

Cuckoo Hashing

Collision Resolution

● All hash tables have to deal with hash collisions in some way.
● There are three general ways to do this:

● Closed addressing: Store all colliding elements in an auxiliary data
structure like a linked list or BST. (For example, standard chained hashing.)

● Open addressing: Allow elements to overflow out of their target bucket
and into other spaces. (For example, linear probing hashing.)

● Perfect hashing: Do something clever with multiple hash functions to
eliminate collisions.

● We have not spoken on this last topic yet.

[0] [1] [2] [3] [4] [5]

3

1 3

4 51

3

Collision Resolution

● All hash tables have to deal with hash collisions in some way.
● There are three general ways to do this:

● Closed addressing: Store all colliding elements in an auxiliary data
structure like a linked list or BST. (For example, standard chained hashing.)

● Open addressing: Allow elements to overflow out of their target bucket
and into other spaces. (For example, linear probing hashing.)

● Perfect hashing: Do something clever with multiple hash functions to
eliminate collisions.

● We have not spoken on this last topic yet.

14

7

14

15

2

8 7

0 1
2

3

4

5

6
789

10

11

12

13

14
15

Collision Resolution

● All hash tables have to deal with hash collisions in some way.
● There are three general ways to do this:

● Closed addressing: Store all colliding elements in an auxiliary data
structure like a linked list or BST. (For example, standard chained hashing.)

● Open addressing: Allow elements to overflow out of their target bucket
and into other spaces. (For example, linear probing hashing.)

● Perfect hashing: Do something clever with multiple hash functions to
eliminate collisions.

● What does that last option look like?

Cuckoo Hashing

Cuckoo Hashing

● Maintain two tables, each
of which has m elements.

● We choose two hash
functions h₁ and h₂ from 𝒰
to [m].

● Every element x ∈ will 𝒰
either be at position h₁(x)
in the first table or h₂(x) in
the second.

● We’ll talk about hash
strength later; for now,
assume truly random hash
functions.

32

93

58

84

59

97

23

53

26

41

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

Deletions take time
O(1) because only two
locations must be
checked.

32

93

58

84

59

97

23

53

26

41

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

Deletions take time
O(1) because only two
locations must be
checked.

32

93

58

84

59

97

23

53

26

41

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

Deletions take time
O(1) because only two
locations must be
checked.

32

93

58

84

59

97

23

53

26

41

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

Deletions take time
O(1) because only two
locations must be
checked.

32

93

58

84

59

97

23

53

26

41

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

Deletions take time
O(1) because only two
locations must be
checked.

32

93

58

84

59

97

23

53

26

41

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

Deletions take time
O(1) because only two
locations must be
checked.

32

93

58

84

59

97

23

53

26

41

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

● Deletions take worst-
case time O(1) because
only two locations must
be checked.

32

93

58

84

59

97

23

53

26

41

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

● Deletions take worst-
case time O(1) because
only two locations must
be checked.

32

93

58

84

59

97

23

53

26

41

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

● Deletions take worst-
case time O(1) because
only two locations must
be checked.

32

93

58

84

59

97

23

53

26

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

● Deletions take worst-
case time O(1) because
only two locations must
be checked.

32

93

58

84

59

97

23

53

26

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

● Deletions take worst-
case time O(1) because
only two locations must
be checked.

32

93

58

84

59

97

23

53

26

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

● Deletions take worst-
case time O(1) because
only two locations must
be checked.

32

93

58

84

97

23

53

26

T₁ T₂

Cuckoo Hashing

● Lookups take worst-
case time O(1) because
only two locations must
be checked.

● Deletions take worst-
case time O(1) because
only two locations must
be checked.

32

93

58

84

97

23

53

26

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

93

58

84

97

23

53

26

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

93

58

84

97

23

53

26

T₁ T₂

75

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

93

58

84

97

23

53

26

T₁ T₂

75

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

93

58

84

75

97

23

53

26

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

93

58

84

75

97

23

53

26

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

93

58

84

75

97

23

53

26

T₁ T₂

10

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

93

58

84

75

97

23

53

26

T₁ T₂

10

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

93

58

84

75

97

23

53

26

T₁ T₂

10

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10 93

58

84

75

97

23

53

26

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

84

75

97

23

53

26

T₁ T₂

93

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

84

75

97

23

53

26

T₁ T₂

93

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

84

75

97

23

53

26

T₁ T₂

93

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

84

75

97

23

53

26

93

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

84

75

97

23

53

26

93

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

84

75

97

23

53

26

93

T₁ T₂

6

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

84

75

97

23

53

26

93

T₁ T₂

6

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

6 84

75

97

23

53

26

93

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

6

75

97

23

53

26

93

T₁ T₂

84

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

6

75

97

23

53

26

93

T₁ T₂

84

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

6

75

97

23

53

26

93

T₁ T₂

84

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

6

75

97

23

53 84

26

93

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

6

75

97

23

84

26

93

T₁ T₂

53

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

6

75

97

23

84

26

93

T₁ T₂

53

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

32

10

58

6

75

97

23

84

26

93

T₁ T₂

53

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

53 32

10

58

6

75

97

23

84

26

93

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

53

10

58

6

75

97

23

84

26

93

T₁ T₂

32

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

53

10

58

6

75

97

23

84

26

93

T₁ T₂

32

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

53

10

58

6

75

97

23

84

26

93

T₁ T₂

32

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

53

10

58

6

75

97

23

84

26

32

93

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

53

10

58

6

75

97

23

84

26

32

93

T₁ T₂

Cuckoo Hashing

● To insert an element x,
start by inserting it
into table 1.

● If h₁(x) is empty, place
x there.

