Community Structure in Networks

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu

How the Class Fits Together

Observations

Small diameter,
Edge clustering

Patterns of signed edge creation

Viral Marketing, Blogosphere, Memetracking

Scale-Free

Densification power law, Shrinking diameters

Models

Algorithms

Decentralized search

Models for predicting edge signs

Influence maximization, Outbreak detection, LIM

PageRank, Hubs and authorities

Link prediction, Supervised random walks

Strength of weak ties,
Core-periphery

Kronecker Graphs
Community detection: Girvan-Newman, Modularity

Networks \& Communities

- We often think of networks "looking" like this:

- What lead to such a conceptual picture?

Networks: Flow of Information

- How information flows through the network?
- What structurally distinct roles do nodes play?
- What roles do different links (short vs. long) play?
- How people find out about new jobs?
- Mark Granovetter, part of his PhD in 1960s
- People find the information through personal contacts
- But: Contacts were often acquaintances rather than close friends
- This is surprising: One would expect your friends to help you out more than casual acquaintances
- Why is it that acquaintances are most helpful?

Granovetter's Answer

- Two perspectives on friendships:
- Structural: Friendships span different parts of the network
- Interpersonal: Friendship between two people is either strong or weak
- Structural role: Triadic Closure

Which edge is more likely, a-b or a-c?

Granovetter's Explanation

- Granovetter makes a connection between social and structural role of an edge
- First point: Structure
- Structurally embedded edges are also socially strong
- Long-range edges spanning different parts of the network are socially weak
- Second point: Information
- Long-range edges allow you to gather information from different parts of the network and get a job
- Structurally embedded edges are heavily redundant in terms of information access

Triadic Closure

- Triadic closure == High clustering coefficient Reasons for triadic closure:
- If \boldsymbol{B} and \boldsymbol{C} have a friend \boldsymbol{A} in common, then:
- \boldsymbol{B} is more likely to meet \boldsymbol{C}
- (since they both spend time with \boldsymbol{A})
- \boldsymbol{B} and \boldsymbol{C} trust each other
- (since they have a friend in common)
- \boldsymbol{A} has incentive to bring \boldsymbol{B} and \boldsymbol{C} together
- (as it is hard for \boldsymbol{A} to maintain two disjoint relationships)
- Empirical study by Bearman and Moody:
- Teenage girls with low clustering coefficient are more likely to contemplate suicide

Granovetter's Explanation

- Define: Bridge edge
- If removed, it disconnects the graph
- Define: Local bridge
- Edge of Span >2 (Span of an edge is the distance of the edge endpoints if the edge is deleted. Local bridges with long span are like real bridges)
- Define: Two types of edges:
- Strong (friend), Weak (acquaintance)
- Define: Strong triadic closure:
- Two strong ties imply a third edge
- Fact: If strong triadic closure is satisfied then local bridges are weak ties!

Edge:

Local Bridges and Weak ties

- Claim: If node \boldsymbol{A} satisfies Strong Triadic Closure and is involved in at least two strong ties, then any local bridge adjacent to \boldsymbol{A} must be a weak tie.
- Proof by contradiction:
- Assume A satisfies Strong Triadic Closure and has 2 strong ties

- Let $\boldsymbol{A}-\boldsymbol{B}$ be local bridge and a strong tie
- Then $\boldsymbol{B}-\boldsymbol{C}$ must exist because of Strong
 Triadic Closure
- But then $\boldsymbol{A}-\boldsymbol{B}$ is not a bridge!

Tie strength in real data

- For many years Granovetter's theory was not tested
- But, today we have large who-talks-to-whom graphs:
" Email, Messenger, Cell phones, Facebook
- Onnela et al. 2007:
- Cell-phone network of 20\% of country's population
" Edge strength: \# phone calls

Neighborhood Overlap

- Edge overlap:

$$
\begin{gathered}
O_{i j}=\frac{N(i) \cap N(j)}{N(i) \cup N(j)} \\
\text { " } N(i) \ldots \text { a set } \\
\text { of neighbors } \\
\text { of node } i
\end{gathered}
$$

- Overlap = 0 when an edge is a local bridge

$$
O_{i j=2 / 3}
$$

$O_{i j}=1$

Phones: Edge Overlap vs. Strength

- Cell-phone network - Observation:
- Highly used links have high overlap!
- Legend:
- True: The data
- Permuted strengths: Keep the network structure but randomly reassign edge strengths

Real Network, Real Tie Strengths

- Real edge strengths in mobile call graph
- Strong ties are more embedded (have higher overlap)

