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Collision Resolution

● All hash tables have to deal with hash collisions in some way.
● There are three general ways to do this:

● Closed addressing: Store all colliding elements in an auxiliary data 
structure like a linked list or BST. (For example, standard chained hashing.)

● Open addressing: Allow elements to overflow out of their target bucket 
and into other spaces. (For example, linear probing hashing.)

● Perfect hashing: Do something clever with multiple hash functions to 
eliminate collisions.

● We have not spoken on this last topic yet.
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Collision Resolution

● All hash tables have to deal with hash collisions in some way.
● There are three general ways to do this:

● Closed addressing: Store all colliding elements in an auxiliary data 
structure like a linked list or BST. (For example, standard chained hashing.)

● Open addressing: Allow elements to overflow out of their target bucket 
and into other spaces. (For example, linear probing hashing.)

● Perfect hashing: Do something clever with multiple hash functions to 
eliminate collisions.

● What does that last option look like?
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Cuckoo Hashing

● Maintain two tables, each 
of which has m elements.

● We choose two hash 
functions h₁ and h₂ from  𝒰
to [m].

● Every element x ∈  will 𝒰
either be at position h₁(x) 
in the first table or h₂(x) in 
the second.

● We’ll talk about hash 
strength later; for now, 
assume truly random hash 
functions.
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Cuckoo Hashing

● Lookups take worst-
case time O(1) because 
only two locations must 
be checked.

Deletions take time 
O(1) because only two 
locations must be 
checked.
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Cuckoo Hashing

● To insert an element x, 
start by inserting it 
into table 1.

● If h₁(x) is empty, place 
x there.

Otherwise, place x 
there, evict the old 
element y, and try 
placing y into table 2.

Repeat this process, 
bouncing between 
tables, until all 
elements stabilize.
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Cuckoo Hashing

● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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32

● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.



  

Cuckoo Hashing

T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84



  

Cuckoo Hashing

T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84

53



  

Cuckoo Hashing

53

T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84



  

Cuckoo Hashing

53

T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84

6



  

Cuckoo Hashing

53

6

T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84



  

Cuckoo Hashing

53

6

T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84
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Cuckoo Hashing
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53

6

T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84



  

Cuckoo Hashing

75
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T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84
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T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84

58



  

Cuckoo Hashing
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T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84

53



  

Cuckoo Hashing

10

75

97

91

58

6

53

T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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97  26  32  
93  23  84

53



  

Cuckoo Hashing

10

75

53   97

91

26

6

58

T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84

97



  

Cuckoo Hashing

10

75

53

91

26

6

97

58

T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.

53  6  75  
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97  26  32  
93  23  84
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84



  

Cuckoo Hashing
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84
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Cuckoo Hashing
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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10  58  91  
97  26  32  
93  23  84



  

Cuckoo Hashing
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.



  

Cuckoo Hashing
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T₁ T₂

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.
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Cuckoo Hashing
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● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

Multiple rehashes 
might be necessary 
before this succeeds.



  

Cuckoo Hashing

● An insertion fails if the 
displacements form an 
infinite cycle.

● If that happens, 
perform a rehash by 
choosing a new h₁ and 
h₂ and inserting all 
elements back into the 
tables.

● Multiple rehashes 
might be necessary 
before this succeeds – 
do you see why?
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T₁ T₂



  

How efficient is cuckoo hashing?



  

Pro tip: When analyzing a data structure, 
it never hurts to get some empirical 

performance data first.
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Suppose we store n total elements in two tables of m slots each.
 

What’s probability all insertions succeed, assuming m = αn?

If m ≤ (1 – ε)n, 
we almost 

certainly fail.

If m ≤ (1 – ε)n, 
we almost 

certainly fail.

If m ≥ (1+ε)n, we 
almost certainly 

succeed.

If m ≥ (1+ε)n, we 
almost certainly 

succeed.

Idea: Going forward, 
set m = (1+ε)n for 
some small ε > 0.

Idea: Going forward, 
set m = (1+ε)n for 
some small ε > 0.



