
CS224W: Social and Information Network Analysis
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Announcements	(just	FYI):
1)	HW3:	Due	11/10
2)	Project	milestones	due	on	11/17

We	expect	~50%	project	completed



¡ How	do	networks	evolve	at	the	macro	level?
§ What	are	global	phenomena	of	network	growth?

¡ Questions:
§ What	is	the	relation	between	the	number	of	nodes	

n(t) and	number	of	edges	e(t) over	time	t?
§ How	does	diameter	change	as	the	network	grows?
§ How	does	degree	distribution	evolve	as	the	
network	grows?
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¡ Networks	are	denser over	time	
¡ Densification	Power	Law:

a …	densification	exponent	(1	≤	a ≤	2)

¡ What	is	the	relation	between	
the	number	of	nodes	and	the	
edges	over	time?

¡ First	guess:	constant	average	
degree	over	time
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¡ Prior	models	and	intuition	say	
that	the	network	diameter	slowly	
grows (like	log	N)
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¡ Diameter	shrinks	over	time

§ As	the	network	grows	the	
distances	between	the	nodes	
slowly	decrease
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How do we compute diameter in practice?
-- Long paths: Take 90th-percentile or average path length (not the maximum)
-- Disconnected components: Take only largest component or average only over connected pairs of nodes
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Densification 
exponent a =1.3

Densifying random	graph	has	increasing	diameter	
⇒ There is more to shrinking diameter than 

just densification!

Is	shrinking	
diameter	just	a	
consequence	of	
densification?
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Is	it	the	degree	sequence?
Compare	diameter	of	a:
§ Real	network	(red)
§ Random	network	with	
the	same	degree	
distribution	(blue)
§ Apply	configuration	model	
to	a	network	at	time	t

11/8/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 6

year
di

am
et

er

Citations

Densification	+	degree	sequence	
gives	shrinking	diameter



¡ How	does	degree	distribution	evolve	to	allow	
for	densification?

¡ Option	1) Degree	exponent	𝜸𝒕 is	constant:
§ Fact	1: If	𝜶𝒕 = 𝜶 ∈ [𝟏,𝟐],	then: 𝒂	 = 	𝟐/𝜶
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Email network

7

A consequence of what 
we learned in the Power 
law lecture: 
■ Power-laws with 
exponents <2 have infinite 
expectations.
■ So, by maintaining 
constant degree exponent 𝛼
the average degree grows.



¡ How	does	degree	distribution	evolve	to	allow	
for	densification?

¡ Option	2) 𝜶𝒕 evolves	with	graph	size	𝒏:

§ Fact	2:	If	𝜶𝒕 =
𝟒𝒏𝒕𝒙2𝟏3𝟏
𝟐𝒏𝒕𝒙2𝟏3𝟏

,	then:	𝒂 = 𝒙
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Citation network
Remember, the 
expected degree in a 
power law is: 

𝑬 𝑿 =
𝜶𝒕 − 𝟏
𝜶𝒕 − 𝟐

𝒙𝒎
So 𝜶𝒕 has to decay as
a function of graph size 
𝒏𝒕 for the avg. degree 
to go up.

Notice: 𝜶8 → 2
as 𝑛8 → ∞



¡ Want	to	model	graphs	that	densify	and	have	
shrinking	diameters

¡ Intuition:
§ How	do	we	meet	friends	at	a	party?
§ How	do	we	identify	references	when	writing	
papers?
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¡ The	Forest	Fire	model	has	2	parameters:	
§ p …	forward	burning	probability
§ r …	backward	burning	probability

¡ The	model:	Directed	Graph
§ Each	turn	a	new	node	v arrives
§ Uniformly	at	random	chooses	an		“ambassador”	w
§ Flip	2	geometric	coins	(based	on	p and	r)	to	
determine	the	number	of	in- and	out-links of	w to	
follow

§ “Fire”	spreads	recursively	until	it	dies
§ New	node	v links	to	all	burned	nodes
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Geometric distribution:



