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Measurements

Small	diameter,	
Edge	clustering

Patterns	of	signed
edge	creation

Viral	Marketing,	Blogosphere,	
Memetracking

Scale-Free

Densification	power	law,
Shrinking	 diameters

Strength	of	weak	ties,	
Core-periphery

Models

Erdös-Renyi model,
Small-world	model

Structural	balance,	
Theory	of	status

Independent	cascade	model,	
Game	theoretic	model

Preferential	attachment,	
Copying	model

Microscopic	model	 of	
evolving	networks

Kronecker Graphs

Algorithms

Decentralized	search

Models	 for	predicting	
edge	signs

Influence	maximization,	
Outbreak	detection,	LIM

PageRank,	Hubs	and	
authorities

Link	prediction,
Supervised	 random	walks

Community	 detection:	
Girvan-Newman,	Modularity
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Choice of the proper network 
representation of a given 

system determines our 
ability to use networks 

successfully



Undirected
¡ Links: undirected	
(symmetrical,	reciprocal)

¡ Examples:
§ Collaborations
§ Friendship	on	Facebook

Directed
¡ Links: directed	
(arcs)

¡ Examples:
§ Phone	calls
§ Following	on	Twitter
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Node	degree,	ki: the	number	
of	edges	adjacent	to	node	i
kA = 4
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In	directed	networks	we	define	
an	in-degree	and	out-degree.
The	(total)	degree	of	a	node	is	the	
sum	of	in- and	out-degrees.
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The	maximum	number	of	edges in	
an	undirected	graph	on	N nodes	is

An	undirected	graph	with	the	number	of	
edges	E = Emax is	called	a	complete	graph,	
and	its	average	degree	is	N-1



¡ Bipartite	graph is	a	graph	whose	nodes	
can	be	divided	into	two	disjoint	sets	U and	V such	
that	every	link	connects	a	node	in	U to	one	in	V;	
that	is,	U and	V are	independent	sets

¡ Examples:
§ Authors-to-papers	(they	authored)
§ Actors-to-Movies	(they	appeared	in)
§ Users-to-Movies	(they	rated)

¡ “Folded”	networks:
§ Author	collaboration	networks
§ Movie	co-rating	networks
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Aij = 1   if	there	is	a	link	from	node	i to	node	j

Aij = 0 otherwise
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¡ Represent	graph	as	a	set	of	edges:
§ (2,	3)
§ (2,	4)
§ (3,	2)
§ (3,	4)
§ (4,	5)
§ (5,	2)
§ (5,	1)
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45



¡ Adjacency	list:
§ Easier	to	work	with	if	network	is

§ Large
§ Sparse

§ Allows	us	to	quickly	retrieve	all	
neighbors	of	a	given	node
§ 1:
§ 2:	3,	4
§ 3:	2,	4
§ 4:	5
§ 5:	1,	2
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Most	real-world	networks	are	sparse
E <<  Emax (or k << N-1)

WWW	(Stanford-Berkeley):	 N=319,717 〈k〉=9.65
Social	networks	(LinkedIn): N=6,946,668 〈k〉=8.87
Communication	 (MSN	IM): N=242,720,596 〈k〉=11.1
Coauthorships (DBLP):	 N=317,080 〈k〉=6.62
Internet	(AS-Skitter): N=1,719,037 〈k〉=14.91
Roads	(California): N=1,957,027 〈k〉=2.82
Proteins	(S.	Cerevisiae):	 N=1,870 〈k〉=2.39 

(Source:	Leskovec	et	al.,	Internet	Mathematics,	2009)

Consequence: Adjacency	matrix	is	filled	with	zeros!
(Density	of	the	matrix	(E/N2):WWW=1.51×10-5,	MSN	IM	= 2.27×10-8)
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Possible	options:
§ Weight	(e.g.	frequency	of	communication)
§ Ranking	(best	friend,	second	best	friend…)
§ Type	(friend,	relative,	co-worker)
§ Sign:	Friend	vs.	Foe,	Trust	vs.	Distrust
§ Properties	depending	on	the	structure	of	the	rest	
of	the	graph:	number	of	common	friends



¡ Unweighted
(undirected)

¡ Weighted	
(undirected)
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¡ Self-edges	(self-loops)
(undirected)

¡ Multigraph
(undirected)
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Bridge	edge: If	we	erase	it,	the	graph	becomes	disconnected.	
Articulation	point: If	we	erase	it,	the	graph	becomes	disconnected.