● Otherwise, place x
there, evict the old
element y, and try
placing y into table 2.

● Repeat this process,
bouncing between
tables, until all
elements stabilize.

Cuckoo Hashing

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53

10

58

6

75

97

23

84

26

32

93

T₁ T₂

Cuckoo Hashing

53

10

58

6

75

97

23

84

26

32

93

T₁ T₂

91

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

75

97

23

84

26

32

93

T₁ T₂

91

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

91 75

97

23

84

26

32

93

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

91

97

23

84

26

32

93

T₁ T₂

75

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

91

97

23

84

26

32

93

T₁ T₂

75

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

91

97

23

84

26

32

93

T₁ T₂

75

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

91

97

23

84

26

32 75

93

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

91

97

23

84

26

75

93

T₁ T₂

32

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

91

97

23

84

26

75

93

T₁ T₂

32

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

91

97

23

84

26

75

93

T₁ T₂

32

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

32 91

97

23

84

26

75

93

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

32

97

23

84

26

75

93

T₁ T₂

91

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

32

97

23

84

26

75

93

T₁ T₂

91

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

32

97

23

84

26

75

93

T₁ T₂

91

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

32

97

23

84

26

75 91

93

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

32

97

23

84

26

91

93

T₁ T₂

75

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

32

97

23

84

26

91

93

T₁ T₂

75

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

32

97

23

84

26

91

93

T₁ T₂

75

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

75 32

97

23

84

26

91

93

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

75

97

23

84

26

91

93

T₁ T₂

32

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

75

97

23

84

26

91

93

T₁ T₂

32

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

75

97

23

84

26

91

93

T₁ T₂

32

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

75

97

23

84

26

91 32

93

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

75

97

23

84

26

32

93

T₁ T₂

91

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

75

97

23

84

26

32

93

T₁ T₂

91

● An insertion fails if the
displacements form an
infinite cycle.

If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

53

10

58

6

75

97

23

84

26

32

93

T₁ T₂

91

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

53

Cuckoo Hashing

53

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

53

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

6

Cuckoo Hashing

53

6

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

53

6

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

75

Cuckoo Hashing

75

53

6

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

75

53

6

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

10

Cuckoo Hashing

10

75

53

6

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

10

75

53

6

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

58

Cuckoo Hashing

10

75

53

6

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

10

75

53

6

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

91

Cuckoo Hashing

10

75

53

91 6

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

10

75

53

91

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

6

Cuckoo Hashing

10

75

53

91

58

6

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

10

75

53

91

58

6

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

97

Cuckoo Hashing

10

75

97 53

91

58

6

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

10

75

97

91

58

6

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

53

Cuckoo Hashing

10

75

97

91

58

6

53

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

10

75

97

91

58

6

53

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

26

Cuckoo Hashing

10

75

97

91

26 58

6

53

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

10

75

97

91

26

6

53

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

58

Cuckoo Hashing

10

75

97

91

26

6

53 58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

10

75

97

91

26

6

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

53

Cuckoo Hashing

10

75

53 97

91

26

6

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

10

75

53

91

26

6

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

97

Cuckoo Hashing

10

75

53

91

26

6

97

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

10

75

53

91

26

6

97

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

32

Cuckoo Hashing

10

75

53

32

91

26

6

97

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

10

75

53

32

91

26

6

97

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

93

Cuckoo Hashing

93 10

75

53

32

91

26

6

97

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

93

75

53

32

91

26

6

97

58

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

10

Cuckoo Hashing

93

75

53

32

91

26

6

97

58

10

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

93

75

53

32

91

26

6

97

58

10

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

23

Cuckoo Hashing

93

23 75

53

32

91

26

6

97

58

10

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

93

23

53

32

91

26

6

97

58

10

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

75

Cuckoo Hashing

93

23

53

32

91

26

6

97

75

58

10

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

53 6 75
10 58 91
97 26 32
93 23 84

Cuckoo Hashing

93

23

53

32

91

26

6

97

75

58

10

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

84

Cuckoo Hashing

93

23

53

84 32

91

26

6

97

75

58

10

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

93

23

53

84

91

26

6

97

75

58

10

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

32

Cuckoo Hashing

93

23

53

84

91

26

32

6

97

75

58

10

T₁ T₂

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

Multiple rehashes
might be necessary
before this succeeds.

Cuckoo Hashing

● An insertion fails if the
displacements form an
infinite cycle.

● If that happens,
perform a rehash by
choosing a new h₁ and
h₂ and inserting all
elements back into the
tables.

● Multiple rehashes
might be necessary
before this succeeds –
do you see why?

93

23

53

84

91

26

32

6

97

75

58

10

T₁ T₂

How efficient is cuckoo hashing?

Pro tip: When analyzing a data structure,
it never hurts to get some empirical

performance data first.

0

10

20

30

40

50

60

70

80

90

100

Suppose we store n total elements in two tables of m slots each.

What’s probability all insertions succeed, assuming m = αn?

If m ≤ (1 – ε)n,
we almost

certainly fail.

If m ≤ (1 – ε)n,
we almost

certainly fail.

If m ≥ (1+ε)n, we
almost certainly

succeed.

If m ≥ (1+ε)n, we
almost certainly

succeed.

Idea: Going forward,
set m = (1+ε)n for
some small ε > 0.

Idea: Going forward,
set m = (1+ε)n for
some small ε > 0.

Suppose we store n total elements with m = (1+ε)n.

How many total displacements occur across all insertions?

10
00

0

60
00

0

11
00

00

16
00

00

21
00

00

26
00

00

31
00

00

36
00

00

41
00

00

46
00

00

51
00

00

56
00

00

61
00

00

66
00

00

71
00

00

76
00

00

81
00

00

86
00

00

91
00

00

96
00

00
0

100000

200000

300000

400000

500000

600000

Wow! That’s
surprisingly

linear!

