
  

Amortized Analysis



  

Doing the Dishes

● What do I do with 
a dirty dish or 
kitchen utensil?

● Option 1: Wash 
it by hand.

● Option 2: Put it 
in the dishwasher 
rack, then run 
the dishwasher if 
it’s full.



  

Doing the Dishes

● Washing every 
individual dish and 
utensil by hand is 
way slower than 
using the dishwasher, 
but I always have 
access to my plates 
and kitchen utensils.

● Running the 
dishwasher is faster 
in aggregate, but 
means I may have to 
wait a bit for dishes 
to be ready.



  

Key Idea: Design data structures that 
trade per-operation efficiency for

overall efficiency.



  

Example: The Two-Stack Queue



  

The Two-Stack Queue
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The Two-Stack Queue

In

2

3

4
Out

11



  

The Two-Stack Queue

1
Clean
Dishes

Dirty
Dishes

2

3

4
Our dirty dishes 

are piling up 
because we didn’t 

do any work to 
clean them when 

we added them in.

Our dirty dishes 
are piling up 

because we didn’t 
do any work to 

clean them when 
we added them in.



  

The Two-Stack Queue

Dirty
Dishes

2

3

4
Clean
Dishes

11

We just cleaned up 
our entire mess 

and are back to a 
pristine state.

We just cleaned up 
our entire mess 

and are back to a 
pristine state.



  

The Two-Stack Queue

● Maintain an In stack and an Out stack.
● To enqueue an element, push it onto the 

In stack.
● To dequeue an element:

● If the Out stack is nonempty, pop it.
● If the Out stack is empty, pop elements from 

the In stack, pushing them into the Out 
stack, until the bottom of the In stack is 
exposed.



  

The Two-Stack Queue

● Each enqueue takes time O(1).
● Just push an item onto the In stack.

● Dequeues can vary in their runtime.
● Could be O(1) if the Out stack isn’t empty.
● Could be Θ(n) if the Out stack is empty.

n
n–1

3
...

Out In



  

The Two-Stack Queue

● Intuition: We only do expensive dequeues after a 
long run of cheap enqueues.

● Think “dishwasher:” we very slowly introduce a lot 
of dirty dishes to get cleaned up all at once.

● Provided we clean up all the dirty dishes at once, 
and provided that dirty dishes accumulate slowly, 
this is a fast strategy!

In

n
n–1

3
...

Out



  

The Two-Stack Queue

● Any series of m operations on a two-stack queue will 
take time O(m).

● Every element is pushed at most twice and popped at 
most twice.

● Key Question: What’s the best way to summarize the 
above idea in a useful way?

● This is a bit more subtle than it looks.

In

n
n–1

3
...

Out



  

Analyzing the Queue

● Initial idea: Summarize our result using 
an average-case analysis.
● If we do m total operations, the total work 

done is O(m).
● Average amount of work per operation: O(1).

● Based on this argument, we can claim that 
the average cost of an enqueue or 
dequeue is O(1).

● Claim: While the above statement is true, 
it’s not as precise as we might like.



  

Issue: When we say the average cost of an 
operation is O(1), what are we averaging 

over?



  

w
o
rk

time

Total work done: Θ(m)
 

Total operations: Θ(m)
 

Average work per element: O(1).

Total work done: Θ(m)
 

Total operations: Θ(m)
 

Average work per element: O(1).



  

Construct

Query

w
o
rk

time

31 41 59 26 53 58 97 93

Fischer-Heun
RMQ

If the array has 
size m and we do 

m – 1 queries, 
the average work 
per operation is 

O(1).

If the array has 
size m and we do 

m – 1 queries, 
the average work 
per operation is 

O(1).



  

Building this dam is 
an enormous up-front 

cost, but pays for 
itself in the long-

term… assuming it 
lasts that long. ☹

Building this dam is 
an enormous up-front 

cost, but pays for 
itself in the long-

term… assuming it 
lasts that long. ☹
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Dishwasher model: Lots of 
cheap operations that need 

to be made up for by an 
expensive one later.

The average work done at 
each point in time is low.

Dishwasher model: Lots of 
cheap operations that need 

to be made up for by an 
expensive one later.

The average work done at 
each point in time is low.

Dam model: Early, 
expensive operation that 
pays off in the long term.

The average work done at 
each point in time is high 
until lots of operations are 

performed.

Dam model: Early, 
expensive operation that 
pays off in the long term.

The average work done at 
each point in time is high 
until lots of operations are 

performed.



  

Nuance 1: The average cost of the 
operations done on a two-stack queue is 
always low, regardless of when we stop 

performing operations.



  

Averaging Over What?

● Compare our two-stack 
queue to a chained hash 
table.  

● Assuming there are at 
least as many buckets 
as elements, the 
expected cost of an 
insertion or lookup is 
O(1).