Largest	Component:	
Giant	Component

Isolated	node	(node H)

¡ Connected	(undirected)	graph:	
§ Any	two	vertices	can	be	joined	by	a	path

¡ A	disconnected	graph	is	made	up	by	two	or	
more	connected	components
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¡ Strongly	connected	directed	graph
§ has	a	path	from	each	node	to	every	other	node	
and	vice	versa	(e.g.,	A-B	path	and	B-A	path)

¡ Weakly	connected	directed	graph
§ is	connected	if	we	disregard	the	edge	directions

Graph on the left is connected
but not strongly connected (e.g.,
there is no way to get from F to G 
by following the edge directions).
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WWW	>

Facebook	friendships	>

Citation	networks	>

Collaboration	networks	>

Mobile	phone	calls	>

Protein	Interactions >

>	directed	multigraphwith	self-edges

>	undirected,	unweighted

>	unweighted,	directed,	acyclic

>	undirected	multigraphor	weighted	graph

>	directed,	(weighted?)	multigraph

>	undirected,	unweightedwith	self-interactions
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¡ Today	we	will	talk	about	observations
and	models for	the	Web	graph:
§ 1)We	will	take	a	real	system:	the	Web
§ 2)We	will	represent	it	as	a	directed	graph
§ 3)We	will	use	the	language	of	graph	theory

§ Strongly	Connected	Components

§ 4)We	will	design	a	computational	
experiment:
§ Find	In- and	Out-components	of	a	given	node	v

§ 5)	We	will	learn	something	about	the	
structure	of	the	Web:	BOWTIE!
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Q:	What	does	the	Web	“look	like”	at	
a	global	level?
¡ Web	as	a	graph:
§ Nodes	=	web	pages
§ Edges	=	hyperlinks

§ Side	issue:What	is	a	node?
§ Dynamic	pages	created	on	the	fly
§ “dark	matter”	– inaccessible	
database	generated	pages
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¡ In	early	days	of	the	Web	links	were	navigational
¡ Today	many	links	are	transactional
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Citations References in an Encyclopedia



¡ How	is	the	Web	linked?
¡ What	is	the	“map”	of	the	Web?

Web	as	a	directed	graph [Broder et	al.	2000]:
§ Given	node	v,	what	can	v reach?	
§ What	other	nodes	can	reach v?
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In(v) = {w | w can reach v} 
Out(v) = {w | v can reach w}

E

C

A
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G

F

D
For example:
In(A) = {A,B,C,E,G}
Out(A)={A,B,C,D,F}



¡ Two	types	of	directed	graphs:
§ Strongly	connected:

§ Any	node	can	reach	any	node
via	a	directed	path
In(A)=Out(A)={A,B,C,D,E}

§ Directed	Acyclic	Graph	(DAG):
§ Has	no	cycles:	if	u can	reach	v,	
then	v cannot	reach	u

¡ Any	directed	graph	can	be	
expressed	in	terms	of	these	two	types!
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¡ A	Strongly	Connected	Component	(SCC)	
is	a	set	of	nodes	S so	that:
§ Every	pair	of	nodes	in	S can	reach	each	other
§ There	is	no	larger	set	containing	S with	this	
property
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components of the graph: 
{A,B,C,G}, {D}, {E}, {F}



¡ Fact: Every	directed	graph	is	a	DAG	on	its	SCCs
§ (1) SCCs	partitions	the	nodes	of	G

§ That	is,	each	node	is	in	exactly	one	SCC

§ (2) If	we	build	a	graph	G’ whose	nodes	are	SCCs,	and	
with	an	edge	between	nodes	of	G’ if	there	is	an	edge	
between	corresponding	SCCs	in	G,	then	G’ is	a	DAG
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(1) Strongly connected components of 
graph G: {A,B,C,G}, {D}, {E}, {F}

(2) G’ is a DAG:

G G’
{A,B,C,G}

{E}

{D}

{F}



¡ Claim: SCCs	partition	nodes	of	G.
§ This	means:	Each	node	is	member	of	exactly	1	SCC

¡ Proof	by	contradiction:
§ Suppose	there	exists	a	node	v which	is	a	
member	of	two	SCCs	S and	S’

§ But	then	S ∪ S’ is	one	large	SCC!
§ Contradiction: By	definition	SCC	is	a	maximal	set	with	
the	SCC	property,	so	S and	S’ are	not	two	SCCs.
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¡ Claim: G’ (graph	of	SCCs)	is	a	DAG.
§ This	means:	G’ has	no	cycles

