Measuring Networks and the Random Graph Model

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

How the Class Fits Together

Measurements

Models

Algorithms

Small diameter, Edge clustering	Erdös-Renyi model, Small-world model	Decentralized search
Patterns of signed edge creation	Structural balance, Theory of status	Models for predicting edge signs
Viral Marketing, Blogosphere, Memetracking	Independent cascade model, Game theoretic model	Influence maximization, Outbreak detection, LIM
Scale-Free	Preferential attachment, Copying model	PageRank, Hubs and authorities
Densification power law, Shrinking diameters	Microscopic model of evolving networks	Link prediction, Supervised random walks
Strength of weak ties, Core-periphery	Kronecker Graphs	Community detection: Girvan-Newman, Modularity

Choice of the proper network representation of a given system determines our ability to use networks

 successfully
Directed vs. Undirected Graphs

Undirected

- Links: undirected
(symmetrical, reciprocal)

- Examples:
- Collaborations
- Friendship on Facebook

Directed

- Links: directed (arcs)

- Examples:
- Phone calls
- Following on Twitter

Node Degrees

Node degree, $\boldsymbol{k}_{\boldsymbol{i}}$: the number of edges adjacent to node \boldsymbol{i}

$$
k_{A}=4
$$

Avg. degree: $\bar{k}=\langle k\rangle=\frac{1}{N} \sum_{i=1}^{N} k_{i}=\frac{2 E}{N}$
In directed networks we define
 an in-degree and out-degree.
The (total) degree of a node is the sum of in- and out-degrees.

$$
k_{C}^{\text {in }}=2 \quad k_{C}^{\text {out }}=1 \quad k_{C}=3
$$

Source: Node with $k^{\text {in }}=0$
Sink: Node with $k^{\text {out }}=0$

$$
\bar{k}=\frac{E}{N}
$$

$$
\overline{k^{i n}}=\overline{k^{\text {out }}}
$$

Complete Graph

The maximum number of edges in an undirected graph on N nodes is

$$
E_{\max }=\binom{N}{2}=\frac{N(N-1)}{2}
$$

An undirected graph with the number of edges $\boldsymbol{E}=\boldsymbol{E}_{\text {max }}$ is called a complete graph, and its average degree is \boldsymbol{N}-1

Bipartite Graph

- Bipartite graph is a graph whose nodes can be divided into two disjoint sets \boldsymbol{U} and \boldsymbol{V} such that every link connects a node in \boldsymbol{U} to one in \boldsymbol{V}; that is, \boldsymbol{U} and \boldsymbol{V} are independent sets
- Examples:
- Authors-to-papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)
- "Folded" networks:
- Author collaboration networks
- Movie co-rating networks

Folded version of the graph above

Representing Graphs: Adjacency Matrix

$\boldsymbol{A}_{\boldsymbol{i j}}=1 \quad$ if there is a link from node \boldsymbol{i} to node \boldsymbol{j}
$\boldsymbol{A}_{i j}=\mathbf{0}$ otherwise

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \quad A=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Note that for a directed graph (right) the matrix is not symmetric.

Representing Graphs: Edge list

Represent graph as a set of edges:

- $(2,3)$
- $(2,4)$
- $(3,2)$
- $(3,4)$
- $(4,5)$
- $(5,2)$
- $(5,1)$

Representing Graphs: Adjacency list

- Adjacency list:
- Easier to work with if network is
- Large
- Sparse
- Allows us to quickly retrieve all neighbors of a given node

- 1 :
- 2: 3, 4
- 3: 2, 4
- 4: 5
- 5: 1, 2

Networks are Sparse Graphs

Most real-world networks are sparse $\mathrm{E} \ll \mathrm{E}_{\text {max }}($ or $\overline{\mathbf{k}} \ll \mathbf{N}-\mathbf{1})$

WWW (Stanford-Berkeley):

