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¡ Some	example	datasets:
§ Author	Citation/Collaboration	Networks

§ ANetMiner and	Microsoft	Academic	Graph
§ Pinterest	(to	be	released):

§ Users:	age,	gender,	boards	they	own
§ Boards:	title,	creation	time,	pins	that	belong	to	a	board
§ Pins:	title,	description,	link,	image,	creation	time

§ Datasets	on	Reddit:	https://www.reddit.com/r/datasets/
§ Presidential	candidate	endorsements	by	newspaper
§ 25M	presidential	debate	tweets
§ Vehicle	mobility	data	in	Cologne,	Germany

More	at:	http://cs224w.stanford.edu/resources.html
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¡ Each	link	A�B is	explicitly tagged	with	a	sign:
§ Epinions: Trust/Distrust

§ Does	A	trust	B’s	product	reviews?
(only	positive	links	are	visible	to	users)

§ Wikipedia: Support/Oppose
§ Does	A	support	B	to	become
Wikipedia	administrator?

§ Slashdot:	Friend/Foe
§ Does	A	like	B’s	comments?

§ Other	examples:	
§ Online	multiplayer	games
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¡ Does	structural	balance	hold?
§ Compare	frequencies	of	signed	triads	
in	real	and	“shuffled”	signs
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¡ New	setting:	Links	are	
directed,	created	over	time	
§ Node A links	to	B	
§ Directions	and	signs	of	links	
from/to	X	provide	context	

¡ How	many	r are	now	
explained	by	balance?
§ Only	half (8	out	of	16)
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¡ Status in	a	network	[Davis-Leinhardt ’68]
§ A� B	::	B has	higher status	than	A
§ A� B	::	B	has	lower status	than	A

§ Note	the	notion	of	status	is	now	implicit	and	governed	by	
the	network	(rather	than	the	number	of	edits)

§ Apply	this	principle	transitively	over	paths	
§ Can	replace	each	A	� B	with	A					B
§ Obtain	an	all-positive	network	with	same	
status	interpretation
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At	a	global	level	(in	the	ideal	case):	
¡ Status	⇒ Hierarchy
§ All-positive	directed	network	
should	be	approximately	acyclic

¡ Balance	⇒ Coalitions
§ Balance	ignores	directions	and	
implies	that	subgraph of	negative	
edges	should	be	approximately
bipartite	
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¡ Edges	are	directed:
§ X	has	links	to	A	and	B
§ Now,	A	links	to	B	(triad	A-B-X)
§ How	does	sign	of	A� B	
depend	signs	from/to	X?
P(A� B	|	X)	 vs.	 P(A� B)	

¡ We	need	to	formalize:
§ 1)	Links	are	embedded	in	triads:
Triads	provide	context for	signs

§ 2) Users	are	heterogeneous in	
their	linking	behavior
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10

¡ Link	A� B	
appears in
context	X:
A� B	|	X

¡ 16	possible
contexts:
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Note: Context of a link is 
uniquely determined by the 
directions and signs of links 
from/to X



¡ Users	differ	in	frac.	of	+	links	they	give/receive
¡ For	a	user	U:
§ Generative	baseline: Frac.	of	+ given	by U
§ Receptive baseline: Frac.	of	+ received	by U

Basic	question:
¡ How	do	different	link	contexts cause	users	to	
deviate	from	their	baselines?
§ Link	contexts	as	modifiers	on	a	person’s	
predicted	behavior

§ Def:	Surprise:	How	much	behavior	of	A/B	deviates
from	his/her	baselinewhen	A/B	is	in	context	X
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¡ Intuition: How	much	behavior	of	user	A	in	context	
X deviates from	his/her	baseline	behavior
§ Baseline: For	every	user	A :
pg(Ai)…	generative	baseline of	Ai	
§ Fraction	of	times	Ai gives	a	plus

§ Context:	(A1,	B1| X1),…,	(An,	Bn|	Xn)
…	all	instances	of	triads	in	context	X
§ (Ai,	Bi, Xi)	…	an instance	where	when	
user	Ai links	to	user	Bi the	triad	of
type	X is	created.

§ Say	k	of	those	triads	closed	with	a	plus
§ k out	of	n times:	Ai � Bi
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¡ Surprise: How	much	behavior	of	user	A	in	
context	X deviates from	his/her	baseline	behavior

§ Generative	surprise	of	context	X:

§ pg(Ai)…	generative	baseline of	Ai	

§ Context	X:	(A1,	B1| X1),…,	(An,	Bn|	Xn)	
§ k of	instances	of	triad	X closed	
with	a	plus	edges

§ Receptive	surprise	is	similar,	just	use	pr(Ai)
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¡ Surprise: How	much	behavior	of	user	
deviates from	baseline	when	in	context	X

§ Generative	surprise	of	context	X=
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We have 3 triads of context X: (z,u,v), (y,v,w), (q,v,w)
They all close with a plus: So k=3
Pg(u)=1/2=0.5   Pg(v)=2/2=1
Sg(X)=(3-2.5)/√(0.5*0.5+1*0+1*0) = 1



¡ Assume	status	theory	is	at	work
¡ What	sign	does	status	predict	for	edge	A	� B?
§ We	have	to	look	at	this	separately	from	the	viewpoint	
of	A	and	from	the	viewpoint	of	B
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¡ X positively	endorses	A and	B
¡ Now	A links	to	B

A	puzzle:
¡ In	our	data	we	observe:
Fraction	of	positive	links	deviates
§ Above	generative	baseline	of	A:	Sg(X)	>0
§ Below	receptive	baseline	of	B:	Sr(X)	<	0

¡ Why?