Wow! That’s
surprisingly

linear!

Goal: Show each
insertion takes

expected time O(1).

Goal: Show each
insertion takes

expected time O(1).

Goal: Show that insertions take expected
time O(1), under the assumption that

m = (1+ε)n for some ε > 0.

Analyzing Cuckoo Hashing

● The analysis of cuckoo
hashing is more difficult than
it might at first seem.

● Challenge 1: We may have
to consider hash collisions
across multiple hash
functions.

● Challenge 2: We need to
reason about chains of
displacement, not just how
many elements land
somewhere.

● To resolve these challenges,
we’ll need to bring in some
new techniques.

12

1

6

5

3

T₁ T₂

13

9

7

The Cuckoo Graph

● The cuckoo graph is a
bipartite multigraph
derived from a cuckoo
hash table.

● Each table slot is a node.

● Each element is an edge.

● Edges link slots where
each element can be.

● Each insertion introduces
a new edge into the
graph.

12

1

6

5

3

T₁ T₂

13

9

7

6
13

7
12

5

1

3

9

The Cuckoo Graph

12

1

6

5

3

T₁ T₂

13

9

7

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

The Cuckoo Graph

12

1

6

5

3

T₁ T₂

13

9

7

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Circles
indicate which
slots elements
are stored in.

Circles
indicate which
slots elements
are stored in.

The Cuckoo Graph

12

1

5

3

T₁ T₂

9

7

6

7
12

5

1

3

9

6

7

12

5

1

 93

Circles
indicate which
slots elements
are stored in.

Circles
indicate which
slots elements
are stored in.

13 6 1313

The Cuckoo Graph

12

1

T₁ T₂

9

7

6

7
12

5

1
9

6

7

12

5

1

 9

13 6 1313

Circles
indicate which
slots elements
are stored in.

Circles
indicate which
slots elements
are stored in.

3

5

3

3

The Cuckoo Graph

12

1

6

5

3

T₁ T₂

13

9

7

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Circles
indicate which
slots elements
are stored in.

Circles
indicate which
slots elements
are stored in.

Each node has
at most one

circle
touching it.

Each node has
at most one

circle
touching it.

The Cuckoo Graph

12

1

6

5

3

T₁ T₂

13

9

7

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Insertions
correspond to
sequences of

flipping
edges.

Insertions
correspond to
sequences of

flipping
edges.

The Cuckoo Graph

12

1

6

5

3

T₁ T₂

13

9

7

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Insertions
correspond to
sequences of

flipping
edges.

Insertions
correspond to
sequences of

flipping
edges.

2 2

The Cuckoo Graph

12

1

6

5

3

T₁ T₂

13

9

7

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Insertions
correspond to
sequences of

flipping
edges.

Insertions
correspond to
sequences of

flipping
edges.

2 2

The Cuckoo Graph

12

1

2 6

5

3

T₁ T₂

13

9

7

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Insertions
correspond to
sequences of

flipping
edges.

Insertions
correspond to
sequences of

flipping
edges.

2 2

The Cuckoo Graph

12

1

2 6

5

3

T₁ T₂

13

9

7

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Insertions
correspond to
sequences of

flipping
edges.

Insertions
correspond to
sequences of

flipping
edges.

2 2

The Cuckoo Graph

12

1

2

5

3

T₁ T₂

13

9

7 6

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Insertions
correspond to
sequences of

flipping
edges.

Insertions
correspond to
sequences of

flipping
edges.

2 2

The Cuckoo Graph

12

1

2

5

3

T₁ T₂

13

9

7 6

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Insertions
correspond to
sequences of

flipping
edges.

Insertions
correspond to
sequences of

flipping
edges.

2 2

The Cuckoo Graph

7 12

1

2

5

3

T₁ T₂

13

9

6

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Insertions
correspond to
sequences of

flipping
edges.

Insertions
correspond to
sequences of

flipping
edges.

2 2

The Cuckoo Graph

7 12

1

2

5

3

T₁ T₂

13

9

6

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Insertions
correspond to
sequences of

flipping
edges.

Insertions
correspond to
sequences of

flipping
edges.

2 2

The Cuckoo Graph

7

1

12

2

5

3

T₁ T₂

13

9

6

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Insertions
correspond to
sequences of

flipping
edges.

Insertions
correspond to
sequences of

flipping
edges.

2 2

The Cuckoo Graph

7

1

12

2

5

3

T₁ T₂

13

9

6

6
13

7
12

5

1

3

9

6

13

7

12

5

1

 93

Insertions
correspond to
sequences of

flipping
edges.

Insertions
correspond to
sequences of

flipping
edges.

2 2

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

The Cuckoo Graph

● Claim 1: If x is inserted into a cuckoo hash
table, the insertion succeeds if the connected
component containing x contains either no
cycles or only one cycle.

We either stabilize inside the
cycle, avoid the cycle, or get

kicked out of the cycle.

We either stabilize inside the
cycle, avoid the cycle, or get

kicked out of the cycle.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion fails if the connected
component containing x contains more than
one cycle.

No cycles: The
graph is a directed
tree. A tree with k

nodes has k – 1
edges.

No cycles: The
graph is a directed
tree. A tree with k

nodes has k – 1
edges.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion fails if the connected
component containing x contains more than
one cycle.

One cycle: We’ve
added an edge,

giving k nodes and k
edges.

One cycle: We’ve
added an edge,

giving k nodes and k
edges.

The Cuckoo Graph

● Claim 2: If x is inserted into a cuckoo hash
table, the insertion fails if the connected
component containing x contains more than
one cycle.