$\mathrm{N}=319,717$	$\langle\mathrm{k}\rangle=9.65$
$\mathrm{~N}=6,946,668$	$\langle\mathrm{k}\rangle=8.87$
$\mathrm{~N}=242,720,596$	$\langle\mathrm{k}\rangle=11.1$
$\mathrm{~N}=317,080$	$\langle\mathrm{k}\rangle=6.62$
$\mathrm{~N}=1,719,037$	$\langle\mathrm{k}\rangle=14.91$
$\mathrm{~N}=1,957,027$	$\langle\mathrm{k}\rangle=2.82$
$\mathrm{~N}=1,870$	$\langle\mathrm{k}\rangle=2.39$

(Source: Leskovec et al., Internet Mathematics, 2009)
Consequence: Adjacency matrix is filled with zeros!
(Density of the matrix $\left(E / N^{2}\right): W W W=1.51 \times 10^{-5}, \mathrm{MSN} \mathrm{IM}=2.27 \times 10^{-8}$)

Edge Attributes

Possible options:

- Weight (e.g. frequency of communication)
- Ranking (best friend, second best friend...)
- Type (friend, relative, co-worker)
- Sign: Friend vs. Foe, Trust vs. Distrust
- Properties depending on the structure of the rest of the graph: number of common friends

More Types of Graphs

- Unweighted
(undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
A_{i i}=0
\end{gathered} A_{i j}=A_{j i}{ }^{2}=\frac{1}{2} \sum_{i, j=1}^{N} A_{i j} \quad \bar{k}=\frac{2 E}{N} .
$$

Examples: Friendship, Hyperlink

- Weighted
(undirected)

$$
\begin{aligned}
& A_{i j}=\left(\begin{array}{cccc}
0 & 2 & 0.5 & 0 \\
2 & 0 & 1 & 4 \\
0.5 & 1 & 0 & 0 \\
0 & 4 & 0 & 0
\end{array}\right) \\
& A_{i i}=0 \\
& A_{i j}=A_{j i} \\
& E=\frac{1}{2} \sum_{i, j=1}^{N} \operatorname{nonzero}\left(A_{i j}\right) \quad \bar{k}=\frac{2 E}{N}
\end{aligned}
$$

Examples: Collaboration, Internet, Roads

More Types of Graphs

- Self-edges (self-loops) (undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \\
A_{i i} \neq 0
\end{gathered}
$$

$$
E=\frac{1}{2} \sum_{i, j=1, i \neq j}^{N} A_{i j}+\sum_{i=1}^{N} A_{i i}
$$

Examples: Proteins, Hyperlinks

Multigraph
(undirected)

$$
\begin{gathered}
A_{i j}=\left(\begin{array}{llll}
0 & 2 & 1 & 0 \\
2 & 0 & 1 & 3 \\
1 & 1 & 0 & 0 \\
0 & 3 & 0 & 0
\end{array}\right) \\
E=\frac{1}{2} \sum_{i, j=1}^{N} \operatorname{nonzero}\left(A_{i j}\right) \quad \bar{k}=\frac{2 E}{N}
\end{gathered}
$$

Examples: Communication, Collaboration

Connectivity of Undirected Graphs

- Connected (undirected) graph:
- Any two vertices can be joined by a path
- A disconnected graph is made up by two or more connected components

Largest Component: Giant Component

Isolated node (node H)

Bridge edge: If we erase it, the graph becomes disconnected.
Articulation point: If we erase it, the graph becomes disconnected.

Connectivity of Directed Graphs

- Strongly connected directed graph
- has a path from each node to every other node and vice versa (e.g., A-B path and B-A path)
- Weakly connected directed graph
- is connected if we disregard the edge directions

Graph on the left is connected but not strongly connected (e.g., there is no way to get from F to G by following the edge directions).

Network Representations

WWW >> directed multigraph with self-edges
Facebook friendships >> undirected, unweighted
Citation networks >> unweighted, directed, acyclic
Collaboration networks >> undirected multigraph or weighted graph
Mobile phone calls >> directed, (weighted?) multigraph
Protein Interactions >> undirected, unweighted with self-interactions

Web as a Graph

Structure of the Web

- Today we will talk about observations and models for the Web graph:

- 1) We will take a real system: the Web
- 2) We will represent it as a directed graph
- 3) We will use the language of graph theory - Strongly Connected Components
- 4) We will design a computational

Out(v) experiment:

- Find In- and Out-components of a given node v
- 5) We will learn something about the structure of the Web: BOWTIE!