● However, it isn’t 
guaranteed that the 
cost of a lookup or 
insertion is O(1).



  

Averaging Over What?

● Compare our two-stack 
queue to a chained hash 
table.  

● Assuming there are at 
least as many buckets 
as elements, the 
expected cost of an 
insertion or lookup is 
O(1).

● However, it isn’t 
guaranteed that the 
cost of a lookup or 
insertion is O(1).



  

w
o
rk

time

Total work done: 16
 

Total operations: 9
 

Average work per element: ≈1.8

Total work done: 16
 

Total operations: 9
 

Average work per element: ≈1.8



  

w
o
rk

time

Total work done: Θ(m2)

Total operations: Θ(m)
 

Average work per element: Θ(m).

Total work done: Θ(m2)

Total operations: Θ(m)
 

Average work per element: Θ(m).



  

Grocery stores don’t 
need to stock up huge 

quantities of every item 
because, on average, 

people aren’t buying the 
same thing.

But if they all want toilet 
paper…

Grocery stores don’t 
need to stock up huge 

quantities of every item 
because, on average, 

people aren’t buying the 
same thing.

But if they all want toilet 
paper…
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unlikely that there will be 

any large operations 
because randomization 

saves the day.

Except that, every now and 
then, we run into trouble…

Grocery store model: It’s 
unlikely that there will be 

any large operations 
because randomization 

saves the day.

Except that, every now and 
then, we run into trouble…



  

Nuance 2: The “average” mentioned in a 
two-stack queue is not based on any 

random variables. There is no chance that 
any sequence of operations on a two-stack 

queue takes “too long.”



  

To Summarize
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Dishwasher 
(Amortization)
Each expensive 

operation is 
preceded by lots 
of cheap ones.

Dishwasher 
(Amortization)
Each expensive 

operation is 
preceded by lots 
of cheap ones.

Grocery Store
(Randomization)
Performs well on 
expectation, can’t 

guarantee 
efficiency.

Grocery Store
(Randomization)
Performs well on 
expectation, can’t 

guarantee 
efficiency.

Dam
(Preprocessing)
Early expensive 

operations, 
cheap later ones.

Dam
(Preprocessing)
Early expensive 

operations, 
cheap later ones.



  

What Amortization Means



  

Key Idea: Backcharge expensive 
operations to cheaper ones.
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Key Idea: Backcharge expensive 
operations to cheaper ones.
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Key Idea: Backcharge expensive 
operations to cheaper ones.

w
o
rk

time

If we pretend that each 
operation takes three units of 
time, we never underestimate 

the amount of work that we do.

If we pretend that each 
operation takes three units of 
time, we never underestimate 

the amount of work that we do.



  

Amortized Analysis

● Suppose we perform a series of operations op₁, 
op₂, …, opₘ.

● The amount of time taken to execute operation 
opᵢ is denoted by t(opi).

● Goal: For each operation opᵢ, pick a value a(opᵢ), 
called the amortized cost of opᵢ, such that

∀k ≤ m. ∑
i=1

k

t (opi) ≤ ∑
i=1

k

a(opi).

…the actual cost of 
performing those 

operations…

…the actual cost of 
performing those 

operations…

… is at most the amortized 
cost of performing those 

operations.

… is at most the amortized 
cost of performing those 

operations.

No matter when we 
stop performing 

operations…

No matter when we 
stop performing 

operations…



  

Amortized Analysis

● Suppose we perform a series of operations op₁, 
op₂, …, opₘ.

● The amount of time taken to execute operation 
opᵢ is denoted by t(opi).

● Goal: For each operation opᵢ, pick a value a(opᵢ), 
called the amortized cost of opᵢ, such that

∀k ≤ m. ∑
i=1

k

t (opi) ≤ ∑
i=1

k

a(opi).

t

a



  

Amortized Analysis

● The amortized cost of an enqueue or 
dequeue in a two-stack queue is O(1).

● Intuition: If you pretend that the actual cost 
of each enqueue or dequeue is O(1), you will 
never underestimate the total time spent 
performing queue operations.

∀k ≤ m. ∑
i=1

k

t (opi) ≤ ∑
i=1

k

a(opi).

t

a



  

Major Questions

● In what situations can we nicely amortize 
the cost of expensive operations?

● How do we choose the amortized costs 
we want to use?

● How do we design data structures with 
amortization in mind?



  

When Amortization Works



  

When Amortization Works

H He Li Be B C N O F Ne Na Mg Al Si P S

Most appends take time O(1) and 
consume some free space.

 

Every now and then, an append takes 
time O(n), but produce a lot of free space.

 

With a little math, you can show that the 
amortized cost of any append is O(1).

Most appends take time O(1) and 
consume some free space.

