorted order from the last BST in
time O(n) by doing an inorder

traversal, then directly build the
red/black tree.

Great exercise: fill in the
details!

We can rebuild this tree in time
O(n). We can get the keys in

sorted order from the last BST in
time O(n) by doing an inorder

traversal, then directly build the
red/black tree.

Great exercise: fill in the
details!

Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.

6 12

5

2 14

13

16

19 27

18 21 24

229

30

Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.

6

2

14

19 27

21

9

Analyzing Lazy Rebuilding

● What is the cost of an insertion or lookup
in a tree with n (living) keys?
● Total number of nodes: at most 2n.
● Cost of the operation: O(log 2n) = O(log n).

● What is the cost of a deletion?
● Most of the time, it’s O(log n).
● Every now and then, it’s O(n).
● Can we amortize these costs away?

Amortized Analysis

6

2

14

19 27

21

9

● Idea: Place a credit on each dead key.
● When we do a rebuild, there are Θ(n) credits on the

tree, which we can use to pay for the Θ(n) rebuild cost.

Lazy Rebuilding

● The amortized cost of a lookup or insertion is O(log n).
(Do you see why?)

● If a deletion doesn’t rebuild, its amortized cost is

O(log n) + O(1) = O(log n).
● If a deletion triggers a rebuild:

● When we start, we have n / 2 credits.
● When we end, we have 0 credits.
● Cost of the tree search: O(log n).
● Cost of the tree rebuild: Θ(n).
● Amortized cost: O(log n) + Θ(n) – O(1) · Θ(n) = O(log n).

● Intuition: Imbalances build up over time, then get fixed
all at once, so we’d expect costs to spread out nicely.

Lazy Deletions

● This approach isn’t perfect.
● Queries for the min or max are slower.
● Augmentation is a bit harder.
● Successor / predecessor / range searches slower.

● There are a number of papers about being
lazy during BST deletions, many of which
have led to new, fast tree data structures.

● Check out WAVL and RAVL trees – these
might make for great final project topics!

Next Time

● Binomial Heaps
● A simple and versatile heap data structure

based on binary arithmetic.
● Lazy Binomial Heaps

● Rejiggering binomial heaps for fun and
profit.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