The Web as a Graph

Q: What does the Web "look like" at
a global level?

- Web as a graph:
- Nodes = web pages
- Edges = hyperlinks
- Side issue: What is a node?
- Dynamic pages created on the fly
- "dark matter" - inaccessible database generated pages

The Web as a Graph

The Web as a Graph

- In early days of the Web links were navigational - Today many links are transactional

The Web as a Directed Graph

Other Information Networks

Citations

What Does the Web Look Like?

- How is the Web linked?
- What is the "map" of the Web?

Web as a directed graph [Broder et al. 2000]:

- Given node \boldsymbol{v}, what can \boldsymbol{v} reach?
- What other nodes can reach \boldsymbol{v} ?

For example:
$\ln (A)=\{A, B, C, E, G\}$
$\operatorname{Out}(A)=\{A, B, C, D, F\}$

Directed Graphs

- Two types of directed graphs:
- Strongly connected:
- Any node can reach any node via a directed path

$$
\operatorname{In}(A)=\operatorname{Out}(A)=\{A, B, C, D, E\}
$$

- Directed Acyclic Graph (DAG):
- Has no cycles: if \boldsymbol{u} can reach \boldsymbol{v}, then \boldsymbol{v} cannot reach \boldsymbol{u}

- Any directed graph can be expressed in terms of these two types!

Strongly Connected Component

- A Strongly Connected Component (SCC) is a set of nodes \boldsymbol{S} so that:
- Every pair of nodes in \boldsymbol{S} can reach each other
- There is no larger set containing S with this property

Strongly connected components of the graph:
$\{A, B, C, G\},\{D\},\{E\},\{F\}$

Strongly Connected Component

- Fact: Every directed graph is a DAG on its SCCs
- (1) SCCs partitions the nodes of \boldsymbol{G}
- That is, each node is in exactly one SCC
- (2) If we build a graph \boldsymbol{G} ' whose nodes are SCCs, and with an edge between nodes of $\boldsymbol{G}^{\boldsymbol{\prime}}$ if there is an edge between corresponding SCCs in \boldsymbol{G}, then $\boldsymbol{G}^{\boldsymbol{\prime}}$ is a DAG

(1) Strongly connected components of graph $\mathrm{G}:\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{G}\},\{\mathrm{D}\},\{\mathrm{E}\},\{\mathrm{F}\}$
(2) G^{\prime} is a DAG:

Proof of (1)

- Claim: SCCs partition nodes of G.
- This means: Each node is member of exactly 1 SCC
- Proof by contradiction:
- Suppose there exists a node v which is a member of two SCCs \boldsymbol{S} and \boldsymbol{S},

- But then $\boldsymbol{S} \cup \boldsymbol{S}^{\prime}$ is one large SCC!
- Contradiction: By definition SCC is a maximal set with the SCC property, so \boldsymbol{S} and \boldsymbol{S}^{\prime} are not two SCCs.

Proof of (2)

- Claim: G^{\prime} (graph of SCCs) is a DAG.
- This means: \boldsymbol{G} ' has no cycles
- Proof by contradiction:
- Assume \boldsymbol{G}^{\prime} is not a DAG
- Then \boldsymbol{G}^{\prime} has a directed cycle
- Now all nodes on the cycle are mutually reachable, and all are part of the same SCC
- But then $\boldsymbol{G}^{\boldsymbol{\prime}}$ is not a graph of connections between SCCs (SCCs are defined as maximal sets)
- Contradiction!

Now $\{A, B, C, G, E, F\}$ is a SCC!