¡ Forest	Fire	generates	graphs	that	densify
and	have	shrinking	diameter
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¡ Forest	Fire	also	generates	graphs	with	
power-law	degree	distribution
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in-degree out-degree

log count vs. log in-degree log count vs. log out-degree
11/8/16



¡ Fix	backward	
probability	r and	
vary	forward	
burning	prob.	p

¡ Notice	a	sharp	
transition	
between	sparse	
and	clique-like	
graphs

¡ The	“sweet	spot”	
is	very	narrow

Sparse 
graph

Clique-like
graph

Increasing
diameter

Decreasing 
diameter

Constant
diameter
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¡ What	is	the	goal	of	modeling	networks?
§ Discover	structural	properties	of	networks

§ Small-world,	Edge	clustering,	Heavy-tailed	degrees

§ Find	a	model	that	gives	graphs	with	such	properties
§ Erdos-Renyi,	Watts-Strogatz,	Barabasi-Albert	model

¡ Today’s	lecture:
§ Can	we	have	a	model	that	attempts	to	reproduce
all	of	these	properties?

§ Can	we	fit	the	model	to	a	network	and	
accurately	reproduce	the	network?
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¡ How	can	we	think	of	network	structure	
recursively?	 Intuition: Self-similarity
§ Object	is	similar	to	a	part	of	itself:	the	whole	has	
the	same	shape	as	one	or	more	of	the	parts

¡ Mimic	recursive	graph/community	growth:

¡ Kronecker graph	is	a	way	of	generating	
self-similar	matrices
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Initial graph Recursive expansion
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Intermediate	stage

Initiator	graph

(9x9)(3x3)

[PKDD ‘05]

After	the	growth	phase



¡ Kronecker graphs:	
§ A	recursive	model	of	network	structure
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81 x 81 adjacency matrix

K1

[PKDD ‘05]

3 x 3 9 x 9



¡ Kronecker	product of	matrices	𝐴 and	𝐵 is	
given	by

¡ Define	a	Kronecker	product	of	two	graphs as	a	
Kronecker product	of	their	adjacency	matrices
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N x M K x L

N*K x M*L 



¡ Kronecker graph: a	growing	
sequence	of	graphs	by	iterating	
the	Kronecker product:

¡ Note: One	can	easily	use	multiple	initiator	
matrices	 (𝐾1’,𝐾1’’, 𝐾1’’’	)	(even	of	different	sizes)
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K1

[PKDD ‘05]
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First	fact	about	Kronecker Graphs!
¡ For𝑲𝟏 on	𝑵𝟏 nodes	and	𝑬𝟏 edges
𝑲𝒎 (𝑚th Kronecker power	of	𝑲𝟏)	has:
§ 𝑵 𝒎 = 𝑵𝟏

𝒎 nodes
§ 𝑬 𝒎 = 𝑬𝟏𝒎 edges

¡ So,	we	get	the	densification	power-law!
§ 𝑬 𝒕 ∝ 𝑵 𝒕 𝒂,		so: 𝐸G8 = 𝑁G8 I	What	is	𝒂?

§ 𝒂 = 𝐥𝐨𝐠 𝑬 𝒕
𝐥𝐨𝐠 𝑵 𝒕

= 𝒍𝒐𝒈 𝑬𝟏
𝒕

𝒍𝒐𝒈(𝑵𝟏
𝒕 )
= 𝐥𝐨𝐠 𝑬𝟏	

	𝐥𝐨𝐠(𝑵𝟏)
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Since E(t) > N(t), 
then 𝒂 > 𝟏	

m-1 m



¡ Properties	of	deterministic	Kronecker graphs	
(can	be	proved!)
§ Properties	of	static	networks:

§ Power-Law	like	Degree	Distribution
§ Power-Law	eigenvalue	and	eigenvector	distribution
§ Constant	Diameter

§ Properties	of	evolving	networks:
§ Densification	Power	Law	(just		proved)
§ Shrinking/Stabilizing	Diameter	
(for	Stochastic	Kronecker graphs)
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¡ Observation: Edges	in	Kronecker	graphs:

where	𝑿 are	appropriate	
nodes	in	𝑮 and	𝑯

¡ Why?
§ An	entry	in	matrix	G⊗H is	a	
multiplication	of	entries	in
𝑮 and 𝑯.

