Centrality

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224W.stanford.edu

Quick Topic: Centrality

cоие

Centrality

In each of the following networks, X has higher centrality than Y according to a particular measure

indegree

outdegree

betweenness
closeness

Betweenness: Capturing Brokerage

- Intuition: How many pairs of individuals would have to go through you in order to reach one another in the minimum number of hops?

Betweenness: Definition

$$
C_{B}(i)=\sum_{j<k} g_{j k}(i) / g_{j k}
$$

Where $\mathrm{g}_{j k}=$ the number of shortest paths connecting j, k $g_{j k}(i)=$ the number that node i is on.

Usually normalized by:

$$
C_{B}^{\prime}(i)=C_{B}(i) /[(n-1)(n-2) / 2]
$$

number of pairs of node excluding the node itself

Betweenness: Example (1)

- Non-normalized version:

Betweenness: Example (2)

- Non-normalized version:

D
(0)

E

- A lies between no two other vertices
- B lies between A and 3 other vertices: C, D, and E
- C lies between 4 pairs of vertices (A,D),(A,E),(B,D),(B,E)
- Note that there are no alternate paths for these pairs to take, so C gets full credit

Human Evaluations and Signed Networks

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

High-level Overview of the Lecture

- Today we will talk about human behavior online
- We will try to understand how people express opinions about each other online
- We will use data and network science theory to model factors around human evaluations
- This will be an example of Computational Social Science research
- We are making social science constructs quantitative and then use computation to measure them

How the Class Fits Together

Observations

Small diameter,
Edge clustering

Models

Algorithms

 Small-world model
Decentralized search

Models for predicting edge signs
intiuence maximization, Outbreak detection, LIM

PageRank, Hubs and authorities

Link prediction, Supervised random walks

Community detection: Girvan-Newman, Modularity

People Express Opinions

In many online applications users express positive and negative attitudes/opinions:

- Through actions:
- Rating a product/person
- Pressing a "like" button
- Through text:
- Writing a comment, a review
- Success of these online applications is built on people expressing opinions
- Recommender systems
- Wisdom of the Crowds
- Sharing economy

People \& Evaluations

- About items:
- Movie and product reviews mel IMOh mem amazon.com.

About other users:

- Online communities

ロ $\cup B E R$

 Ф๑๑(Epinionscom- About items created by others:
- Q\&A websites

Elstackoverflow YAHOO! answers

User-User Evaluations

- Many online settings where one person expresses an opinion about another
(or about another's content)
- I trust you [Kamvar-Schlosser-Garcia-Molina '03]
- I agree with you [Adamic-Glance '04]
- I vote in favor of admitting you into the community [Cosley et al. ‘05, Burke-Kraut '08]
- I find your answer/opinion helpful [Danescu-Niculescu-Mizil et al. ‘09, Borgs-Chayes-Kalai-Malekian-Tennenholtz '10]

Evaluations: Some Issues

Some of the central issues:

- Factors:

What factors drive one's evaluations?

- Synthesis: How do we create a composite description that accurately reflects aggregate opinion of the community?

Evaluations: The Setting

Direct

Indirect

- Direct: User to user
- Indirect: User to content (created by another member of a community)
- Where online does this explicitly occur on a large scale?

Evaluations: The Data

- Wikipedia adminship elections
- Support/Oppose (120k votes in English)
- 4 languages: EN, GER, FR, SP
- Stack Overflow Q\&A community
- Upvote/Downvote (7.5M votes)
- Epinions product reviews
- Ratings of others' product reviews (13M)

- 5 = positive, 1-4 = negative

Two ways to look at this

- There are two ways to look at this: One person evaluates the other via a positive/negative evaluation

First we focus on a single evaluation
(without the context of a network)

Then we will focus on evaluations in the context of a network

Human Evaluations

- What drives human evaluations?
- How do properties of evaluator \mathbf{A} and target B affect A's vote?
- Status and Similarity are two fundamental drivers behind human evaluations

Definitions

- Status:

Level of recognition, merit, achievement, reputation in the community

- Wikipedia: \# edits, \# barnstars
- Stack Overflow: \# answers
- User-user similarity:
- Overlapping topical interests of \mathbf{A} and \mathbf{B}
- Wikipedia: Similarity of the articles edited
- Stack Overflow: Similarity of users evaluated

Relative vs. Absolute Assessment

- How do properties of evaluator \mathbf{A} and target B affect A's vote?