Graph Structure of the Web

- Goal: Take a large snapshot of the Web and try to understand how its SCCs "fit together" as a DAG
- Computational issue:
- Want to find a SCC containing node \boldsymbol{v} ?
- Observation:

- SCC containing v is: $\operatorname{Out}(v) \cap \operatorname{In}(v)$
- Out(v) ... nodes that can be reached from v
$=\operatorname{Out}(v, G) \cap \operatorname{Out}(v, \bar{G}), \quad$ where \bar{G} is G with all edge directions flipped

$\operatorname{Out}(A) \cap \ln (A)=S C C$

- Example:

- $\operatorname{Out}(\mathrm{A})=\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}\}$
- $\operatorname{In}(\mathrm{A})=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
- So, $\operatorname{SCC}(\mathrm{A})=\operatorname{Out}(\mathrm{A}) \cap \operatorname{In}(\mathrm{A})=\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}\}$

Graph Structure of the Web

- There is a single giant SCC
- That is, there won't be two SCCs
- Heuristic argument:
- It just takes 1 page from one SCC to link to the other SCC
- If the 2 SCCs have millions of pages the likelihood of this not happening is very very small

Structure of the Web

- Broder et al., 2000:
- Altavista crawl from October 1999
- 203 million URLS
- 1.5 billion links
- Computer: Server with 12GB of memory
- Undirected version of the Web graph:
- 91% nodes in the largest weakly conn. component
- Are hubs making the web graph connected?
- Even if they deleted links to pages with in-degree >10 WCC was still $\approx 50 \%$ of the graph

Structure of the Web

- Directed version of the Web graph:
- Largest SCC: 28\% of the nodes (56 million)
- Taking a random node v
- Out $(v) \approx 50 \%$ (100 million)
- $\operatorname{In}(v) \approx 50 \%$ (100 million)
- What does this tell us about the conceptual picture of the Web graph?

Bowtie Structure of the Web

203 million pages, 1.5 billion links [Broder et al. 2000]

What did We Learn/Not Learn ?

- What did we learn:
- Conceptual organization of the Web (i.e., the bowtie)
- What did we not learn:
- Treats all pages as equal
- Google's homepage == my homepage
- What are the most important pages
- How many pages have k in-links as a function of k ?

The degree distribution: $\sim k^{-2}$

- Internal structure inside giant SCC
- Clusters, implicit communities?
- How far apart are nodes in the giant SCC:
- Distance = \# of edges in shortest path
- Avg. = 16 [Broder et al.]

Network Properties: How to Measure a Network?

Plan: Key Network Properties

Degree distribution:

$P(k)$
Path length:
h

Clustering coefficient:

(1) Degree Distribution

- Degree distribution $P(k)$: Probability that a randomly chosen node has degree \boldsymbol{k} $\boldsymbol{N}_{\boldsymbol{k}}=\#$ nodes with degree \boldsymbol{k}
- Normalized histogram:

$$
P(k)=N_{k} / N \quad \rightarrow \text { plot }
$$

(2) Paths in a Graph

- A path is a sequence of nodes in which each node is linked to the next one

$$
P_{n}=\left\{i_{0}, i_{1}, i_{2}, \ldots, i_{n}\right\} \quad P_{n}=\left\{\left(i_{0}, i_{1}\right),\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{n-1}, i_{n}\right)\right\}
$$

- Path can intersect itself and pass through the same edge multiple times
- E.g.: ACBDCDEG
- In a directed graph a path can only follow the direction
 of the "arrow"

Number of Paths

Extra

- Number of paths between nodes u and v :
- Length $\boldsymbol{h}=1$: If there is a link between u and v , $A_{u v}=1$ else $A_{u v}=0$
- Length $\boldsymbol{h}=2$: If there is a path of length two between u and v then $A_{u k} A_{k v}=1$ else $A_{u k} A_{k v}=0$

$$
H_{u v}^{(2)}=\sum_{k=1}^{N} A_{u k} A_{k v}=\left[A^{2}\right]_{u v}
$$

- Length \boldsymbol{h} : If there is a path of length h between u and v then $A_{u k} \ldots . A_{k v}=l$ else $A_{u k} \ldots . A_{k v}=0$ So, the no. of paths of length h between u and v is

$$
H_{u v}^{(h)}=\left[A^{h}\right]_{u v}
$$

Distance in a Graph

$$
h_{B, D}=2
$$

- Distance (shortest path, geodesic) between a pair of nodes is defined as the number of edges along the shortest path connecting the nodes
- *If the two nodes are disconnected, the distance is usually defined as infinite