¡ Proof	by	contradiction:
§ Assume	G’ is	not a	DAG
§ Then	G’ has	a	directed	cycle
§ Now	all	nodes	on	the	cycle	are	
mutually	reachable,	and	all	are	
part	of	the	same	SCC

§ But	then	G’ is	not	a	graph	of	
connections	between	SCCs
(SCCs	are	defined	as	maximal	sets)
§ Contradiction!
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Now	{A,B,C,G,E,F}	is	a	SCC!
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¡ Goal: Take	a	large	snapshot	of	the	Web	and	
try	to	understand	how	its	SCCs	“fit	together”	
as	a	DAG

¡ Computational	issue:
§ Want	to	find	a	SCC	containing	node	v?
§ Observation:

§ Out(v) …	nodes	that	can	be	reached	from	v
§ SCC	containing	v is:Out(v) ∩ In(v) 
= Out(v,G) ∩ Out(v,G),   where	G is G with	all	edge	directions	flipped
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¡ Example:

§ Out(A) = {A, B, D, E, F, G, H}
§ In(A) = {A, B, C, D, E}
§ So,	SCC(A) = Out(A) ∩ In(A) = {A, B, D, E}
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¡ There	is	a	single	giant	SCC
§ That	is,	there	won’t	be	two	SCCs

¡ Heuristic	argument:
§ It	just	takes	1	page	from	one	SCC	to	link	to	
the	other	SCC

§ If	the	2	SCCs	have	millions	of	pages	the	likelihood	
of	this	not	happening	is	very	very	small
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¡ Broder et	al.,	2000:
§ Altavista crawl	from	October	1999

§ 203	million	URLS
§ 1.5	billion	links

§ Computer:	Server	with	12GB	of	memory
¡ Undirected	version	of	the	Web	graph:
§ 91%	nodes	in	the	largest	weakly	conn.	component
§ Are	hubs	making	the	web	graph	connected?

§ Even	if	they	deleted	links	to	pages	with	in-degree	>10	
WCC	was	still	≈50%	of	the	graph
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¡ Directed	version	of	the	Web	graph:
§ Largest	SCC: 28%	of	the	nodes	(56	million)
§ Taking	a	random	node	v

§ Out(v)	≈	50% (100	million)
§ In(v)	≈	50% (100	million)

¡ What	does	this	tell	us	about	the	conceptual	
picture	of	the	Web	graph?
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203	million	pages,	1.5	billion	links [Broder et	al.	2000]
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318 A. Broder et al. / Computer Networks 33 (2000) 309–320

Fig. 9. Connectivity of the Web: one can pass from any node of IN through SCC to any node of OUT. Hanging off IN and OUT are
TENDRILS containing nodes that are reachable from portions of IN, or that can reach portions of OUT, without passage through SCC. It
is possible for a TENDRIL hanging off from IN to be hooked into a TENDRIL leading into OUT, forming a TUBE: i.e., a passage from
a portion of IN to a portion of OUT without touching SCC.

regions have, if we explore in the direction ‘away’
from the center? The results are shown below in the
row labeled ‘exploring outward – all nodes’.
Similarly, we know that if we explore in-links

from a node in OUT, or out-links from a node in
IN, we will encounter about 100 million other nodes
in the BFS. Nonetheless, it is reasonable to ask:
how many other nodes will we encounter? That is,
starting from OUT (or IN), and following in-links
(or out-links), how many nodes of TENDRILS and
OUT (or IN) will we encounter? The results are
shown below in the row labeled ‘exploring inwards
– unexpected nodes’. Note that the numbers in the
table represent averages over our sample nodes.

Starting point OUT IN

Exploring outwards – all nodes 3093 171
Exploring inwards – unexpected nodes 3367 173

As the table shows, OUT tends to encounter larger

neighborhoods. For example, the second largest
strong component in the graph has size approxi-
mately 150 thousand, and two nodes of OUT en-
counter neighborhoods a few nodes larger than this,
suggesting that this component lies within OUT. In
fact, considering that (for instance) almost every cor-
porate Website not appearing in SCC will appear in
OUT, it is no surprise that the neighborhood sizes
are larger.