Two cycles: There
are k nodes and k+1
edges. There are too

many circles to
place at most one
circle per node.

Two cycles: There
are k nodes and k+1
edges. There are too

many circles to
place at most one
circle per node.

The Cuckoo Graph

● A connected component of a graph is called
complex if it contains two or more cycles.

● Theorem: Insertion into a cuckoo hash
table succeeds if and only if the resulting
cuckoo graph has no complex connected
components.

How big are the connected
components in the cuckoo graph?

(This tells us how much work we
do on a successful insertion.)

What is the probability that
an insert fails?

(This lets us determine how much
average work we do on an insertion.)

How big are the connected
components in the cuckoo graph?

(This tells us how much work we
do on a successful insertion.)

What is the probability that
an insert fails?

(This lets us determine how much
average work we do on an insertion.)

How big are the connected
components in the cuckoo graph?

(This tells us how much work we
do on a successful insertion.)

What is the probability that
an insert fails?

(This lets us determine how much
average work we do on an insertion.)

Step One: Sizing Connected Components

Analyzing Connected Components

● The cost of inserting x into a cuckoo hash
table is proportional to the size of the CC
containing x.

● Question: What is the expected size of a
CC in the cuckoo graph?

★

Pick some starting table slot.

There are n elements in the
table, so this graph has n

edges.

Assume, for now, that our hash
functions are truly random.

Each edge has a ¹/ₘ chance of
touching this table slot.

The number of adjacent nodes,
which will be visited in the

next step of BFS, is a
Binom(n, ¹/ₘ) variable.

Idea: Count the number of
nodes in a connected

component by simulating a
BFS.

Idea: Count the number of
nodes in a connected

component by simulating a
BFS.

★

Each new node kinda sorta ish
also touches a number of new
nodes on the other side that

can be modeled as a
Binom(n, ¹/ₘ) variable.

This ignores double-counting
nodes.

This ignores existing edges.

This ignores correlations
between edge counts.

However, it conservatively
bounds the next BFS step.

Idea: Count the number of
nodes in a connected

component by simulating a
BFS.

Idea: Count the number of
nodes in a connected

component by simulating a
BFS.

Modeling the BFS

● Idea: Count nodes in a
connected component by
simulating a BFS tree,
where the number of
children of each node is a
Binom(n, ¹/ₘ) variable.
● Begin with a root node.
● Each node has children

distributed as a
Binom(n, ¹/ₘ) variable.

● Question: How many
total nodes will this
simulated BFS discover
before terminating?

● Denote by Xₖ the number
of nodes at level n. This
gives a series of random
variables X₀, X₁, X₂, … .

● These variables are
defined by the following
randomized recurrence
relation:

● Here, each ξᵢ,ₖ is an i.i.d.
Binom(n, ¹/ₘ) variable.

Xk+1=∑
i=1

Xk

ξi ,kX0=1

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

● Denote by Xₖ the number
of nodes at level n. This
gives a series of random
variables X₀, X₁, X₂, … .

● These variables are
defined by the following
randomized recurrence
relation:

● Here, each ξᵢ,ₖ is an i.i.d.
Binom(n, ¹/ₘ) variable.

Xk+1=∑
i=1

Xk

ξi ,k

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

X0=1

X₀ = 1

There’s always
exactly one

root node in the
BFS tree.

There’s always
exactly one

root node in the
BFS tree.

X₀ = 1

● Denote by Xₖ the number
of nodes at level n. This
gives a series of random
variables X₀, X₁, X₂, … .

● These variables are
defined by the following
randomized recurrence
relation:

● Here, each ξᵢ,ₖ is an i.i.d.
Binom(n, ¹/ₘ) variable.

X₃ = 1

Modeling the BFS

X0=1

… has a binomially-
distributed number

of children.

… has a binomially-
distributed number

of children.

Each of the
Xₖ nodes in
layer k…

Each of the
Xₖ nodes in
layer k…

Xk+1=∑
i=1

Xk

ξi ,k

X₁ = 3

X₂ = 4

● Observation: On
expectation, each
node has ⁿ/ₘ children.

● The “expected
branching factor” of
the tree is ⁿ/ₘ, which
is less than 1.

● How many nodes are
there in the tree,
assuming each layer
has the expected
number of nodes?

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

There is always
one node here.

There is always
one node here.

On expectation,
we’d find ⁿ/ₘ
nodes here.

On expectation,
we’d find ⁿ/ₘ
nodes here.

On expectation,
we’d find (ⁿ/ₘ)2

nodes here.

On expectation,
we’d find (ⁿ/ₘ)2

nodes here.

On expectation,
we’d find (ⁿ/ₘ)3

nodes here.

On expectation,
we’d find (ⁿ/ₘ)3

nodes here.

X₀ = 1

X₁ = 3

X₂ = 4

X₃ = 1

Modeling the BFS

Lemma: E[Xₖ] = (ⁿ/ₘ)ᵏ.

Proof Idea: Show that

E[Xₖ₊₁] = (ⁿ/ₘ) E[Xₖ]

and apply induction.

Lemma: E[Xₖ] = (ⁿ/ₘ)ᵏ.

Proof Idea: Show that

E[Xₖ₊₁] = (ⁿ/ₘ) E[Xₖ]

and apply induction.

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

(E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [Xk= j])

= ∑
j=0

∞

(E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [Xk= j])

= ∑
j=0

∞

∑
i=1

j

(E [ξi , k | Xk= j]⋅Pr [X k= j])

= ∑
j=0

∞

∑
i=1

j

(E [ξi , k]⋅Pr [X k= j])

= ∑
j=0

∞

∑
i=1

j

(n
m

⋅Pr [Xk= j])

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

This is a sum of a random number
of terms, so we can’t use linearity

of expectation.