$h_{B, C}=1, h_{C, B}=2$

Network Diameter

- Diameter: the maximum (shortest path) distance between any pair of nodes in a graph
- Average path length for a connected graph (component) or a strongly connected (component of a) directed graph

$$
\bar{h}=\frac{1}{2 E_{\max }} \sum_{i, j \neq i} h_{i j}
$$

- Many times we compute the average only over the connected pairs of nodes (that is, we ignore "infinite" length paths)

Finding Shortest Paths

Extra

- Breadth First Search:
- Start with node u, mark it to be at distance $h_{u}(u)=0$, add u to the queue
- While the queue not empty:
- Take node v off the queue, put its unmarked neighbors w into the queue and mark $h_{u}(w)=h_{u}(v)+1$

(3) Clustering Coefficient

- Clustering coefficient:
- What portion of i 's neighbors are connected?
- Node \boldsymbol{i} with degree $\boldsymbol{k}_{\boldsymbol{i}}$
- $C_{i} \in[0,1]$
$-C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)} \quad \begin{aligned} & \text { where } e_{i} \text { is the number of edges } \\ & \text { between the neighbors of node } i\end{aligned}$

- Average clustering coefficient: $\quad \begin{gathered}\mathrm{C}_{\mathrm{C}}=0 \\ \mathrm{C}_{\mathrm{C}}=1 / 3 \\ N\end{gathered} \sum_{i}^{N} C_{i}$

Clustering Coefficient

- Clustering coefficient:
- What portion of i 's neighbors are connected?
- Node i with degree $\boldsymbol{k}_{\boldsymbol{i}}$
$-C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}$
where e_{i} is the number of edges
between the neighbors of node i

$$
\begin{array}{lll}
k_{B}=2, & e_{B}=1, & C_{B}=2 / 2=1 \\
k_{D}=4, & e_{D}=2, & C_{D}=4 / 12=1 / 3
\end{array}
$$

Summary: Key Network Properties

Degree distribution:
 $P(k)$
 Path length:
 h

Clustering coefficient:

Let's measure P(k), h and C on a real-world network!

The MSN Messenger

Jeff (Online)
T Brain Salad Surgery(the actual - ... -
\square (0) MSN Today My Space

- MSN Messenger activity in June 2006:
- 245 million users logged in
- 180 million users engaged in conversations
- More than 30 billion conversations
- More than 255 billion exchanged messages

Communication: Geography

Communication Network

Messaging as a Multigraph

Contact ——Conversation

MSN: (1) Connectivity

MSN: (2) Degree Distribution

MSN: Log-Log Degree Distribution

MSN: (3) Clustering

C_{k} : average C_{i} of nodes i of degree $k: C_{k}=\frac{1}{N_{k}} \sum_{i: k_{i}=k} C_{i}$

MSN: (4) Diameter

Avg. path length 6.6 90% of the nodes can be reached in < 8 hops

Steps \#Nodes

	0	1
	1	10
	2	78
	3	3,96
	4	8,648
(1)	5	3,299,252
¢	6	28,395,849
£	7	79,059,497
O	8	52,995,778
ช	9	10,321,008
ธ	10	1,955,007
\bigcirc	11	518,410
\bigcirc	12	149,945
$\xrightarrow{0}$	13	44,616
∞	14	13,740
0	15	4,476
${ }_{3}^{1}$	16	1,542
0	17	536
0	18	167
O	19	71
C	20	29
	21	16
	22	10
	23	3
	24	2
	25	3

MSN: Key Network Properties

Degree distribution:
Heavily skewed avg. degree $=14.4$
Path length:
6.6

Clustering coefficient: 0.11

Are these values "expected"? Are they "surprising"?

To answer this we need a null-model!

Erdös-Renyi

 Random Graph Model
Simplest Model of Graphs

- Erdös-Renyi Random Graphs [Erdös-Renyi, '60]
- Two variants:
- $\boldsymbol{G}_{n, p}$: undirected graph on n nodes and each edge (u, v) appears i.i.d. with probability p
($G_{n, m}:$ undirected graph with n nodes, and $)$ m uniformly at random picked edges

What kinds of networks does such model produce?