  

Suppose we store n total elements with m = (1+ε)n.
 

How many total displacements occur across all insertions?
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Wow! That’s 
surprisingly 

linear!

Wow! That’s 
surprisingly 

linear!

Goal: Show each 
insertion takes 

expected time O(1).

Goal: Show each 
insertion takes 

expected time O(1).



  

Goal: Show that insertions take expected 
time O(1), under the assumption that

m = (1+ε)n for some ε > 0.



  

Analyzing Cuckoo Hashing

● The analysis of cuckoo 
hashing is more difficult than 
it might at first seem.

● Challenge 1: We may have 
to consider hash collisions 
across multiple hash 
functions.

● Challenge 2: We need to 
reason about chains of 
displacement, not just how 
many elements land 
somewhere.

● To resolve these challenges, 
we’ll need to bring in some 
new techniques.
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The Cuckoo Graph

● The cuckoo graph is a 
bipartite multigraph 
derived from a cuckoo 
hash table.

● Each table slot is a node.

● Each element is an edge.

● Edges link slots where 
each element can be.

● Each insertion introduces 
a new edge into the 
graph.
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The Cuckoo Graph
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The Cuckoo Graph
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Circles 
indicate which 
slots elements 
are stored in.

Circles 
indicate which 
slots elements 
are stored in.



  

The Cuckoo Graph
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The Cuckoo Graph
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The Cuckoo Graph

12

1

6

5

3

T₁ T₂

13

9

7

6
13

7
12

5

1

3

9

6

13

7

12

5

1

         93      

Circles 
indicate which 
slots elements 
are stored in.

Circles 
indicate which 
slots elements 
are stored in.

Each node has 
at most one 

circle 
touching it.

Each node has 
at most one 

circle 
touching it.



  

The Cuckoo Graph
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Insertions 
correspond to 
sequences of 

flipping 
edges.

Insertions 
correspond to 
sequences of 

flipping 
edges.
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The Cuckoo Graph
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The Cuckoo Graph
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The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle. 
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The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash 
table, the insertion succeeds if the connected 
component containing x contains either no 
cycles or only one cycle.

We either stabilize inside the 
cycle, avoid the cycle, or get 

kicked out of the cycle.

We either stabilize inside the 
cycle, avoid the cycle, or get 

kicked out of the cycle.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion fails if the connected 
component containing x contains more than 
one cycle.

No cycles: The 
graph is a directed 
tree. A tree with k 

nodes has k – 1 
edges.

No cycles: The 
graph is a directed 
tree. A tree with k 

nodes has k – 1 
edges.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion fails if the connected 
component containing x contains more than 
one cycle.

One cycle: We’ve 
added an edge, 

giving k nodes and k 
edges.

One cycle: We’ve 
added an edge, 

giving k nodes and k 
edges.



  

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash 
table, the insertion fails if the connected 
component containing x contains more than 
one cycle.

Two cycles: There 
are k nodes and k+1 
edges. There are too 

many circles to 
place at most one 
circle per node.

Two cycles: There 
are k nodes and k+1 
edges. There are too 

many circles to 
place at most one 
circle per node.



  

The Cuckoo Graph

● A connected component of a graph is called 
complex if it contains two or more cycles.

● Theorem: Insertion into a cuckoo hash 
table succeeds if and only if the resulting 
cuckoo graph has no complex connected 
components.



  

How big are the connected 
components in the cuckoo graph?

(This tells us how much work we
do on a successful insertion.)

 

What is the probability that
an insert fails?

(This lets us determine how much
average work we do on an insertion.)
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How big are the connected 
components in the cuckoo graph?

(This tells us how much work we
do on a successful insertion.)

 

What is the probability that
an insert fails?

(This lets us determine how much
average work we do on an insertion.)



  

Step One: Sizing Connected Components



  

Analyzing Connected Components

● The cost of inserting x into a cuckoo hash 
table is proportional to the size of the CC 
containing x.