B

X
++

?
A
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¡ A’s	viewpoint:
§ Since	B has	a	positive	evaluation,	
B is	likely	of	high	status

§ Thus,	evaluation	A gives	is
more	likely	to	be	positive than	
A’s	baseline	behavior
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¡ B’s	viewpoint:
§ Since	A has	positive	evaluation,	
A is	likely	to	be	high	status

§ Thus,	evaluation	B receives
is	less	likely	to	be	positive	than	
the	baseline	evaluation	B	usually	receives
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¡ Determine	node	status:
§ Assign	X status	0
§ Based	on	signs	and	directions
of	edges	set	status	of	A and	B

¡ Surprise	is	status-consistent,	if:
§ Gen.	surprise	is	status-consistent
if	it	has	same sign	as	status	of	B

§ Rec.	surprise	is	status-consistent	
if	it	has	the	opposite sign	from	the	status	of	A

¡ Surprise	is	balance-consistent,	if:
§ If	it	completes	a	balanced	triad
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¡ Predictions	by	status	and	balance:
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Edge	sign	prediction	problem
¡ Given	a	network	and	
signs	on	all	but	one	edge,	
predict	the	missing	sign

¡ Friend	recommendation:
§ Predicting	whether	you	know	someone	vs.	
Predicting	what	you	think	of	them

¡ Setting:
§ Given	edge	(A,B),	predict	its	sign:
§ Let’s	look	at	signed	triads	(A,B)
belongs	to:
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For	the	edge	(A,B)	we	examine
Its	network	context:
¡ In	what	types	of	triads
does	our	red-edge	participate	in?

§ Each	triad	then	“votes”	and	we	determine	the	sign	
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¡ Prediction	accuracy:

¡ Observations:
§ Signs	can	be	modeled	from	local	network	
structure	alone!
§ Status	works	better	on	Epinionsand	Wikipedia
§ Wikipedia	is	harder	to	model:
§ Votes	are	publicly	visible

10/13/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 26

[WWW  ‘10]

Balance Status Triads

Epinions 80% 82% 93.5%

Slashdot 84% 72% 94.4%

Wikipedia 64% 70% 81%



¡ Do	people	use	these	very	different	linking	
systems	by	obeying	the	same	principles?
§ How	generalizable are	the	results	across	the	
datasets?
§ Train	on	row	“dataset”,	predict	on	“column”

¡ Nearly	perfect	generalization of	the	models	
even	though	networks	come	from	very	
different	applications!
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Train on row, 
test on column



¡ Signed	networks	provide	insight	into	how	social	
computing	systems	are	used:
§ Status	vs.	Balance
§ Role	of	embeddedness and	public	display
§ More	evidence	that	networks	are	globally	
organized	based	on	status

¡ Sign of	relationship	can	be	reliably	
predicted from	the	local	network	context
§ ~90%	accuracy	sign	of	the	edge
§ People	use	signed	edges	consistently	regardless	of	
particular	application
§ Near	perfect	generalization	of	models	across	datasets
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Positively
Evaluated

Negatively
Evaluated

?

?
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Evaluations can affect

Post quality (How well you write)

Community bias (How people perceive you)

Voting behavior (How you vote on others)

Posting frequency (How regularly you post)
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Four large comment-based 
news communities with
1.2M articles, 1.8M registered users,
42M posts, 140M votes, 1 year
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How do we measure 
community feedback?

Number of up-votes

Up-votes minus Down-votes

Fraction of up-votes
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Fraction of up-votes: R2=0.92
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Crowdsourcing exercise:
On a scale 1-7 how would you 
feel about getting X positive 
and Y negative votes?
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…
…

…

What happens after you 
give a user a positive, or a 
negative evaluation?
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Compare similar pairs of 
users who were evaluated 
differently on similar content

…

…
≈ ≈

…

…

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies 
for causal effects.

3 posts before 3 posts after
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Matching pairs of users

Text quality determined by training a machine learning 
model using text features, validated using crowd workers.
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Evaluations can affect

Post quality (How well you write)

Community bias (How people perceive you)

Voting behavior (How you vote on others)

Posting frequency (How regularly you post)
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How much of a future evaluation 
can be explained by textual 
effects?

42

p < 0.05 in all communities

To learn more about these types of effects, see Kanouse, D. E., & Hanson Jr, L. R. (1987). 
Negativity in evaluations.

10/13/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



How does community 
perception of a user change 
after an evaluation?

Evaluations can affect
Community bias (How people perceive you)
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Community Bias

Actual Evaluation P/(P+N)

Judged Text Quality

Text QualityUp-votes
Down-votes

0.9

0.8

0.9-0.8

= +0.1

Community Bias?

4410/13/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



p < 0.05 in all communities
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Does feedback regulate
post quantity?

Evaluations can affect
Posting frequency (How regularly you post)
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Does feedback result in 
subsequent backlash?

Evaluations can affect
Voting Behavior (How you vote on others)
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Negatively-evaluated users write 
worse (and more!), are themselves 
evaluated worse by the community, 
and evaluate other community 
members worse.
Positively-evaluated users, on the 
other hand, don’t do any better.
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