Random Graph Model

- n and p do not uniquely determine the graph!
- The graph is a result of a random process
- We can have many different realizations given the same n and p

$\mathrm{n}=10$
$p=1 / 6$

Random Graph Model: Edges

- How likely is a graph on E edges?
- $\boldsymbol{P}(\boldsymbol{E})$: the probability that a given $\boldsymbol{G}_{\boldsymbol{n} \boldsymbol{p}}$ generates a graph on exactly \boldsymbol{E} edges:

$$
P(E)=\binom{E_{\max }}{E} p^{E}(1-p)^{E_{\max }-E}
$$

where $\boldsymbol{E}_{\max }=\boldsymbol{n}(\boldsymbol{n}-\mathbf{1}) / \mathbf{2}$ is the maximum possible number of edges in an undirected graph of \boldsymbol{n} nodes
$P(E)$ is exactly the
Binomial distribution >>>
Number of successes in a sequence of
$\mathbf{E}_{\text {max }}$ independent yes/no experiments

Node Degrees in a Random Graph

- What is expected degree of a node?
- Let \boldsymbol{X}_{v} be a rnd. var. measuring the degree of node v
- We want to know: $E\left[X_{v}\right]=\sum_{j=0}^{n-1} j P\left(X_{v}=j\right)$
- For the calculation we will need: Linearity of expectation
- For any random variables $Y_{1}, Y_{2}, \ldots, Y_{k}$
- If $Y=Y_{1}+Y_{2}+\ldots Y_{k}$, then $E[Y]=\sum_{i} E\left[Y_{i}\right]$
- An easier way:
- Decompose X_{v} to $X_{v}=X_{v, 1}+X_{v, 2}+\ldots+X_{v, n-1}$
- where $\boldsymbol{X}_{v, u}$ is a $\{0,1\}$-random variable which tells if edge (v, u) exists or not

$$
E\left[X_{v}\right]=\sum_{u=1}^{n-1} E\left[X_{v u}\right]=(n-1) p
$$

Degree distribution:
 $P(k)$
 Path length:
 h

Clustering coefficient:

What are values of these properties for $\boldsymbol{G}_{n p}$?

Degree Distribution

- Fact: Degree distribution of $G_{n p}$ is Binomial.
- Let $\boldsymbol{P}(\boldsymbol{k})$ denote a fraction of nodes with degree \boldsymbol{k} :

$$
\frac{\sigma}{\bar{k}}=\left[\frac{1-p}{p} \frac{1}{(n-1)}\right]^{1 / 2} \approx \frac{1}{(n-1)^{1 / 2}}
$$

By the law of large numbers, as the network size

$$
\sigma^{2}=p(1-p)(n-1)
$$ increases, the distribution becomes increasingly narrow - we are increasingly confident that the degree of a node is in the vicinity of k.

Clustering Coefficient of $G_{n p}$

- Remember: $C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}$

Where e_{i} is the number of edges between i's
neighbors

- Edges in $\boldsymbol{G}_{\boldsymbol{n} \boldsymbol{p}}$ appear i.i.d. with prob. \boldsymbol{p}
- So: $e_{i}=p \frac{k_{i}\left(k_{i}-1\right)}{2}$ with prob. p
- Then: $C=\frac{p \cdot k_{i}\left(k_{i}-1\right)}{k_{i}\left(k_{i}-1\right)}=p=\frac{\bar{k}}{n-1} \approx \frac{\bar{k}}{n}$

Clustering coefficient of a random graph is small.
For a fixed avg. degree (that is $p=1 / n$), C decreases with the graph size n.

Network Properties of $G_{n p}$

Degree distribution: $P(k)=\binom{n-1}{k} p^{k}(1-p)^{n-1-k}$ Clustering coefficient:
 $C=p=\bar{k} / n$

Path length:

next!

Def: Random k-Regular Graphs

- To prove the diameter of a $G_{n p}$ we define few concepts
- Define: Random k-Regular graph
- Assume each node has k spokes (half-edges)
- k=1: \&

Graph is a set of pairs

- $k=2$:

Graph is a set of cycles

- k=3:

Arbitrarily complicated graphs

- Randomly pair them up!