3.3. SCC

Our sample contains 136 nodes from the SCC.
To determine other properties of SCC, we require
a useful property of IN and OUT: each contains a
few long paths such that, once the BFS proceeds
beyond a certain depth, only a few paths are being
explored, and the last path is much longer than any
of the others. We can therefore explore the radius
at which the BFS completes, confident that the last



¡ What	did	we	learn:
§ Conceptual	organization	of	the	Web	(i.e.,	the	bowtie)

¡ What	did	we	not	learn:
§ Treats	all	pages	as	equal

§ Google’s	homepage	==	my	homepage
§ What	are	the	most	important	pages

§ How	many	pages	have	k in-links	as	a	function	of	k?
The	degree	distribution:		~ k -2

§ Internal	structure	inside	giant	SCC
§ Clusters,	implicit	communities?

§ How	far	apart	are	nodes	in	the	giant	SCC:
§ Distance	=	#	of	edges	in	shortest	path
§ Avg.	=	16		[Broder et	al.]
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Degree	distribution:	 P(k)

Path	length:	 h

Clustering	coefficient:	 C



¡ Degree	distribution	P(k): Probability	that	
a	randomly	chosen	node	has	degree	k

Nk = #	nodes	with	degree	k
¡ Normalized	histogram:

P(k) = Nk / N ➔ plot
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¡ A	path is	a	sequence	of	nodes	in	which	each	
node	is	linked	to	the	next	one

¡ Path	can	intersect	itself	
and	pass	through	the	
same	edge	multiple	times
§ E.g.:	ACBDCDEG
§ In	a	directed	graph	a	path
can	only	follow	the	direction
of	the	“arrow”

€ 

Pn = {i0,i1,i2,...,in}

€ 

Pn = {(i0 ,i1),(i1,i2 ),(i2 ,i3 ),...,(in−1,in )}

C
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H
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¡ Number	of	paths	between	nodes	u and	v :
§ Length	h=1: If	there	is	a	link	between	u	and	v,	

Auv=1 else	Auv=0
§ Length	h=2: If	there	is	a	path	of	length	two	
between	u and	v then	Auk Akv=1 else	Auk Akv=0

§ Length	h: If	there	is	a	path	of	length	h between	u
and	v then	Auk .... Akv=1 else	Auk .... Akv=0
So,	the	no.	of	paths	of	length	h between	u and	v is	
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¡ Distance	(shortest	path,	geodesic)
between	a	pair		of	nodes	is	defined	
as	the	number	of	edges	along	the	
shortest	path	connecting	the	nodes

§ *If	the	two	nodes	are	disconnected,	the	
distance	is	usually	defined	as	infinite

¡ In	directed	graphs paths	need	to	
follow	the	direction	of	the	arrows

§ Consequence: Distance	is	
not	symmetric:	hA,C ≠ hC, A
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¡ Diameter: the	maximum	(shortest	path)	
distance	between	any	pair	of	nodes	in	a	graph

¡ Average	path	length for	a	connected	graph	
(component)	or	a	strongly	connected	
(component	of	a)	directed	graph	

§ Many	times	we	compute	the	average	only	over	the	
connected	pairs	of	nodes	(that	is,	we	ignore	“infinite”	
length	paths)
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¡ Breadth	First	Search:
§ Start	with	node	u,	mark	it	to	be	at	distance	hu(u)=0,	
add	u to	the	queue

§ While	the	queue	not	empty:
§ Take	node	v off	the	queue,	put	its	unmarked	
neighbors	w into	the	queue	and	mark	hu(w)=hu(v)+1
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¡ Clustering	coefficient:	
§ What	portion	of	i’s	neighbors	are	connected?
§ Node	i with	degree	ki

§ Ci ∈ [0,1]

§

¡ Average	clustering	coefficient:
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Ci=0 Ci=1/3 Ci=1

i i i

where ei is the number of edges 
between the neighbors of node i
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¡ Clustering	coefficient:	
§ What	portion	of	i’s	neighbors	are	connected?
§ Node	i with	degree	ki

§
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where ei is the number of edges 
between the neighbors of node i

C
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kB=2,  eB=1,  CB=2/2 = 1

kD=4,  eD=2,  CD=4/12 = 1/3
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Degree	distribution:	 P(k)

Path	length:	 h

Clustering	coefficient:	 C





¡ MSN	Messenger	activity	in	
June	2006:
§ 245	million	users	logged	in
§ 180	million	users	engaged	in	
conversations

§ More	than	30	billion	
conversations

§ More	than	255	billion	
exchanged	messages
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Network: 180M	people,	1.3B	edges	
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Contact Conversation
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Messaging as an 
undirected graph
• Edge (u,v) if users u and v

exchanged at least 1 msg
• N=180 million people
• E=1.3 billion edges
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Note: We plotted the 
same data as on the 
previous slide, just 
the axes are now 
logarithmic.
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1Ck: average Ci of nodes i of degree k:

Avg. clustering 
of the MSN:
C = 0.1140
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Number of links 
between pairs of 

nodes

Avg. path length 6.6
90% of the nodes can be reached in < 8 hops

Steps #Nodes
0 1

1 10

2 78

3 3,96

4 8,648

5 3,299,252

6 28,395,849

7 79,059,497

8 52,995,778

9 10,321,008

10 1,955,007

11 518,410

12 149,945

13 44,616

14 13,740

15 4,476

16 1,542

17 536

18 167

19 71

20 29

21 16

22 10

23 3

24 2

25 3
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Degree	distribution:	

Path	length:	 6.6

Clustering	coefficient:	 0.11

Heavily skewed
avg. degree= 14.4

Are these values “expected”? 
Are they “surprising”?

To answer this we need a null-model!





¡ Erdös-Renyi Random	Graphs	[Erdös-Renyi,	‘60]
¡ Two	variants:
§ Gn,p:	undirected	graph	on	n nodes	and	each	
edge	(u,v) appears	i.i.d.	with	probability	p

§ Gn,m :	undirected		graph	with	n nodes,	and	
m uniformly	at	random	picked	edges
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What kinds of networks 
does such model produce?



¡ n and	p do	not	uniquely	determine	the	graph!
§ The	graph	is	a	result	of	a	random	process

¡ We	can	have	many	different	realizations	given	
the	same	n and p
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n = 10 
p= 1/6



¡ How	likely	is	a	graph	on	E edges?
¡ P(E):	the	probability	that	a	given	Gnp
generates	a	graph	on	exactly	E edges:

where	Emax=n(n-1)/2 is	the	maximum	possible	number	of	edges	
in	an	undirected	graph	of	n nodes
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¡ What	is	expected	degree	of	a	node?
§ Let	Xv be	a	rnd.	var.	measuring	the	degree	of	node	v
§ We	want	to	know:

§ For	the	calculation	we	will	need:	Linearity	of	expectation
§ For	any	random	variables	Y1,Y2,…,Yk

§ If	Y=Y1+Y2+…Yk,	then	E[Y]= ∑i E[Yi]
¡ An	easier	way:

§ Decompose	Xv to	Xv= Xv,1+Xv,2+…+Xv,n-1
§ where	Xv,u is	a	{0,1}-random	variable	
which	tells	if	edge	(v,u) exists	or	not
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How to think about this?
• Prob. of node u linking to node v is p
• u can link (flips a coin) to all other (n-1) nodes
• Thus, the expected degree of node u is: p(n-1)
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Degree	distribution:	 P(k)

Path	length:	 h

Clustering	coefficient:	 C

What are values of these 
properties for Gnp?



¡ Fact:	Degree	distribution	of	Gnp is	Binomial.
¡ Let	P(k) denote	a	fraction	of	nodes	with	
degree	k:
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¡ Remember:

¡ Edges	in	Gnp appear	i.i.d.	with	prob.	p

¡ So:

¡ Then:
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Degree	distribution:	

Clustering	coefficient:	 C=p=k/n

Path	length:	 next!
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¡ To	prove	the	diameter	of	a	Gnpwe	define	few	concepts
¡ Define: Random	k-Regular	graph

§ Assume	each	node	has	k spokes	(half-edges)
§ k=1:

§ k=2:

§ k=3:

§ Randomly	pair	them	up!
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Graph	is	a	set	of	pairs

Graph	is	a	set	of	cycles

Arbitrarily	complicated
graphs



¡ Graph	G(V, E) has	expansion	α:	if∀ S ⊆ V: 
# of edges leaving S ≥ α⋅ min(|S|,|V\S|)

¡ Or	equivalently:
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S nodes α·S edges

S’ nodes α·S’ edges

(A	big)	graph	with	“good”	expansion
|)\||,min(|

#min SVS
Sleavingedges

VS⊆
=α



¡ Expansion	is	measure	of	robustness:
§ To	disconnect	l nodes,	we	need	to	cut	≥ α⋅ l edges

¡ Low	expansion:

¡ High	expansion:

¡ Social	networks:
§ “Communities”
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¡ k-regular	graph (every	node	has	degree	k):
§ Expansion	is	at	most	k (when	S is	a	single	node)

¡ Is	there	a	graph	on	n nodes	(n→∞),	of	fixed	max	
deg.	k,	so	that	expansion	α remains	const?