● Question: What is the expected size of a 
CC in the cuckoo graph?



  

★

Pick some starting table slot.
 

There are n elements in the 
table, so this graph has n 

edges.
 

Assume, for now, that our hash 
functions are truly random.

 

Each edge has a ¹/ₘ chance of 
touching this table slot.

 

The number of adjacent nodes, 
which will be visited in the 

next step of BFS, is a
Binom(n, ¹/ₘ) variable.

Idea: Count the number of 
nodes in a connected 

component by simulating a 
BFS.

Idea: Count the number of 
nodes in a connected 

component by simulating a 
BFS.



  

★

Each new node kinda sorta ish 
also touches a number of new 
nodes on the other side that 

can be modeled as a
Binom(n, ¹/ₘ) variable.

 

This ignores double-counting 
nodes.

 

This ignores existing edges.
 

This ignores correlations 
between edge counts.

 

However, it conservatively 
bounds the next BFS step.

Idea: Count the number of 
nodes in a connected 

component by simulating a 
BFS.

Idea: Count the number of 
nodes in a connected 

component by simulating a 
BFS.



  

Modeling the BFS

● Idea: Count nodes in a 
connected component by 
simulating a BFS tree, 
where the number of 
children of each node is a 
Binom(n, ¹/ₘ) variable.
● Begin with a root node.
● Each node has children 

distributed as a
Binom(n, ¹/ₘ) variable.

● Question: How many 
total nodes will this 
simulated BFS discover 
before terminating?



  

● Denote by Xₖ the number 
of nodes at level n. This 
gives a series of random 
variables X₀, X₁, X₂, … .

● These variables are 
defined by the following 
randomized recurrence 
relation:

● Here, each ξᵢ,ₖ is an i.i.d. 
Binom(n, ¹/ₘ) variable.

Xk+1=∑
i=1

Xk

ξi ,kX0=1

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS



  

● Denote by Xₖ the number 
of nodes at level n. This 
gives a series of random 
variables X₀, X₁, X₂, … .

● These variables are 
defined by the following 
randomized recurrence 
relation:

● Here, each ξᵢ,ₖ is an i.i.d. 
Binom(n, ¹/ₘ) variable.

Xk+1=∑
i=1

Xk

ξi ,k

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

X0=1

X₀ = 1

There’s always 
exactly one 

root node in the 
BFS tree.

There’s always 
exactly one 

root node in the 
BFS tree.



  

X₀ = 1

● Denote by Xₖ the number 
of nodes at level n. This 
gives a series of random 
variables X₀, X₁, X₂, … .

● These variables are 
defined by the following 
randomized recurrence 
relation:

● Here, each ξᵢ,ₖ is an i.i.d. 
Binom(n, ¹/ₘ) variable.

X₃ = 1

Modeling the BFS

X0=1

… has a binomially-
distributed number 

of children.

… has a binomially-
distributed number 

of children.

Each of the 
Xₖ nodes in 
layer k…

Each of the 
Xₖ nodes in 
layer k…

Xk+1=∑
i=1

Xk

ξi ,k

X₁ = 3

X₂ = 4



  

● Observation: On 
expectation, each 
node has ⁿ/ₘ children.

● The “expected 
branching factor” of 
the tree is ⁿ/ₘ, which 
is less than 1.

● How many nodes are 
there in the tree, 
assuming each layer 
has the expected 
number of nodes?

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS



  

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

There is always 
one node here.

There is always 
one node here.

On expectation, 
we’d find ⁿ/ₘ 
nodes here.

On expectation, 
we’d find ⁿ/ₘ 
nodes here.

On expectation, 
we’d find (ⁿ/ₘ)2 

nodes here.

On expectation, 
we’d find (ⁿ/ₘ)2 

nodes here.

On expectation, 
we’d find (ⁿ/ₘ)3 

nodes here.

On expectation, 
we’d find (ⁿ/ₘ)3 

nodes here.



  

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

Lemma: E[Xₖ] = (ⁿ/ₘ)ᵏ.
 