Def: Expansion

- Graph $G(V, E)$ has expansion α : if $\forall S \subseteq V$: \# of edges leaving $S \geq \alpha \cdot \min (|S|,|V| S \mid)$
- Or equivalently:

$$
\alpha=\min _{s \subseteq V} \frac{\# \text { edges leaving } S}{\min (|S|,|V \backslash S|)}
$$

Expansion: Intuition

Expansion: Measures Robustness

- Expansion is measure of robustness:
- To disconnect l nodes, we need to cut $\geq \alpha \cdot l$ edges
- Low expansion:

- High expansion:

- Social networks:
- "Communities"

Expansion: k-Regular Graphs

- \boldsymbol{k}-regular graph (every node has degree k):
- Expansion is at most k (when S is a single node)
- Is there a graph on n nodes ($n \rightarrow \infty$), of fixed max deg. k, so that expansion α remains const?

Examples:

- $\mathrm{n} \times \mathrm{n}$ grid: $k=4: \alpha=2 n /\left(n^{2} / 4\right) \rightarrow 0$ ($\mathrm{S}=\mathrm{n} / 2 \times \mathrm{n} / 2$ square in the center)

- Complete binary tree: $\alpha \rightarrow 0$ for $|S|=(n / 2)-1$

- Fact: For a random 3-regular graph on n nodes, there is some const $\alpha(\alpha>0$, independent. of $n)$ such that w.h.p. the expansion of the graph is $\geq \alpha$

Diameter of 3-Regular Rnd. Graph

- Fact: In a graph on n nodes with expansion α for all pairs of nodes s and t there is a path of $O((\log n) / \alpha)$ edges connecting them.
- Proof:
- Proof strategy:
- We want to show that from any node s there is a path of length $O((\log n) / \alpha)$ to any other node t
- Let S_{j} be a set of all nodes
 found within j steps of BFS from s.
- How does S_{j} increase as a function of j ?

Diameter of 3-Regular Rnd. Graph

- Proof (continued):

- Let S_{j} be a set of all nodes found within j steps of BFS from s.
- We want to relate S_{j} and $\mathrm{S}_{\mathrm{j}+1}$

$$
\begin{aligned}
& \left|S_{j+1}\right| \geq\left|S_{j}\right|\left(1+\frac{\alpha}{k}\right)=\left(1+\frac{\alpha}{k}\right)^{j+1}
\end{aligned}
$$

Diameter of 3-Regular Rnd. Graph

$$
e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
$$

- Proof (continued):
- In how many steps of BFS do we reach $>\boldsymbol{n} / 2$ nodes?
- Need j so that: $S_{j}=\left(1+\frac{\alpha}{k}\right)^{j} \geq \frac{n}{2}$
- Let's set: $j=\frac{k \log _{2} n}{\alpha}$
- Then:

$$
\left(1+\frac{\alpha}{k}\right)^{\frac{k \log _{2} n}{\alpha}} \geq 2^{\log _{2} n}=n>\frac{n}{2}
$$

- In $2 k / \alpha \cdot \log n$ steps $\left|S_{j}\right|$ grows to $\Theta(n)$. So, the diameter of G is $O(\log (n) / \alpha)$
$\begin{array}{cc}\begin{array}{c}\text { In } j \text { steps, we }\end{array} & \begin{array}{l}\text { In } j \text { steps, we } \\ \text { reach }>n / 2 \text { nodes }\end{array} \\ \text { reach }>n / 2 \text { nodes }\end{array} \Rightarrow$ Diameter $=2 \cdot j$

Claim:
$\left(1+\frac{\alpha}{k}\right)^{\frac{k \log _{2} n}{\alpha}} \geq 2^{\log _{2} n}$
Remember $n>0, \alpha \leq k$ then: if $\alpha=\mathrm{k}:(1+1)^{1_{1}^{1} \log _{2} n}=2^{\log _{2} n}$ if $\alpha \rightarrow 0$ then $\frac{k}{\alpha}=x \rightarrow \infty$: $\operatorname{and}\left(1+\frac{1}{x}\right)^{x \log _{2} n}=e^{\log _{2} n}>2^{\log _{2} n}$