However, we can use the
law of total expectation:

E[X]=∑
j

E [X | Y= j] ⋅ Pr [Y= j]

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

This is a sum of a random number
of terms, so we can’t use linearity

of expectation.

However, we can use the
law of total expectation:

E[X]=∑
j

E [X | Y= j] ⋅ Pr [Y= j]

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

Well, that
makes things

easier!

Well, that
makes things

easier!

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

Well, that
makes things

easier!

Well, that
makes things

easier!

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

This sum ranges over a
fixed number of terms, so
we can apply linearity of
(conditional) expectation.

This sum ranges over a
fixed number of terms, so
we can apply linearity of
(conditional) expectation.

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

This sum ranges over a
fixed number of terms, so
we can apply linearity of
(conditional) expectation.

This sum ranges over a
fixed number of terms, so
we can apply linearity of
(conditional) expectation.

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

These random variables
are independent – one

represents the number of
nodes in a particular layer.

One represents the
number of children that a
specific node might have.

These random variables
are independent – one

represents the number of
nodes in a particular layer.

One represents the
number of children that a
specific node might have.

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

These random variables
are independent – one

represents the number of
nodes in a particular layer.

One represents the
number of children that a
specific node might have.

These random variables
are independent – one

represents the number of
nodes in a particular layer.

One represents the
number of children that a
specific node might have.

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (n , 1
m

)

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (n , 1
m

)

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

Xk+1 = ∑
i=1

Xk

ξi ,k

ξi ,k~Binom (n , 1
m

)

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

E [X k+1] = E [∑
i=1

X k

ξi , k]

= ∑
j=0

∞

E [∑
i=1

X k

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

E [∑
i=1

j

ξi , k | Xk= j]⋅Pr [X k= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k | Xk= j])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j

E [ξi , k])⋅Pr [Xk= j]

= ∑
j=0

∞

(∑
i=1

j
n
m)⋅Pr [X k= j]

=
n
m

⋅∑
j =0

∞

(j⋅Pr [Xk= j])

=
n
m

⋅E [Xk]

X0 = 1

ξi ,k~Binom (n , 1
m

)

Xk+1 = ∑
i=1

Xk

ξi ,k

 X0=1 ξ ~ Binom(n,
1
m

)

Lemma 1: E[Xₖ] = (ⁿ/ₘ)ᵏ.

(Induction and conditional
expectation.)

Lemma 1: E[Xₖ] = (ⁿ/ₘ)ᵏ.

(Induction and conditional
expectation.)

Xk+1=∑
i=1

Xk

ξi ,k

Lemma 2:

(Linearity of expectation;
sum of a geometric series.)

Lemma 2:

(Linearity of expectation;
sum of a geometric series.)

E[∑i=0
∞ X i]=

1

1−
n
m

.

Theorem: The expected
number of nodes in a

connected component of
the cuckoo graph is
O(1), assuming that

m = (1+ε)n.

The Story So Far

● The expected size of a connected
component in the cuckoo graph is O(1).

● Therefore, each successful insertion
takes expected time O(1).

● Question: What happens in an
unsuccessful insertion? And what does
that do for our expected cost of any
insertion?

Step Two:
Exploring the Graph Structure

Exploring the Graph Structure

● Cuckoo hashing will always succeed in the
case where the cuckoo graph has no
complex connected components.

● If there are no complex CC's, then we will
not get into a loop and insertion time will
depend only on the sizes of the CC's.

● It's reasonable to ask, therefore, how likely
we are to not have complex components.

Exploring the Graph Structure

● Question: What is the probability that a
randomly-chosen bipartite multigraph
with 2m nodes and n edges will contain a
complex connected component?

● Directly answering this question is
challenging and requires some fairly
detailed combinatorics.

● However, there’s a clever technique we
can use to bound this probability
indirectly.

Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)

Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)

Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)

Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)

Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)

Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)

Insertion fails if we have a complex connected component.
What specifically happens in that case?

We’re right back where
we started. This

pattern will continue
indefinitely.

We’re right back where
we started. This

pattern will continue
indefinitely.

h₁(x)

Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)

Question: What’s the
probability that we end
up with a configuration

like this one?

Question: What’s the
probability that we end
up with a configuration

like this one?

Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)

This next proof comes from a CS166 final project by
Noah Arthurs, Joseph Chang, and Nolan Handali. It’s inspired by

another argument due to Charles Chen (another Stanford
student), which is a modification of one by Sanders and Vöcking,

which was an improvement of one by Pagh and Rodler.

Key idea: Use a traditional, CS109-style counting argument.
Admittedly, it’s a nontrivial counting argument, but it’s a

counting argument nonetheless!

This next proof comes from a CS166 final project by
Noah Arthurs, Joseph Chang, and Nolan Handali. It’s inspired by

another argument due to Charles Chen (another Stanford
student), which is a modification of one by Sanders and Vöcking,

which was an improvement of one by Pagh and Rodler.

Key idea: Use a traditional, CS109-style counting argument.
Admittedly, it’s a nontrivial counting argument, but it’s a

counting argument nonetheless!

Insertion fails if we have a complex connected component.
What specifically happens in that case?

h₁(x)

c₁c₂ l₁l₂

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m)

Ways to split k nodes
into c₁, l₁, c₂, and l₂.

(upper bound)

Ways to pick k nodes (table
slots) given the first is h₁(x). Ways to assign k

keys to those slots.
(upper bound)

Ways h₁ and h₂ can be
chosen for those keys.

Ways h₂(x) can be
chosen.