Examples:
§ n×n grid: k=4: α =2n/(n2/4)→0

(S=n/2 × n/2 square	in	the	center)

§ Complete	binary	tree:
α →0 for	|S|=(n/2)-1

§ Fact: For	a	random	3-regular	graph	on	n nodes,	there	is	
some	const	α (α >0,	independent.	of	n)	such	that	w.h.p.	
the	expansion	of	the	graph	is	≥ α
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¡ Fact: In	a	graph	on	n nodes	with	expansion	α 
for	all	pairs	of	nodes	s and	t there	is	a	path	of	
O((log n) / α) edges	connecting	them.

¡ Proof:
§ Proof	strategy:	

§ We	want	to	show	that	from	any	
node	s there	is	a	path	of	length	
O((log n)/α) to	any	other	node	t

§ Let	Sj be	a	set	of	all	nodes	
found	within	j steps	of	BFS	from	s.	

§ How	does	Sj increase	as	a	function	of	j?
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¡ Proof	(continued):
§ Let	Sj be	a	set	of	all	nodes	found	
within	j steps	of	BFS	from	s.	

§ We	want	to	relate	Sj and	Sj+1
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¡ Proof	(continued):
§ In	how	many	steps	of	BFS	
do	we	reach	>n/2 nodes?

§ Need	j so	that:

§ Let’s	set:
§ Then:

§ In	2k/α·log n steps	|Sj| grows	to Θ(n).	
So,	the	diameter	of	G is	O(log(n)/ α)
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Degree	distribution:	

Path	length:	 O(log n)

Clustering	coefficient:	 C = p = k / n
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Degree	distribution:	

Path	length:	 6.6						O(log n)

Clustering	coefficient:	 0.11        k / n
≈ 8·10-8

≈ 8.2

MSN             Gnp



¡ Are	real	networks	like	random	graphs?
§ Giant	connected	component:	J
§ Average	path	length:	J
§ Clustering	Coefficient:	L
§ Degree	Distribution:	L

¡ Problems	with	the	random	networks	model:
§ Degreed	distribution	differs	from	that	of	real	networks
§ Giant	component	in	most	real	network	does	NOT	
emerge	through	a	phase	transition

§ No	local	structure	– clustering	coefficient	is	too	low
¡ Most	important:	Are	real	networks	random?

§ The	answer	is	simply:	NO!
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¡ If	Gnp is	wrong,	why	did	we	spend	time	on	it?
§ It	is	the	reference	model	for	the	rest	of	the	class.		
§ It	will	help	us	calculate	many	quantities,	that	can	
then	be	compared	to	the	real	data

§ It	will	help	us	understand	to	what	degree	is	a	
particular	property	the	result	of	some	random	
process
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So,	while	Gnp is	WRONG,	it	will	turn	out	
to	be	extremly	USEFUL!



What	happens	to	Gnp when	we	vary	p?



¡ Remember,	expected	degree
¡ We	want	E[Xv] be	independent	of	n
So	let:	p=c/(n-1)

¡ Observation:	If	we	build	random	graph	Gnp
with	p=c/(n-1) we	have	many	isolated	nodes

¡ Why?
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¡ How	big	do	we	have	to	make	p before	we	are	
likely	to	have	no	isolated	nodes?	

¡ We	know: P[v has degree 0] = e-c

¡ Event	we	are	asking	about	is:
§ I =	some	node	is	isolated
§ where	Iv is	the	event	that	v is	isolated

¡ We	have:
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¡ We	just	learned:	P(I) = n e-c

¡ Let’s	try:
§ c = ln n then:		n e-c = n e-ln n =n⋅1/n= 1
§ c = 2 ln n then:		n e-2 ln n = n⋅1/n2 = 1/n

¡ So	if:	
§ p = ln n then: P(I) = 1
§ p = 2 ln n then:		P(I) = 1/n → 0   as n→∞
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¡ Graph	structure	of	Gnp as	p changes:

¡ Emergence	of	a	Giant	Component:
avg.	degree	k=2E/n or	p=k/(n-1)
§ k=1-ε:	all	components	are	of		size	Ω(log n)
§ k=1+ε:	1	component	of		size	Ω(n), others	have	size	Ω(log n)
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¡ Gnp,	n=100k,	p(n-1) =	0.5	…	3
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Fraction of nodes in the 
largest component