Network Properties of G_{np}

Degree distribution: Path length: $P(k)=\binom{n-1}{k} p^{k}(1-p)^{n-1-k}$
 $O(\log n)$

Clustering coefficient: $C=p=\bar{k} / n$

MSN vs. G_{np}

MSN

Degree distribution:

Path length:

6.6
$O(\log n)$
≈ 8.2
Clustering coefficient: 0.11 \bar{k} / n
$\approx 8 \cdot 10^{-8}$

Real Networks vs. G np

- Are real networks like random graphs?
- Giant connected component: :)
- Average path length: ©
- Clustering Coefficient: :
- Degree Distribution: : $^{\circ}$
- Problems with the random networks model:
- Degreed distribution differs from that of real networks
- Giant component in most real network does NOT emerge through a phase transition
- No local structure - clustering coefficient is too low
- Most important: Are real networks random?
- The answer is simply: NO!

Real Networks vs. G_{np}

- If $G_{n p}$ is wrong, why did we spend time on it?
- It is the reference model for the rest of the class.
- It will help us calculate many quantities, that can then be compared to the real data
- It will help us understand to what degree is a particular property the result of some random process

So, while $G_{n p}$ is WRONG, it will turn out to be extremly USEFUL!

EXTRA: "Evolution" of the $G_{n p}$

What happens to $G_{n p}$ when we vary p ?

Back to Node Degrees of $G_{n p}$

- Remember, expected degree $E\left[X_{v}\right]=(n-1) p$
- We want $E\left[X_{v}\right]$ be independent of n

So let: $p=c /(n-1)$

- Observation: If we build random graph $G_{n p}$ with $p=c /(n-1)$ we have many isolated nodes
- Why?

$$
\begin{gathered}
P\left[v \text { has degree 0] }=(1-p)^{n-1}=\left(1-\frac{c}{n-1}\right)^{n-1} \underset{n \rightarrow \infty}{\rightarrow} e^{-c}\right. \\
\lim _{n \rightarrow \infty}\left(1-\frac{c}{n-1}\right)^{n-1}=\left(1-\frac{1}{x}\right)^{-x c}=[\underbrace{\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{-x}}_{e}]^{-c}=e^{-c} \quad \begin{array}{l}
\text { By definition: } \\
e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
\end{array}
\end{gathered}
$$

No Isolated Nodes

- How big do we have to make p before we are likely to have no isolated nodes?
- We know: $P[v$ has degree 0$]=e^{-c}$
- Event we are asking about is:
- I = some node is isolated
- $I=\bigcup_{v \in N} I_{v} \quad$ where I_{v} is the event that v is isolated
- We have:

Union bound
$P(I)=P\left(\bigcup_{v \in N} I_{v}\right) \leq \sum_{v \in N} P\left(I_{v}\right)=n e^{-c}$

No Isolated Nodes

- We just learned: $P(I)=n e^{-c}$
- Let's try:
$\begin{aligned}-c & =\ln n \\ -c & =2 \ln n\end{aligned}$
- So if:
- $p=\ln n$
- $p=2 \ln n$
then: $n e^{-c}=n e^{-\ln n} \quad=n \cdot 1 / n=1$
then: $n e^{-2 \ln n}=n \cdot l / n^{2} \quad=1 / n$
then: $P(I)=1$
then: $P(I)=1 / n \rightarrow 0$ as $n \rightarrow \infty$

"Evolution" of a Random Graph

- Graph structure of $G_{n p}$ as p changes:

- Emergence of a Giant Component: avg. degree $k=2 E / n$ or $p=k /(n-1)$
- $k=1-\varepsilon$: all components are of size $\Omega(\log n)$
- $k=1+\varepsilon: 1$ component of size $\Omega(n)$, others have size $\Omega(\log n)$

G_{np} Simulation Experiment

Fraction of nodes in the largest component

- $\mathrm{G}_{\mathrm{np}}, n=100 \mathrm{k}, p(n-1)=0.5 \ldots 3$