X12 X22 X33

X
12

X
22

X
33



¡ Theorem: Constant	diameter: If	graphs	𝐺,𝐻 have	
diameter	𝑑 then	𝐺⨂	𝐻 has	diameter	𝑑

¡ What	is	distance	between	nodes	𝒖,	𝒗 in	G ⊗ H?
§ Consider	some	nodes	𝑢 = [𝑎, 𝑏], 𝑣 = [𝑎’, 𝑏’] in	𝐺⨂	𝐻
§ Then,	path	𝑎 to	𝑎’ in	𝐺 is	less	𝑑 steps:			𝑎1, 𝑎2, 𝑎3, … , 𝑎a
§ And	path	𝑏 to	𝑏’ in	𝐻 is	less	d steps:						𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑑
§ How	many	steps	from	u	to	v?

§ We	know edge	([𝑎1, 𝑏1], [𝑎2, 𝑏2])	is	in	𝐺⨂𝐻
§ So	it	takes	< 𝑑 steps	to	get	from	u	to	v	in	𝐺⨂𝐻

¡ Consequence:	
§ If	𝐾1 has	diameter	𝑑 then	graph	𝐾𝑘 also	has	diameter	𝑑
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0.25 0.10 0.10 0.04

0.05 0.15 0.02 0.06

0.05 0.02 0.15 0.06

0.01 0.03 0.03 0.09

¡ Create	𝑁1 #	𝑁1	probability	matrix 𝚯𝟏
¡ Compute	the	kth Kronecker	power	𝚯𝒌
¡ For	each	entry	𝑝𝑢𝑣 of	𝚯𝒌 include	an	
edge	(𝑢, 𝑣) in	𝐾𝑘 with	probability	𝑝𝑢𝑣
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0.5 0.2
0.1 0.3
Θ1

Instance
matrix	K2

Θ2= Θ1⊗ Θ1

Flip biased 
coins

Kronecker
multiplication

Probability 
of edge puv

[PKDD ’05]



¡ How	do	we	generate	an	instance	of	a	
stochastic	Kronecker graph?

¡ Is	there	a	faster	way?	YES!
¡ Idea: Exploit	the	recursive	structure	of	
Kronecker graphs
§ “Drop”	edges	one	by	one
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0.25 0.10 0.10 0.04
0.05 0.15 0.02 0.06
0.05 0.02 0.15 0.06
0.01 0.03 0.03 0.09

1 1 0 0
0 1 0 1
1 0 1 1
0 1 0 1

Probability 
of edge puv

Need to flip 
𝒏𝟐 coins!! 
Way too 
slow!!

Flip 
biased 
coins



¡ A	faster	way	to	generate	Kronecker graphs

¡ How	to	“drop”	an	edge	into	a	graph	𝑮 on	𝒏 =
𝟐𝒎 nodes

11/8/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 29

==Θ

Θ⊗Θ

Adjacency matrix G



¡ A	faster	way	to	generate	Kronecker graphs

¡ How	to	“drop”	an	edge	into	a	graph	𝑮 on	𝒏 =
𝟐𝒎 nodes
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c d



¡ A	faster	way	to	generate	Kronecker graphs

¡ How	to	“drop”	an	edge	into	a	graph	𝑮 on	𝒏 =
𝟐𝒎 nodes
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¡ A	faster	way	to	generate	Kronecker graphs

¡ How	to	“drop”	an	edge	into	a	graph	𝑮 on	𝒏 =
𝟐𝒎 nodes:
¡ We	may	get	a	few	
edges	colliding.	We	
simply	reinsert	them.
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Fast	Kronecker generator	algorithm:
¡ Insert	1 edge	on	graph	𝑮 on	𝒏 = 𝟐𝒎 nodes:
§ Create	normalized	matrix	𝑳𝒖𝒗 	= 	𝚯𝒖𝒗/(∑ 𝚯𝒐𝒑𝒐𝒑 )
§ For 𝒊 = 	𝟏	 …𝒎

§ start	with	𝒙 = 𝟎, 𝒚 = 𝟎
§ Pick	an	row/column	(𝒖, 𝒗) with	prob.	𝑳𝒖𝒗
§ Descend	into	quadrant	(𝒖, 𝒗) at	level	𝒊 of	𝑮
§ This	means: 𝒙	 += 𝒖 ⋅ 𝟐𝒎3𝒊 ,		𝒚 += 𝒗 ⋅ 𝟐𝒎3𝒊

§ Add	an	edge	𝑮[𝒙, 𝒚] = 𝟏
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¡ Solution:	Noisy	Stochastic	Kronecker Graphs
§ Idea:	Add	noise	to	the	matrix	Θ

§ There	are	many	ways	how	one	could	do	this,	but	here	is	
the	correct	way!

