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Conclusion

« Linear regression Is not a promising
method because of long run time and
poor performance.

Motivation Results & Discussion

It is always in a delicate dance for grocery stores to| |[LInear Regression: 0.8031 (G &\3\:
decide future purchasing and do sales forecasting. We| |* Predict future sales with 30 day historical data &/
explored several methods to create a robust algorithm to] | ¢ Poor performance: Simple & Naive Moving average is better because it
make precise sales predictions for grocery stores given| |.__TIme consuming, impossible to add other features it theg period?c sales pattern

Information about items, stores and history sales record. | |1 STM: unacceptable runtime Boosting tree is the best method. It is

Models & Method * Model from Keras | | very flexible with adding new features.
e * Need training for each (store, item) pair Therefore it has the ability to take

Linear Regression * [nput: 7 previous sales more information into consideration
- . » Time consuming, hard to add other features and make most of them.
« Extract features, create training pairs

* Train weights with loss minimization Moving Average: 0.535 (o Cuture Work
« Apply weights to predict future sales. J

7

« Average part: Average sales number over a relatively long period o
* Floating part: Factors that have impact on item’s sales o Boosting tree is a high-potential

Dav of Week Bromotion method which we can dive deep Into
© X salesondayt il - in future. Adding more features like

[ J: h,: prediction of day " | Floating Floating oil prices, holiday events, store
A

t+1 Information may reduce error and
Holiday Wage Cycle

| Predict consecutive
. ) Y = AV median avgdow/avgweek "promo
Periodical weekly sales patterns in data

@
Average sales number over long period Boosting Tree

make our algorithm more robust.

t
days: Set X.=h
The repeating module in an LSTM contains four interacting layers. y ° t_ t_1

Extract factors affecting daily sales ° °
Combine them to predict future sales {‘ '\‘ : e | T e | ey e gy ;'4::. gy | SRR References & Acknowledgements
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on the day to be predicted, sum of future promotions

Current score at Kaggle i1s 0.517, ranking 16/964
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