- Two natural (but competing) hypotheses:
- (1) Prob. that B receives a positive evaluation depends primarily on the characteristics of B
- There is some objective criteria for user B to receive a positive evaluation

Relative vs. Absolute Assessment

- How do properties of evaluator \mathbf{A} and target B affect A's vote?

- Two natural (but competing) hypotheses:
- (2) Prob. that B receives a positive evaluation depends on relationship between the characteristics of A and B
- User A compares herself to user B and then makes the evaluation

Effects of Status

- How does status of B affect A's evaluation?
- Each curve is a fixed status difference: $\Delta=S_{A}-S_{B}$
- Observations:
- Flat curves: Prob. of positive eval. $\mathrm{P}(+)$ doesn't depend on B's status
- Different levels: Different values of Δ result in

B

We keep increasing status of B, while keeping the status difference $\left(S_{A}-S_{B}\right)$ fixed different behavior

Effects of Similarity

- How does prior interaction shape evaluations? 2 hypotheses:
- (1) Evaluators are more supportive of targets in their area
- "The more similar you are, the more I like you"
- (2) More familiar evaluators know weaknesses and are more harsh
- "The more similar you are, the better I can understand your weaknesses"

Effects of Similarity

Similarity: For each user create a set of words of all articles she edited. The similarity is then the Jaccard similarity between the two sets of words. Then sort the user pairs by similarity and bucket them into percentile.

Prior interaction/ similarity boosts positive evaluations

Status \& Similarity

Status is a proxy for quality when evaluator does not know the target

Status \& Similarity

- Who shows up to evaluate?

Elite evaluators vote on targets in their area of expertise

- Selection effect in who gives the evaluation
- If $S_{A}>S_{B}$ then A and B are more likely to be similar

A Puzzle

- What is $\mathrm{P}(+)$ as a function of $\Delta=S_{A}-S_{B}$?
- Based on findings so far: Monotonically decreasing

A Puzzle: The Mercy Bounce

- What is $\mathrm{P}(+)$ as a function of $\Delta=\mathrm{S}_{\mathrm{A}}-\mathrm{S}_{\mathrm{B}}$?

The Mercy Bounce

- Why low evals. of users of same status?
- Not due to users being tough on each other
- But due to the effects of similarity

Explanation: For negative status difference we have low similarity people which behave according to the red curve on the left plot. As status difference increases the similarity also increases and thus around zero people behave according to the green curve. For positive status difference, similarity is high, and evaluations follow the blue curve. By having a particularly weighted combination of red,

So we get the "mercy" bounce due to uneven mixing of votes

Aggregating Evaluations

- So far: Properties of individual evaluations
- But: Evaluations need to be "summarized"
- Determining rankings of users or items
- Multiple evaluations lead to a group decision
- How to aggregate user evaluations to obtain the opinion of the community?
- Can we guess community's opinion from a small fraction of the makeup of the community?

Ballot-blind Prediction

- Predict Wikipedia adminship election results without seeing the votes
- Observe identities of the first k (=5) people voting (but not how they voted)
- Want to predict the election outcome
- Promotion vs. no promotion
- Why is it hard?
- Don't see the votes (just voters)
- Only see first 5 voters (out of ~ 50)

Ballot-blind: The Model

- Want to model prob. user A votes + in election of user B
- Our model:

$P(A=+\mid B)=P_{A}+d\left(S_{A}-S_{B}, \operatorname{sim}(A, B)\right)$
- P_{A}... empirical fraction of +votes of A
- d(status,similarity) ... avg. deviation in frac. of +votes
- When A evaluates B from a particular (status, similarity) quadrant, how does this change their behavior on average?
- Note: d(status,similarity) only takes 4 different values (based on the quadrant in the (status, similarity) space)
- Predict 'elected' if: $\sum_{i=1}^{k} P\left(A_{i}=+\mid B\right)>w$