§ Assume 𝚯 = 𝑎 𝑏
𝑐 𝑑 and	G has	𝟐𝒎 nodes

§ Then	create	“noisy”	matricesΘG …Θq where:

§ Θr =
𝑎 − stuI

Iva
𝑏 + 𝑥r

𝑐 + 𝑥r 𝑑 − stua
Iva

§ Apply	Kronecker generator	to	this	set	of	matrices
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Where 𝒙𝒊 is a random number 
on interval [-X, +X]
And X is the noise level.

[Seshadhri et al. ’13]
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SKG, no noise

Noisy SKG, X=0.1

[Seshadhri et al. ’13]



What	is	known	about	Stochastic	Kronecker?
¡ Undirected Kronecker graph	model	with:	
§ Connected,	if:

§ 𝑏 + 𝑐	 > 	1
§ Connected	component	of	size	𝚯(𝒏),	if:

§ (𝑎 + 𝑏)(𝑏 + 𝑐) 	> 	1
§ Constant	diameter,	if:

§ 𝑏 + 𝑐	 > 	1
§ Not	searchable by	a	decentralized	algorithm
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[Mahdian-Xu, WAW ’07]

a b
b c=Θ1

𝑎 > 𝑏 > 𝑐
(“undirected”
Kronecker)



How	to	estimate	𝚯 given	a	𝑮?
¡ KronFit: Maximum	likelihood	estimation
¡ Given	real	graph	𝐺
¡ Find	Stochastic	Kronecker initiator	Θ which

¡ To	solve	this	we	need	to:
§ Efficiently	calculate	𝑷(𝑮|𝚯)
§ Then	maximize	over	𝚯 (e.g.,	using	gradient	descent)
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=Θ a b
c d

ΘP( | ) Kronecker

arg max
Θ

[ICML ‘07]

𝑮



¡ Given	G and	Θ we	calculate	likelihood	
that	Θ generated	G: P(G|Θ)
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Likelihood of edges in the graph Likelihood of edges not in the graph 
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¡ Nodes	are	unlabeled
¡ Graphs	G’ and	G” should	
have	the	same	likelihood
	𝑷(𝑮’|𝚯) 	= 	𝑷(𝑮”|𝚯)

¡ One	needs	to	consider	all	
node	correspondences	σ

¡ All	correspondences	are	
a	priori	equally	likely

¡ There	are	O(n!)
correspondences
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[ICML ‘07]
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¡ Assume	that	we	solved	the	node	
correspondence	problem

¡ Calculating:

¡ Takes	O(n2) time!
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¡ Node	correspondence:
§ Node	permutation	σ defines	the	mapping
§ Randomly	search	over	σ to	find	good	mappings

¡ Calculating	the	likelihood	P(G|Θ,σ)
§ Calculate	likelihood	of	empty	graph (G with	0 edges)
§ Correct	it	for	edges	that	we	observe	in	the	graph
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Swap node 
IDs 1 and 4
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Details in Leskovec-
Faloutsos, ICML ‘07

The algorithm (called Metropolis 
sampling):
(1) Pick 2 nodes at random
(2) Swap their IDs
(3) Does it improve the fit 
𝑷 𝑮 𝚯, 𝝈 ? If, yes, keep the swap, 
else undo it 
(4) Go to (1) 



¡ Log-likelihood

¡ Gradient	of	log-likelihood

¡ Sample	the	permutations	from	P(σ|G,Θ) 
and	average	the	gradients
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[ICML ‘07]
Details!