Real Net, Permuted Tie Strengths

- Same network, same set of edge strengths but now strengths are randomly shuffled

Link Removal by Strength

Link Removal by Overlap

Low
disconnects the network sooner

Conceptual picture of network structure

Conceptual Picture of Networks

- Granovetter's theory leads to the following conceptual picture of networks

Network Communities

Network Communities

- Granovetter's theory
suggest that networks are composed of tightly connected sets of nodes

Communities, clusters,

- Network communities:
- Sets of nodes with lots of connections inside and few to outside (the rest of the network)

Finding Network Communities

- How to automatically find such densely connected groups of nodes?
- Ideally such automatically detected clusters would then correspond to real groups
- For example:

Communities, clusters, groups, modules

Social Network Data

- Zachary's Karate club network:
- Observe social ties and rivalries in a university karate club
- During his observation, conflicts led the group to split
- Split could be explained by a minimum cut in the network

Micro-Markets in Sponsored Search

Find micro-markets by partitioning the "query x advertiser" graph:

NCAA Football Network

NCAA Football Network

Nodes: Teams
Edges: Games played

Facebook Ego-network

Facebook Ego-network

Protein-Protein Interactions

Protein-Protein Interactions

Community Detection

How to find communities?

We will work with undirected (unweighted) networks

Method 1: Strength of Weak Ties

- Edge betweenness: Number of shortest paths passing over the edge
- Intuition:
$b=16$
$b=7.5$

Edge strengths (call volume) in a real network

Edge betweenness in a real network

Method 1: Girvan-Newman

- Divisive hierarchical clustering based on the notion of edge betweenness:
Number of shortest paths passing through the edge
- Girvan-Newman Algorithm:
- Undirected unweighted networks
- Repeat until no edges are left:
- Calculate betweenness of edges
- Remove edges with highest betweenness
- Connected components are communities
- Gives a hierarchical decomposition of the network

Girvan-Newman: Example

Need to re-compute betweenness at every step

Girvan-Newman: Example

Step 1:

Step 2:

Hierarchical network decomposition:

Step 3:

5

7

We need to resolve 2 questions

1. How to compute betweenness?
2. How to select the number of clusters?

How to Compute Betweenness?

- Want to compute betweenness of paths starting at node A

- Breadth first search starting from A :

How to Compute Betweenness?

Forward step: Count the number of shortest paths from A to all other nodes of the network

How to Compute Betweenness?

- Backward step: Compute betweenness: If there are multiple paths count them fractionally

The algorithm:
-Add edge flows:
-- node flow =
$1+\sum$ child edges
-- split the flow up
based on the parent value

- Repeat the BFS procedure for each starting node U

How to Compute Betweenness?

- Backward step: Compute betweenness: If there are multiple paths count them fractionally

The algorithm:
-Add edge flows:
-- node flow =
$1+\sum$ child edges
-- split the flow up
based on the parent value

- Repeat the BFS procedure for each starting node U

We need to resolve 2 questions

1. How to compute betweenness?
2. How to select the number of clusters?

Network Communities

- Communities: sets of tightly connected nodes
- Define: Modularity Q
- A measure of how well a network is partitioned into communities

- Given a partitioning of the network into groups $\boldsymbol{s} \boldsymbol{\$}$:
$Q \propto \sum_{s \in S}[(\#$ edges within group $s)-$ $\underbrace{(\operatorname{expected} \# \text { edges within group } s)]}$

Need a null model!

Null Model: Configuration Model

- Given real \boldsymbol{G} on \boldsymbol{n} nodes and \boldsymbol{m} edges, construct rewired network \boldsymbol{G}^{\prime}
- Same degree distribution but random connections
- Consider \boldsymbol{G}^{\prime} as a multigraph

- The expected number of edges between nodes \boldsymbol{i} and \boldsymbol{j} of degrees $\boldsymbol{k}_{\boldsymbol{i}}$ and $\boldsymbol{k}_{\boldsymbol{j}}$ equals to: $\boldsymbol{k}_{\boldsymbol{i}} \cdot \frac{\boldsymbol{k}_{\boldsymbol{j}}}{2 \boldsymbol{m}}=\frac{\boldsymbol{k}_{\boldsymbol{i}} \boldsymbol{k}_{\boldsymbol{j}}}{2 \boldsymbol{m}}$
- The expected number of edges in (multigraph) G':

$$
\begin{aligned}
& =\frac{1}{2} \sum_{i \in N} \sum_{j \in N} \frac{k_{i} k_{j}}{2 m}=\frac{1}{2} \cdot \frac{1}{2 m} \sum_{i \in N} k_{i}\left(\sum_{j \in N} k_{j}\right)= \\
& =\frac{1}{4 m} 2 m \cdot 2 m=m
\end{aligned}
$$