Sum over all possible
numbers of other

keys being displaced.

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m) = ∑
k=1

n

((k+1)
4 nk mk−1−2 k−1)

= ∑
k=1

n

((k+1)
4 nk m−k−2)

=
1

m2 ∑
k=1

n

((k+1)
4 nk m−k)

=
1

m2 ∑
k=1

n

(k+1)
4 (n

m)
k

=
1

m2 ∑
k=1

n
(k+1)

4

(1+ε)
k

=
1

m2
⋅O (1)

= O (
1

m2)

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m) = ∑
k=1

n

((k+1)
4 nk mk−1−2 k−1)

= ∑
k=1

n

((k+1)
4 nk m−k−2)

=
1

m2 ∑
k=1

n

((k+1)
4 nk m−k)

=
1

m2 ∑
k=1

n

(k+1)
4 (n

m)
k

=
1

m2 ∑
k=1

n
(k+1)

4

(1+ε)
k

=
1

m2
⋅O (1)

= O (
1

m2)

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m) = ∑
k=1

n

((k+1)
4 nk mk−1−2 k−1)

= ∑
k=1

n

((k+1)
4 nk m−k−2)

=
1

m2 ∑
k=1

n

((k+1)
4 nk m−k)

=
1

m2 ∑
k=1

n

(k+1)
4 (n

m)
k

=
1

m2 ∑
k=1

n
(k+1)

4

(1+ε)
k

=
1

m2
⋅O (1)

= O (
1

m2)

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m) = ∑
k=1

n

((k+1)
4 nk mk−1−2 k−1)

= ∑
k=1

n

((k+1)
4 nk m−k−2)

=
1

m2 ∑
k=1

n

((k+1)
4 nk m−k)

=
1

m2 ∑
k=1

n

(k+1)
4 (n

m)
k

=
1

m2 ∑
k=1

n
(k+1)

4

(1+ε)
k

=
1

m2
⋅O (1)

= O (
1

m2)

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m) = ∑
k=1

n

((k+1)
4 nk mk−1−2 k−1)

= ∑
k=1

n

((k+1)
4 nk m−k−2)

=
1

m2 ∑
k=1

n

((k+1)
4 nk m−k)

=
1

m2 ∑
k=1

n

(k+1)
4 (n

m)
k

=
1

m2 ∑
k=1

n
(k+1)

4

(1+ε)
k

=
1

m2
⋅O (1)

= O (
1

m2)

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m) = ∑
k=1

n

((k+1)
4 nk mk−1−2 k−1)

= ∑
k=1

n

((k+1)
4 nk m−k−2)

=
1

m2 ∑
k=1

n

((k+1)
4 nk m−k)

=
1

m2 ∑
k=1

n

(k+1)
4 (n

m)
k

=
1

m2 ∑
k=1

n
(k+1)

4

(1+ε)
k

=
1

m2
⋅O (1)

= O (
1

m2)

m = (1 + ε)nm = (1 + ε)n

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m) = ∑
k=1

n

((k+1)
4 nk mk−1−2 k−1)

= ∑
k=1

n

((k+1)
4 nk m−k−2)

=
1

m2 ∑
k=1

n

((k+1)
4 nk m−k)

=
1

m2 ∑
k=1

n

(k+1)
4 (n

m)
k

=
1

m2 ∑
k=1

n
(k+1)

4

(1+ε)
k

=
1

m2
⋅O (1)

= O (
1

m2)

m = (1 + ε)nm = (1 + ε)n

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m) = ∑
k=1

n

((k+1)
4 nk mk−1−2 k−1)

= ∑
k=1

n

((k+1)
4 nk m−k−2)

=
1

m2 ∑
k=1

n

((k+1)
4 nk m−k)

=
1

m2 ∑
k=1

n

(k+1)
4 (n

m)
k

=
1

m2 ∑
k=1

n
(k+1)

4

(1+ε)
k

=
1

m2
⋅O (1)

= O (
1

m2)

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m) = ∑
k=1

n

((k+1)
4 nk mk−1−2 k−1)

= ∑
k=1

n

((k+1)
4 nk m−k−2)

=
1

m2 ∑
k=1

n

((k+1)
4 nk m−k)

=
1

m2 ∑
k=1

n

(k+1)
4 (n

m)
k

=
1

m2 ∑
k=1

n
(k+1)

4

(1+ε)
k

=
1

m2
⋅O (1)

= O (
1

m2)

Numerator grows
polynomially as a

function of k.

Numerator grows
polynomially as a

function of k.

Denominator grows
exponentially as a

function of k.

Denominator grows
exponentially as a

function of k.

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m) = ∑
k=1

n

((k+1)
4 nk mk−1−2 k−1)

= ∑
k=1

n

((k+1)
4 nk m−k−2)

=
1

m2 ∑
k=1

n

((k+1)
4 nk m−k)

=
1

m2 ∑
k=1

n

(k+1)
4 (n

m)
k

=
1

m2 ∑
k=1

n
(k+1)

4

(1+ε)
k

=
1

m2
⋅O (1)

= O (
1

m2)

Numerator grows
polynomially as a

function of k.

Numerator grows
polynomially as a

function of k.

Denominator grows
exponentially as a

function of k.

Denominator grows
exponentially as a

function of k.