Proof Idea: Show that
 

E[Xₖ₊₁] = (ⁿ/ₘ) E[Xₖ]
 

and apply induction.

Lemma: E[Xₖ] = (ⁿ/ₘ)ᵏ.
 

Proof Idea: Show that
 

E[Xₖ₊₁] = (ⁿ/ₘ) E[Xₖ]
 

and apply induction.



  

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k



  

E [ X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

(E [∑
i=1

X k

ξi , k  | Xk= j ]⋅Pr [ Xk= j])

= ∑
j=0

∞

(E [∑
i=1

j

ξi , k  | Xk= j ]⋅Pr [ Xk= j])

= ∑
j=0

∞

∑
i=1

j

(E [ξi , k  | Xk= j ]⋅Pr [X k= j ])

= ∑
j=0

∞

∑
i=1

j

(E [ξi , k ]⋅Pr [ X k= j ])

= ∑
j=0

∞

∑
i=1

j

( n
m

⋅Pr [Xk= j ])

=
n
m

⋅∑
j =0

∞

( j⋅Pr [ Xk= j])

=
n
m

⋅E [ Xk ]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

This is a sum of a random number 
of terms, so we can’t use linearity 

of expectation.

However, we can use the
law of total expectation:

E[ X ]=∑
j

E [ X  | Y= j ] ⋅ Pr [Y= j ]
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Well, that 
makes things 

easier!

Well, that 
makes things 

easier!
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  X0=1 ξ ~ Binom(n,
1
m

)

Lemma 1: E[Xₖ] = (ⁿ/ₘ)ᵏ.
 

(Induction and conditional 
expectation.)

Lemma 1: E[Xₖ] = (ⁿ/ₘ)ᵏ.
 

(Induction and conditional 
expectation.)

Xk+1=∑
i=1

Xk

ξi ,k

Lemma 2:                       
 

(Linearity of expectation; 
sum of a geometric series.)

Lemma 2:                       
 

(Linearity of expectation; 
sum of a geometric series.)

E[∑i=0
∞ X i]=

1

1−
n
m

.

Theorem: The expected 
number of nodes in a 

connected component of 
the cuckoo graph is 
O(1), assuming that 

m = (1+ε)n.



  

The Story So Far

● The expected size of a connected 
component in the cuckoo graph is O(1).

● Therefore, each successful insertion 
takes expected time O(1).

● Question: What happens in an 
unsuccessful insertion? And what does 
that do for our expected cost of any 
insertion?



  

Step Two:
Exploring the Graph Structure



  

Exploring the Graph Structure

● Cuckoo hashing will always succeed in the 
case where the cuckoo graph has no 
complex connected components.

● If there are no complex CC's, then we will 
not get into a loop and insertion time will 
depend only on the sizes of the CC's.

● It's reasonable to ask, therefore, how likely 
we are to not have complex components.



  

Exploring the Graph Structure

● Question: What is the probability that a 
randomly-chosen bipartite multigraph 
with 2m nodes and n edges will contain a 
complex connected component?

● Directly answering this question is 
challenging and requires some fairly 
detailed combinatorics.

● However, there’s a clever technique we 
can use to bound this probability 
indirectly.



  

Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)
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Insertion fails if we have a complex connected component.
What specifically happens in that case?

We’re right back where 
we started. This 

pattern will continue 
indefinitely.

We’re right back where 
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pattern will continue 
indefinitely.

h₁(x)



  

Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)

Question: What’s the 
probability that we end 
up with a configuration 

like this one?

Question: What’s the 
probability that we end 
up with a configuration 

like this one?



  

Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)

This next proof comes from a CS166 final project by
Noah Arthurs, Joseph Chang, and Nolan Handali. It’s inspired by 

another argument due to Charles Chen (another Stanford 
student), which is a modification of one by Sanders and Vöcking, 

which was an improvement of one by Pagh and Rodler.
 