Note:
$\sum_{k=10}^{k_{1}=2 m}$

Modularity

- Modularity of partitioning S of graph G:
- $\mathbf{Q} \propto \sum_{s \in S}[$ (\# edges within group $s)$ (expected \# edges within group s)]
- $\boldsymbol{Q}(\boldsymbol{G}, \boldsymbol{S})=\frac{1}{2 m} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right)$

Normalizing cost.: $-1<\mathrm{Q}<1$

$$
\begin{aligned}
\mathrm{A}_{\mathrm{ij}}= & 1 \text { if } \mathrm{i} \rightarrow \mathrm{j}, \\
& 0 \text { else }
\end{aligned}
$$

- Modularity values take range [-1,1]
- It is positive if the number of edges within groups exceeds the expected number
- 0.3-0.7<Q means significant community structure

Modularity: Number of clusters

- Modularity is useful for selecting the number of clusters:
modularity
\qquad

Why not optimize Modularity directly?

Modularity Optimization

Method 2: Modularity Optimization

- Let's split the graph into 2 communities!
- Want to directly optimize modularity!
$-\max _{S} Q(G, S)=\frac{1}{2 m} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right)$
- Community membership vector s:
- $s_{i}=1$ if node \boldsymbol{i} is in community 1
-1 if node i is in community $\mathbf{- 1}$

$$
\frac{s_{i} s_{j}+1}{2}=\begin{aligned}
& 1 . . \text { if } \mathrm{s}_{\mathrm{i}}=\mathrm{s}_{\mathrm{j}} \\
& 0 . . \text { else }
\end{aligned}
$$

- $Q(G, s)=\frac{1}{2 m} \sum_{i \in N} \sum_{j \in N}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) \frac{\left(s_{i} s_{j}+1\right)}{2}$
$=\frac{1}{4 m} \sum_{i, j \in N}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) s_{i} S_{j}$

Modularity Matrix

Note: each row/col of B
Define:

- Modularity matrix: $B_{i j}=A_{i j}-\frac{k_{i} k_{j}}{2 m}$

$$
\begin{aligned}
& \text { sums to } 0: \sum_{j} A_{i j}=\boldsymbol{k}_{i}, \\
& \sum_{j} \frac{k_{i} k_{j}}{2 m}=\boldsymbol{k}_{i} \sum_{j} \frac{k_{j}}{2 m}=\boldsymbol{k}_{i}
\end{aligned}
$$

- Membership: $s=\{-1,+1\}$
- Then: $Q(G, s)=\frac{1}{4 m} \sum_{i \in N} \sum_{j \in N}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) s_{i} s_{j}$

$$
\begin{aligned}
& =\frac{1}{4 m} \sum_{i, j \in N} B_{i j} s_{i} s_{j} \\
& =\frac{1}{4 m} \sum_{i} s_{i} \underbrace{\sum_{j} B_{i j} s_{j}}_{=B_{i} \cdot s}=\frac{1}{4 m} s^{T} B s
\end{aligned}
$$

- Task: Find $\mathbf{s} \in\{-\mathbf{1}, \mathbf{+ 1}\}^{n}$ that maximizes $\mathbf{Q}(\mathbf{G}, \mathbf{s})$

Quick Review of Linear Algebra

- Symmetric matrix A
- That is positive semi-definite:

$$
\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\lambda\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

$$
\boldsymbol{A}=\boldsymbol{U} \cdot \boldsymbol{U}^{T}
$$

- Then solutions λ, \boldsymbol{x} to equation $\boldsymbol{A} \cdot \boldsymbol{x}=\lambda \cdot \boldsymbol{x}$:
- Eigenvectors \boldsymbol{x}_{i} ordered by the magnitude of their corresponding eigenvalues $\lambda_{i}\left(\lambda_{1} \leq \lambda_{2} \ldots \leq \lambda_{n}\right)$
- x_{i} are orthonormal (orthogonal and unit length)
- $\boldsymbol{x}_{\boldsymbol{i}}$ form a coordinate system (basis)
- If \boldsymbol{A} is positive-semidefinite: $\lambda_{i} \geq 0$ (and they always exist)
- Eigen Decomposition theorem: Can rewrite matrix \boldsymbol{A} in terms of its eigenvectors and eigenvalues: $\boldsymbol{A}=$ $\sum_{i} x_{i} \cdot \lambda_{i} \cdot x_{i}^{T}$