Ballot-blind Prediction

- Based on only who showed to vote predict the outcome of the election

Number of voters seen	Accuracy
5	71.4%
10	75.0%
all	75.6%

- Other methods:
- Guessing gives 52\% accuracy
- Logistic Regression on status and similarity features: 67\%
- If we see the first $k=5$ votes 85% (gold standard)

Theme: Learning from implicit feedback
Audience composition tells us something

Summary so far

- Social media sites are governed by (often implicit) user evaluations
- Wikipedia voting process has an explicit, public and recorded process of evaluation
- Main characteristics:
- Importance of relative assessment: Status
- Importance of prior interaction: Similarity
- Diversity of individuals' response functions
- Application: Ballot-blind prediction

Important Points

- Status seems to be salient feature
- Similarity also plays important role
- Audience composition helps predict audience's reaction

Evaluations happen in the context of a network!

Two ways to look at this

- There are two ways to look at this: One person evaluates the other via a positive/negative evaluation

So far we focused on a single evaluation
(without the context of a network)

Now we will focus on evaluations in the context of a network

Signed Networks

- Networks with positive and negative relationships
- Our basic unit of investigation

- Model: Consider two soc. theories of signed nets
- Data: Reason about them in large online networks
- Application: Predict if A and B are linked with + or -

Signed Networks

- Networks with positive and negative relationships
- Consider an undirected complete graph
- Label each edge as either:
- Positive: friendship, trust, positive sentiment, ...
- Negative: enemy, distrust, negative sentiment, ...
- Examine triples of connected nodes A, B, C

Theory of Structural Balance

- Start with the intuition [Heider '46]:
- Friend of my friend is my friend
- Enemy of enemy is my friend
- Enemy of friend is my enemy
- Look at connected triples of nodes:

Consistent with "friend of a friend" or "enemy of the enemy" intuition

Inconsistent with the "friend of a friend" or "enemy of the enemy" intuition

Balanced/Unbalanced Networks

- Graph is balanced if every connected triple of nodes has:
- All 3 edges labeled +, or
- Exactly 1 edge labeled +

Unbalanced

Balanced

Local Balance \rightarrow Global Factions

- Balance implies global coalitions [Cartwright-larary]
- Fact: If all triangles are balanced, then either:
- The network contains only positive edges, or
- Nodes can be split into 2 sets where negative edges only point between the sets

Analysis of Balance: Coalitions

Example: International Relations

- International relations:
- Positive edge: alliance
- Negative edge: animosity
- Separation of Bangladesh from Pakistan in 1971: US supports Pakistan. Why?
- USŚㅗ was enemy of China
- China was enemy of India
- India was enemy of Pakistan
- US was friendly with China
- China vetoed Bangladesh from U.N.

1872-1881

1882

1890

1891-1894

1904

1907

Balance in General Networks

- So far we talked about complete graphs

Def 1: Local view

Fill in the missing edges to achieve balance

Def 2: Global view
Divide the graph into two coalitions The 2 definitions are equivalent!

Is a Signed Network Balanced?

- Graph is balanced if and only if it contains no cycle with an odd number of negative edges
- How to compute this?
- Find connected components on +edges
- If we find a component of nodes on +edges that contains a -edge \Rightarrow Unbalanced
- For each component create a super-node
- Connect components A and B if there is a negative edge between the members
- Assign super-nodes to sides using BFS

Even length cycle

Odd length cycle

Signed Graph: Is it Balanced?

Positive Connected Components

Reduced Graph on Super-Nodes

BFS on Reduced Graph

- Using BFS assign each node a side
- Graph is unbalanced if any two connected super-nodes are assigned the same side

Information About the Course Project

Announcement: Course Project

- Project is a substantial part of the class
- Students put significant effort and great things have been done
- Types of projects:
- (1) Analysis of an interesting dataset with the goal to develop a (new) model or an algorithm
- (2) A test of a model or algorithm (that you have read about or your own) on real \& simulated data.
- Fast algorithms for big graphs. Can be integrated into SNAP.
- Other points:
- The project should contain some mathematical analysis, and some experimentation on real or synthetic data
- The result of the project will typically be an 8 page paper, describing the approach, the results, and related work.
- Come to us if you need help with a project idea!