Key idea: Use a traditional, CS109-style counting argument. 
Admittedly, it’s a nontrivial counting argument, but it’s a 

counting argument nonetheless!
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Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)

c₁c₂ l₁l₂

∑
k=1

n

( (k+1)
4 mk−1 nk

m2 k m )

Ways to split k nodes 
into c₁, l₁, c₂, and l₂. 

(upper bound)

Ways to pick k nodes (table 
slots) given the first is h₁(x). Ways to assign k 

keys to those slots.
(upper bound)

Ways h₁ and h₂ can be 
chosen for those keys.

Ways h₂(x) can be 
chosen.

Sum over all possible 
numbers of other 

keys being displaced.
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Numerator grows 
polynomially as a 

function of k.
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function of k.

Denominator grows 
exponentially as a 

function of k.
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The Overall Analysis

● Cuckoo hashing gives worst-
case lookups and deletions.

● Insertions are expected, 
amortized O(1).
● The amortization kicks in 

because we need to 
periodically double the sizes of 
the tables as the number of 
elements increases.

● The hidden constants are 
small, and this is a practical 
technique for building hash 
tables.

Cuckoo Hashing:
● lookup: O(1)
● insert: O(1)*

● delete: O(1)

* expected, amortized



  

More to Explore



  

Hash Function Strength

● We analyzed cuckoo hashing assuming our hash 
functions were truly random. That’s too strong of an 
assumption.

● What we know:
● O(log n)-independence is sufficient for expected O(1) 

insertion time, but 6-independence isn’t.
● The simplest 2-independent family of hash functions 

(polynomial hashing) are terrible for cuckoo hashing.
● Some simple classes of 3-independent hash functions 

(tabulation hashing) perform well both theoretically 
and practically.

● Open problem: Determine the strength of hash 
function needed for cuckoo hashing to work efficiently.



  

Multiple Tables

● Cuckoo hashing works well with two tables. So 
why not 3, 4, 5, …, or k tables?

● In practice, cuckoo hashing with k > 2 tables 
leads to better memory efficiency than k = 2 
tables:
● The load factor can increase substantially; with k=3, 

it's only around α = 0.91 that you run into trouble 
with the cuckoo graph.

● Displacements are less likely to chain together; they 
only occur when all hash locations are filled in.

● Open problem: Determine where these phase 
transition thresholds are for arbitrary k.



  

Increasing Bucket Sizes

● What if each slot in a cuckoo hash table can 
store multiple elements?

● When displacing an element, choose a 
random one to move and move it.

● This turns out to work remarkably well in 
practice, since it makes it really unlikely that 
you'll have long chains of displacements.

● Open problem: Quantify the effect of larger 
bucket sizes on the overall runtime of cuckoo 
hashing.



  

Restricting Moves

● Insertions in cuckoo hashing only run into 
trouble when you encounter long chains of 
displacements during insertions.

● Idea: Cap the number of displacements at some 
fixed factor, then store overflowing elements in a 
secondary hash table.

● In practice, this works remarkably well, since 
the auxiliary table doesn't tend to get very large.

● Open problem: Quantify the effects of “hashing 
with a stash” for arbitrary stash sizes and 
displacement limits.



  

Other Dynamic Schemes

● There is another famous dynamic perfect 
hashing scheme called dynamic FKS hashing.

● It works by using closed addressing and 
resolving collisions at the top level with a 
secondary (static) perfect hash table.

● In practice, it's not as fast as these other 
approaches. However, it only requires
2-independent hash functions.

● Check CLRS for details!



  

Lower Bounds?

● Open Problem: Is there a hash table 
that supports amortized O(1) insertions, 
deletions, and lookups?

● You'd think that we'd know the answer to 
this question, but, sadly, we don't.



  

Next Time

● Beyond Worst-Case Analysis
● Is O(log n) the be-all, end-all of BST analysis? (Hint: 

Betteridge’s Law of Headlines)
● Weight-Balanced Trees

● A different way of balancing a tree.
● Finger Search Trees

● Picking up where we left off.
● Iacono’s Working Set Structure

● Storing elements in doubly-exponentially-increasing 
forests.
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