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m) = ∑
k=1

n

((k+1)
4 nk mk−1−2 k−1)

= ∑
k=1

n

((k+1)
4 nk m−k−2)

=
1

m2 ∑
k=1

n

((k+1)
4 nk m−k)

=
1

m2 ∑
k=1

n

(k+1)
4 (n

m)
k

=
1

m2 ∑
k=1

n
(k+1)

4

(1+ε)
k

=
1

m2
⋅O (1)

= O (
1

m2)

∑
k=1

n

((k+1)
4 mk−1 nk

m2 k m) = ∑
k=1

n

((k+1)
4 nk mk−1−2 k−1)

= ∑
k=1

n

((k+1)
4 nk m−k−2)

=
1

m2 ∑
k=1

n

((k+1)
4 nk m−k)

=
1

m2 ∑
k=1

n

(k+1)
4 (n

m)
k

=
1

m2 ∑
k=1

n
(k+1)

4

(1+ε)
k

=
1

m2
⋅O (1)

= O (
1

m2)

Question 1: What is the
probability at least one
insert fails if we do n

total insertions?

Question 1: What is the
probability at least one
insert fails if we do n

total insertions?

The probability that a single insertion
fails is O(1 / m2) if m = (1+ε)n.

Pr [some insert fails]

≤ ∑
k=1

n

Pr [the k th insert fails]

= ∑
k=1

n

O(
1

m2
)

= O(
n

m2)

= O(
1
m

)

Question 1: What is the
probability at least one
insert fails if we do n

total insertions?

Question 1: What is the
probability at least one
insert fails if we do n

total insertions?

The probability that a single insertion
fails is O(1 / m2) if m = (1+ε)n.

Pr [some insert fails]

≤ ∑
k=1

n

Pr [the k th insert fails]

= ∑
k=1

n

O(
1

m2
)

= O(
n

m2)

= O(
1
m

)

Question 1: What is the
probability at least one
insert fails if we do n

total insertions?

Question 1: What is the
probability at least one
insert fails if we do n

total insertions?

The probability that a single insertion
fails is O(1 / m2) if m = (1+ε)n.

Pr [some insert fails]

≤ ∑
k=1

n

Pr [the k th insert fails]

= ∑
k=1

n

O(
1

m2
)

= O(
n

m2)

= O(
1
m

)

Question 1: What is the
probability at least one
insert fails if we do n

total insertions?

Question 1: What is the
probability at least one
insert fails if we do n

total insertions?

The probability that a single insertion
fails is O(1 / m2) if m = (1+ε)n.

Pr [some insert fails]

≤ ∑
k=1

n

Pr [the k th insert fails]

= ∑
k=1

n

O(
1

m2
)

= O(
n

m2)

= O(
1
m

)

Question 1: What is the
probability at least one
insert fails if we do n

total insertions?

Question 1: What is the
probability at least one
insert fails if we do n

total insertions?

The probability that a single insertion
fails is O(1 / m2) if m = (1+ε)n.

Pr [some insert fails]

≤ ∑
k=1

n

Pr [the k th insert fails]

= ∑
k=1

n

O(
1

m2
)

= O(
n

m2)

= O(
1
m

)

Question 1: What is the
probability at least one
insert fails if we do n

total insertions?

Question 1: What is the
probability at least one
insert fails if we do n

total insertions?

The probability that a single insertion
fails is O(1 / m2) if m = (1+ε)n.

If an insertion fails, we
rehash by building a
brand-new table, with

new hash functions, and
inserting all old elements.

If an insertion fails, we
rehash by building a
brand-new table, with

new hash functions, and
inserting all old elements.

The probability that a series of
n insertions fails is O(1 / m).

It’s possible that, when
we do a rehash, one of the
insertions fails. Therefore,
we keep rehashing until
we find a working table.

It’s possible that, when
we do a rehash, one of the
insertions fails. Therefore,
we keep rehashing until
we find a working table.

Question 2: On
expectation, how many

rehashes are needed per
insertion?

Question 2: On
expectation, how many

rehashes are needed per
insertion?

The probability that a series of
n insertions fails is O(1 / m).

Question 2: On expectation,
how many rehashes are
needed per insertion?

Question 2: On expectation,
how many rehashes are
needed per insertion?

Let X be a random variable
counting the number of

rehashes assuming at least
one rehash occurs.

Let X be a random variable
counting the number of

rehashes assuming at least
one rehash occurs.

X is geometrically distributed
with success probability

1 – O(1 / m).

X is geometrically distributed
with success probability

1 – O(1 / m).

E[X] =
1

1−O(1 /m)
= O(1)

The probability that a series of
n insertions fails is O(1 / m).

Question 2: On expectation,
how many rehashes are
needed per insertion?

Question 2: On expectation,
how many rehashes are
needed per insertion?

Let X be a random variable
counting the number of

rehashes assuming at least
one rehash occurs.

Let X be a random variable
counting the number of

rehashes assuming at least
one rehash occurs.

X is geometrically distributed
with success probability

1 – O(1 / m).

X is geometrically distributed
with success probability

1 – O(1 / m).

E[X] =
1

1−O(1 /m)
= O(1)

E[#rehashes]

= E[X]⋅Pr [#rehashes > 0]

= O(1)⋅O(1/m2
)

= O(1 /m2
)

The probability that a series of
n insertions fails is O(1 / m).

Question 2: On expectation,
how many rehashes are
needed per insertion?

Question 2: On expectation,
how many rehashes are
needed per insertion?

Let X be a random variable
counting the number of

rehashes assuming at least
one rehash occurs.

Let X be a random variable
counting the number of

rehashes assuming at least
one rehash occurs.

X is geometrically distributed
with success probability

1 – O(1 / m).

X is geometrically distributed
with success probability

1 – O(1 / m).

E[X] =
1

1−O(1 /m)
= O(1)

E[#rehashes]

= E[X]⋅Pr [#rehashes > 0]

= O(1)⋅O(1/m2
)

= O(1 /m2
)

The probability that a series of
n insertions fails is O(1 / m).

Question 2: On expectation,
how many rehashes are
needed per insertion?