See Leskovec-Faloutsos, 
ICML ‘07 for details



¡ Metropolis	sampling:
§ Start	with	a	random	permutation	σ
§ σ‘ =	swap	two	elements	in	permutation	σ
§ Accept	the	new	permutation	σ’

§ If	new	permutation	is	better	(gives	higher	likelihood)
§ Else	accept	with	prob.	proportional	to	the	ratio	of	likelihoods	
(no	need	to	calculate	the	normalizing	constant!)
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Details!

See Leskovec-Faloutsos, 
ICML ‘07 for details



¡ Need	to	efficiently	
calculate	the	
likelihood	ratios

¡ But	the	permutations	
σ(i) and	σ(i+1) only	
differ	at	2	positions

¡ So	we	only	traverse	to	
update	2	rows	
(columns)	of	Θk

¡ We	can	evaluate	the	
likelihood	ratio	
efficiently
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Metropolis permutation 
sampling algorithm j

k

Details!



¡ Problem:
¡ Calculating	naively P(G|Θ,σ) takes	O(N2)
¡ Idea:
§ First	calculate	likelihood	of	empty	graph,
a	graph	with	0 edges

§ Correct	the	likelihood	for	edges	that	we	
observe	in	the	graph

¡ By	exploiting	the	structure	of	Kronecker	
product	we	obtain	closed	form for	likelihood	
of	an	empty	graph
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See Leskovec-Faloutsos, 
ICML ‘07 for details



¡ We	approximate	the	likelihood:

¡ The	sum	goes	only	over	the	edges	
¡ Evaluating	𝑷(𝑮|𝚯, 𝝈) takes 𝑶(𝑬) time
¡ Real	graphs	are	sparse,	𝐄 ≪ 𝑵𝟐
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No-edge likelihood Edge likelihoodEmpty graph

[ICML ‘07]
Details!

See Leskovec-Faloutsos, 
ICML ‘07 for details



¡ Real	graphs	are	sparse	so	we	first	
calculate	likelihood	of	empty	graph

¡ Probability	of	edge	(i,j) is	in	
general pij =θ1

aθ2
bθ3

c θ4
d

¡ By	using	Taylor	approximation	to	pij
and	summing	the	multinomial	
series	we	obtain:

¡ We	approximate	the	likelihood:
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Θk

pij =θ1
aθ2

bθ3
cθ4

d

Taylor approximation
log(1-x) ~ -x – 0.5 x2

No-edge likelihood Edge likelihoodEmpty graph

Details!



¡ Experimental	setup
§ Given	real	graph	G
§ Estimate	parameters	Θ
§ Generate	synthetic	graph	K usingΘ
§ Compare	properties	of	graphs	G and	K

¡ Note:
§ We	do	not	fit	the	graph	properties	themselves	
§ We	fit	the	likelihood	and	then	compare	the	
properties
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=Θ a b
c d



¡ Real and	Kronecker are	very	close:
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=Θ1
0.99 0.54

0.49 0.13

[ICML ‘07]



¡ What	do	estimated	parameters	tell	us	
about	the	network	structure?
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=Θ a b
c d a edges d edges

b edges

c edges
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¡ What	do	estimated	parameters	tell	us	
about	the	network	structure?

52

Core
0.9 edges

Periphery
0.1 edges

0.5 edges

0.5 edges

Nested Core-periphery

=Θ
0.9 0.5
0.5 0.1
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¡ Small	and	large	networks	are	very	different:
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0.99 0.54
0.49 0.13

0.99 0.17
0.17 0.82

Θ= Θ =

[JMLR ‘10]



Large	scale	network	structure:
¡ Nested	Core-periphery
§ Recursive	onion-like	
structure	of	the	network	
where	each	layer	
decomposes	into	a	core	
and	periphery

Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 5411/8/16



¡ Remember	the	SKG	theorems:
§ Connected,	if	b+c>1:	

§ 0.55+0.15	>	1.	No!

§ Giant	component,	if	(a+b)·(b+c)>1:	
§ (0.99+0.55)·(0.55+0.15)	>	1.	Yes!

¡ Real	graphs	are	in	the	in	the	parameter	region	
analogous	to	the	giant	component	of	an	
extremely	sparse	Gnp
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=Θ
0.99 0.55
0.55 0.15

1/nGnp log(n)/nreal-networks