 

Every now and then, an append takes 
time O(n), but produce a lot of free space.

 

With a little math, you can show that the 
amortized cost of any append is O(1).



  

When Amortization Works
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When Amortization Works
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When Amortization Works

7

104

8 112 5

12961 3

Most insertions take time O(log n) and unbalance the tree. Some 
insertions do more work, but balance large parts of the tree.

 

With the right strategy for rebuilding trees, all insertions
can be shown to run in amortized time O(log n) each.

(This is called a scapegoat tree.)



  

Key Intuition: Amortization works best if
 

(1) imbalances accumulate slowly, and
(2) imbalances get cleaned up quickly.



  

Performing Amortized Analyses



  

Performing Amortized Analyses

● You have a data structure where
● imbalances accumulate slowly, and
● imbalances get cleaned up quickly.

● You’re fairly sure the cleanup costs will 
amortize away nicely.

● How do you assign amortized costs?



  

The Banker's Method

● In the banker's method, operations can place credits on the 
data structure or spend credits that have already been placed.

● Placing a credit on the data structure takes time O(1).

● Spending a credit previously placed on the data structure 
takes time -O(1). (Yes, that’s negative time!)

● The amortized cost of an operation is then

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● There aren’t any real credits anywhere. They’re just an 
accounting trick.

t

a

+   –   +   +   +   –   –   



  

The Two-Stack Queue

1
Out In

$

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

This credit will pay for the 
work to pop this element 
later on and push it onto 

the other stack.

This credit will pay for the 
work to pop this element 
later on and push it onto 

the other stack.



  

The Two-Stack Queue
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Amortized cost: O(1)

Actual work: O(1)
Credits added: 1

Amortized cost: O(1)



  

The Two-Stack Queue
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The Two-Stack Queue

1
Out In
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$Actual work: O(1)
Credits added: 1

Amortized cost: O(1)

Actual work: O(1)
Credits added: 1
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The Two-Stack Queue

In

2

3

4
Out

11

Actual work: Θ(k)
Credits spent: k

Amortized cost: O(1)

Actual work: Θ(k)
Credits spent: k

Amortized cost: O(1)



  

Why This Works

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi) + O(1)⋅(addedi−removedi))         

= ∑
i=1

k

t (opi) + O(1)∑
i=1

k

(addedi−removedi)        

= ∑
i=1

k

t (opi) + O(1)(∑
i=1

k

addedi − ∑
i=1

k

removedi)

= ∑
i=1

k

t (opi) + O(1)⋅(netcreditsadded)            

≥ ∑
i=1

k

t (opi)                                                      
(Assuming we 
never spend 
credits we 

don’t have.)

(Assuming we 
never spend 
credits we 

don’t have.)



  

Using the Banker’s Method

● To perform an amortized analysis using the 
banker’s method, do the following:
● Figure out the actual runtimes of each operation.
● Indicate where you’ll place down credits, and 

compute the amortized cost of operations that 
place credits this way.

● Indicate where you’ll spend credits, and justify 
why the credits you intend to spend are 
guaranteed to be there. Then, compute the 
amortized cost of each operation that spends 
credits this way.



  

An Observation

● The amortized cost of an operation is

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● Equivalently, this is

a(opᵢ) = t(opᵢ) + O(1) · Δcreditsᵢ.  

● Some observations:

● It doesn't matter where these credits are placed 
or removed from.

● The total number of credits added and removed 
doesn't matter; all that matters is the difference 
between these two.



  

The Potential Method

● In the potential method, we define a potential 
function Φ that maps a data structure to a non-
negative real value.

● Define a(opᵢ) as

a(opᵢ) = t(opᵢ) + O(1) · ΔΦᵢ

● Here, ΔΦᵢ is the change in the value of Φ during the 
execution of operation opᵢ.

t

a

+1 -1 +1 +1 0 0 -2 +1



  

The Two-Stack Queue

1
Out In

Φ = Height 
of In Stack

Φ = Height 
of In Stack

Actual work: O(1)
ΔΦ: +1

 

Amortized cost: O(1)

Actual work: O(1)
ΔΦ: +1

 

Amortized cost: O(1)



  

The Two-Stack Queue
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The Two-Stack Queue
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The Two-Stack Queue
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Φ = Height 
of In Stack

Φ = Height 
of In Stack

Actual work: Θ(k)
ΔΦ: -k

 

Amortized cost: O(1)

Actual work: Θ(k)
ΔΦ: -k

 

Amortized cost: O(1)



  

Why This Works

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi) + O(1)⋅ΔΦi)                                

= ∑
i=1

k

t (opi) + O(1)⋅∑
i=1

k

ΔΦi                              

= ∑
i=1

k

t (opi) + O(1)⋅(net change in potential)

≥ ∑
i=1

k

t (opi)                                                     

Think “fundamental theorem of calculus,”
but for discrete derivatives!