Announcement: Project Proposal

Project proposal: 3-5 pages, teams of up to 3 students

- Project proposal has 3 parts:
- (0) Quick 200 word abstract
- (1) Related work / Reaction paper (2-3 pages):
- Read 3 papers related to the project/class
- Do reading beyond what was covered in class
- Think beyond what you read. Don't take other's work for granted!
- 2-3 pages: Summary (~ 1 page), Critique (~ 1 page)
- (2) Proposal (1-2 pages):
- Clearly define the problem you are solving.
- How does it relate to what you read for the Reaction paper?
- What data will you use? (make sure you already have it!)
- Which algorithm/model will you use/develop? Be specific!
- How will you evaluate/test your method?

See http://cs224w.stanford.edu/info.html for detailed instructions and examples of previous proposals

Announcement: Project Proposal

- Logistics:
- 1) Register your group on the GoogleDoc http://bit.ly/1BNiHae
- 2) Submit PDF on GradeScope AND at http://snap.stanford.edu/submit/
- Due in 9 days: Thu Oct 20 at 23:59 PST!
- No late periods
- If you need help/ideas/advice come to Office hours/Email us

Project Proposal: Datasets

- Pinterest: Stay tuned
- Food webs:
- http://vlado.fmf.uni-li.si/pub/networks/data/bio/foodweb/foodweb.htm with metadata: https://www.cbl.umces.edu/~atlss/
- Trade networks over time:
" http://faostat3.fao.org/download/F/FT/E
- Stack Exchange (reply networks, Q/A networks):
- https://archive.org/details/stackexchange
- Microfinance data:
- http://web.stanford.edu/~iacksonm/Data.html
- Reddit: Over 1000 subreddits for one year (2014).
- Networks where users who comment near each other. Very interesting for comparing different communities etc. Lots of metadata (e.g., from posts or comments) but this data is very large (hundreds of Gbs)
- Interpersonal expertise overlap within a company
- Within a company, employees were asked to respond to this question: For each person in the list below, please show how strongly you agree or disagree with the following statement: In general, this person has expertise in areas that are important in the kind of work I do."
- Link: http://opsahl.co.uk/tnet/datasets/Cross Parker-Consulting info.txt
- Type of Data: Origin node, destination node, weight of connection (1-5)
- Moviegalaxies: Social networks of 200 movies from moviegalaxies.com. Each network represents how characters interact in one movie

Project Proposal: Datasets

The Neural Network of a Caenorhabditis elegans worm

Link: http://opsahl.co.uk/tnet/datasets/celegans n306.txt
Format of Data: Origin node (Neuron), destination node (Neuron), weight of link

The network of airports in the United States

Description: Flights between US airports in 2002 (undirected), weighted by how many available seats where on flights between two airports over the course of the year.

- Link: http://opsahl.co.uk/tnet/datasets/USairport500.txt
- Type of Data: Airport 1, Airport 2, number of seats across the entire year that were available
- Citation/author relationships
- Description: A set of roughly 630,000 papers, and their respective authors
- Link: https://aminer.org/citation
- Link: https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
- Type of Data: (would require some text processing to extract) Name of paper, index of paper, authors
- Pages/host network
- Description: A set of hosts from the .uk domain and the pages they link to
- Link: http://law.di.unimi.it/webdata/uk-2014/
- Wolfe Primates interaction
- Description: These data represent 3 months of interactions among a troop of monkeys. Vertex attributes contain additional information: (1) ID number of the animal; (2) age in years; (3) sex; (4) rank in the troop.
- Link: http://nexus.igraph.org/api/dataset info?id=45\&format=html
- Python dependencygraph for pypi
- Description: The libraries which depend on other libraries in the package pypi
- Link: https://ogirardot.wordpress.com/2013/01/05/state-of-the-pythonpypi-dependency-graph/
- Format: name of dependency, version extracted, json string of other dependencies