Question 2: On expectation,
how many rehashes are
needed per insertion?

Let X be a random variable
counting the number of

rehashes assuming at least
one rehash occurs.

Let X be a random variable
counting the number of

rehashes assuming at least
one rehash occurs.

X is geometrically distributed
with success probability

1 – O(1 / m).

X is geometrically distributed
with success probability

1 – O(1 / m).

E[X] =
1

1−O(1 /m)
= O(1)

E[#rehashes]

= E[X]⋅Pr [#rehashes > 0]

= O(1)⋅O(1/m2
)

= O(1 /m2
)

The probability that a series of
n insertions fails is O(1 / m).

Question 2: On expectation,
how many rehashes are
needed per insertion?

Question 2: On expectation,
how many rehashes are
needed per insertion?

Let X be a random variable
counting the number of

rehashes assuming at least
one rehash occurs.

Let X be a random variable
counting the number of

rehashes assuming at least
one rehash occurs.

X is geometrically distributed
with success probability

1 – O(1 / m).

X is geometrically distributed
with success probability

1 – O(1 / m).

E[X] =
1

1−O(1 /m)
= O(1)

E[#rehashes]

= E[X]⋅Pr [#rehashes > 0]

= O(1)⋅O(1/m2
)

= O(1 /m2
)

The expected number of rehashes
on any insertion is O(1 / m2).

Question 3: What is the
expected cost of an insertion

into a cuckoo hash table?

Question 3: What is the
expected cost of an insertion

into a cuckoo hash table?

O(1) + O(1 / m2) · O(m)

Expected cost
of successful

insertion.

Expected cost
of successful

insertion.

Expected
number of
rehashes.

Expected
number of
rehashes.

Cost of
doing one
rehash.

Cost of
doing one
rehash.

The expected number of rehashes
on any insertion is O(1 / m2).

Question 3: What is the
expected cost of an insertion

into a cuckoo hash table?

Question 3: What is the
expected cost of an insertion

into a cuckoo hash table?

O(1) + O(1 / m2) · O(m)

The expected number of rehashes
on any insertion is O(1 / m2).

Question 3: What is the
expected cost of an insertion

into a cuckoo hash table?

Question 3: What is the
expected cost of an insertion

into a cuckoo hash table?

O(1) + O(1 / m)

The expected number of rehashes
on any insertion is O(1 / m2).

Question 3: What is the
expected cost of an insertion

into a cuckoo hash table?

Question 3: What is the
expected cost of an insertion

into a cuckoo hash table?

O(1)

The Overall Analysis

● Cuckoo hashing gives worst-
case lookups and deletions.

● Insertions are expected,
amortized O(1).
● The amortization kicks in

because we need to
periodically double the sizes of
the tables as the number of
elements increases.

● The hidden constants are
small, and this is a practical
technique for building hash
tables.

Cuckoo Hashing:
● lookup: O(1)
● insert: O(1)*

● delete: O(1)

* expected, amortized

More to Explore

Hash Function Strength

● We analyzed cuckoo hashing assuming our hash
functions were truly random. That’s too strong of an
assumption.

● What we know:
● O(log n)-independence is sufficient for expected O(1)

insertion time, but 6-independence isn’t.
● The simplest 2-independent family of hash functions

(polynomial hashing) are terrible for cuckoo hashing.
● Some simple classes of 3-independent hash functions

(tabulation hashing) perform well both theoretically
and practically.

● Open problem: Determine the strength of hash
function needed for cuckoo hashing to work efficiently.

Multiple Tables

● Cuckoo hashing works well with two tables. So
why not 3, 4, 5, …, or k tables?

● In practice, cuckoo hashing with k > 2 tables
leads to better memory efficiency than k = 2
tables:
● The load factor can increase substantially; with k=3,

it's only around α = 0.91 that you run into trouble
with the cuckoo graph.

● Displacements are less likely to chain together; they
only occur when all hash locations are filled in.

● Open problem: Determine where these phase
transition thresholds are for arbitrary k.

Increasing Bucket Sizes

● What if each slot in a cuckoo hash table can
store multiple elements?

● When displacing an element, choose a
random one to move and move it.

● This turns out to work remarkably well in
practice, since it makes it really unlikely that
you'll have long chains of displacements.

● Open problem: Quantify the effect of larger
bucket sizes on the overall runtime of cuckoo
hashing.

Restricting Moves

● Insertions in cuckoo hashing only run into
trouble when you encounter long chains of
displacements during insertions.

● Idea: Cap the number of displacements at some
fixed factor, then store overflowing elements in a
secondary hash table.

● In practice, this works remarkably well, since
the auxiliary table doesn't tend to get very large.

● Open problem: Quantify the effects of “hashing
with a stash” for arbitrary stash sizes and
displacement limits.

Other Dynamic Schemes

● There is another famous dynamic perfect
hashing scheme called dynamic FKS hashing.

● It works by using closed addressing and
resolving collisions at the top level with a
secondary (static) perfect hash table.

● In practice, it's not as fast as these other
approaches. However, it only requires
2-independent hash functions.

● Check CLRS for details!

Lower Bounds?

● Open Problem: Is there a hash table
that supports amortized O(1) insertions,
deletions, and lookups?

● You'd think that we'd know the answer to
this question, but, sadly, we don't.

Next Time

● Beyond Worst-Case Analysis
● Is O(log n) the be-all, end-all of BST analysis? (Hint:

Betteridge’s Law of Headlines)
● Weight-Balanced Trees

● A different way of balancing a tree.
● Finger Search Trees

● Picking up where we left off.
● Iacono’s Working Set Structure

● Storing elements in doubly-exponentially-increasing
forests.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254