Think “fundamental theorem of calculus,”
but for discrete derivatives!

∫
a

b

f '(x)dx = f (b)− f (a) ∑
x=a

b

Δ f (x) = f (b+1)− f (a)

Look up finite calculus if you’re curious to learn more!



  

Why This Works

∑
i=1

k

a(opi) = ∑
i=1

k

(t (opi) + O(1)⋅ΔΦi)                                

= ∑
i=1

k

t (opi) + O(1)⋅∑
i=1

k

ΔΦi                              

= ∑
i=1

k

t (opi) + O(1)⋅(net change in potential)

≥ ∑
i=1

k

t (opi)                                                     
(Assuming our 

potential doesn’t 
end up below 

where it started)

(Assuming our 
potential doesn’t 

end up below 
where it started)



  

Using the Potential Method

● To perform an amortized analysis using the 
potential method, do the following:
● Figure out the actual runtimes of each 

operation.
● Define your potential function Φ, and explain 

why it’s initially zero or otherwise account 
for a nonzero start potential.

● For each operation, determine its ΔΦ.
● Compute the amortized costs of each operation.



  

The Story So Far

● We assign amortized costs to operations, which 
are different than their real costs.

● The requirement is that the sum of the amortized 
costs never underestimates the sum of the real 
costs.

● The banker’s method works by placing credits 
on the data structure and adjusting costs based 
on those credits.

● The potential method works by assigning a 
potential function to the data structure and 
adjusting costs based on the change in potential.



  

Deleting from a BST



  

BST Deletions

● We’ve seen how to do insertions into a 2-3-4 
tree.
● Put the key into the appropriate leaf.
● Keep splitting big nodes and propagating keys 

upward as necessary.
● Using our isometry, we can use this to derive 

insertion rules for red/black trees.
● Question: How do you delete from a 2-3-4 

tree or red/black tree?



  

Dead Simple Deletions

● Idea: Delete things in the laziest way possible.
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Dead Simple Deletions

● Each key is either dead (removed) or 
alive (still there).

● To remove a key, just mark it dead.
● Do lookups as usual, but pretend missing 

keys aren’t there.
● When inserting, if a dead version of the 

key is found, resurrect it.



  

Dead Simple Deletions

● Problem: What happens if too many keys die?
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Dead Simple Deletions

● Problem: What happens if too many keys die?
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Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.
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Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.
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We can rebuild this tree in time 
O(n). We can get the keys in 

sorted order from the last BST in 
time O(n) by doing an inorder 

traversal, then directly build the 
red/black tree.

 

Great exercise: fill in the 
details!

We can rebuild this tree in time 
O(n). We can get the keys in 

sorted order from the last BST in 
time O(n) by doing an inorder 

traversal, then directly build the 
red/black tree.

 

Great exercise: fill in the 
details!



  

Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.
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Dead Simple Deletions

● Idea: Rebuild the tree when half the keys are dead.
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Analyzing Lazy Rebuilding

● What is the cost of an insertion or lookup 
in a tree with n (living) keys?
● Total number of nodes: at most 2n.
● Cost of the operation: O(log 2n) = O(log n).

● What is the cost of a deletion?
● Most of the time, it’s O(log n).
● Every now and then, it’s O(n).
● Can we amortize these costs away?



  

Amortized Analysis
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19 27

21

9

● Idea: Place a credit on each dead key.
● When we do a rebuild, there are Θ(n) credits on the 

tree, which we can use to pay for the Θ(n) rebuild cost.



  

Lazy Rebuilding

● The amortized cost of a lookup or insertion is O(log n). 
(Do you see why?)

● If a deletion doesn’t rebuild, its amortized cost is

O(log n) + O(1) = O(log n).
● If a deletion triggers a rebuild:

● When we start, we have n / 2 credits.
● When we end, we have 0 credits.
● Cost of the tree search: O(log n).
● Cost of the tree rebuild: Θ(n).
● Amortized cost: O(log n) + Θ(n) – O(1) · Θ(n) = O(log n).

● Intuition: Imbalances build up over time, then get fixed 
all at once, so we’d expect costs to spread out nicely.



  

Lazy Deletions

● This approach isn’t perfect.
● Queries for the min or max are slower.
● Augmentation is a bit harder.
● Successor / predecessor / range searches slower.

● There are a number of papers about being 
lazy during BST deletions, many of which 
have led to new, fast tree data structures.

● Check out WAVL and RAVL trees – these 
might make for great final project topics!



  

Next Time

● Binomial Heaps
● A simple and versatile heap data structure 

based on binary arithmetic.
● Lazy Binomial Heaps

● Rejiggering binomial heaps for fun and 
profit.
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