Modularity Optimization

- Rewrite: $Q(G, s)=\frac{1}{4 m} s^{\mathrm{T}} B s$ in terms of its eigenvectors and eigenvalues:
$=s^{\mathrm{T}}\left[\sum_{i=1}^{n} x_{i} \lambda_{i} x_{i}^{T}\right] s=\sum_{i=1}^{n} s^{T} x_{i} \lambda_{i} x_{i}^{T} s=\sum_{i=1}^{n}\left(s^{T} \mathrm{X}_{i}\right)^{2} \lambda_{i}$
- So, if there would be no other constraints on s then to maximize Q, we make $s=x_{n}$
- Why? Because $\boldsymbol{\lambda}_{\boldsymbol{n}} \geq \boldsymbol{\lambda}_{\boldsymbol{n}-\mathbf{1}} \geq \cdots$
- Remember \boldsymbol{s} has fixed length!
- Assigns all weight in the sum to $\lambda_{\boldsymbol{n}}$ (largest eigenvalue) - All other $\boldsymbol{S}^{\boldsymbol{T}} \boldsymbol{x}_{\boldsymbol{i}}$ terms are zero because of orthonormality

Finding the vector s

- Let's consider only the first term in the summation (because $\lambda_{\boldsymbol{n}}$ is the largest): $\max _{S} Q(G, s)=\sum_{i=1}^{n}\left(s^{T} x_{i}\right)^{2} \lambda_{i} \approx\left(s^{T} x_{n}\right)^{2} \lambda_{n}$
- Let's maximize: $\sum_{j=1}^{n} s_{j} \cdot x_{n, j}$ where $s_{j} \in\{-1,+1\}$
- To do this, we set:
- $s_{j}= \begin{cases}+1 & \left.\text { if } x_{n, j} \geq 0 \text { (} j-\text { th coordinate of } x_{n} \geq 0\right) \\ -1 & \text { if } x_{n, j}<0 \text { (} j-\text { th coordinate of } x_{n}<0 \text {) }\end{cases}$
- Continue the bisection hierarchically

Summary: Modularity Optimization

- Fast Modularity Optimization Algorithm:
- Find leading eigenvector $\boldsymbol{x}_{\boldsymbol{n}}$ of modularity matrix B
- Divide the nodes by the signs of the elements of $\boldsymbol{x}_{\boldsymbol{n}}$
- Repeat hierarchically until:
- If a proposed split does not cause modularity to increase, declare community indivisible and do not split it
- If all communities are indivisible, stop
- How to find x_{n} ? Power method!
- Start with random $v^{(0)}$, repeat :
- When converged $\left(v^{(t)} \approx v^{(t+1)}\right)$, set $x_{n}=v^{(t)}$

$$
v^{(t+1)}=\frac{B v^{(t)}}{\left\|B v^{(t)}\right\|}
$$

Summary: Modularity

- Girvan-Newman:
- Based on the "strength of weak ties"
- Remove edge of highest betweenness
- Modularity:
- Overall quality of the partitioning of a graph
- Use to determine the number of communities
- Fast modularity optimization:
- Transform the modularity optimization to a eigenvalue problem

Small Detour: Structural Holes

Small Detour: Structural Holes

Who is better off, Robert or James?

Structural Holes

Few structural holes

Many structural holes

Structural Holes provide ego with access to novel information, power, freedom

Structural Holes: Network Constraint

- The "network constraint" measure [Burt]:
- To what extent are person's contacts redundant

$$
p_{u v}=1 / d_{u}
$$

- Low: disconnected contacts
- High: contacts that are close or strongly tied

$$
c_{i}=\sum_{j} c_{i j}=\sum_{j}\left[p_{i j}+\sum_{k}\left(p_{i k} p_{k j}\right)\right]^{2}
$$

$\boldsymbol{p}_{u v}$
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
1.00 .25 .25 .25 .25
2 . 50.00 .00 .00 .50
31.0 .00.00.00.00
4 . 50.00 .00 .00 .50
5 . 33 . 33 .00 . 33 .00

$p_{u v} \ldots$ prop. of u 's "energy" invested in relationship with v

Example: Robert vs. James

- Constraint: To what extent are person's contacts redundant
- Low: disconnected contacts
- High: contacts that are close or strongly tied
- Network constraint:
- James: $c_{J}=0.309$
- Robert: $c_{R}=0.148$

Spanning Holes Matters

Network Constraint
many —— Structural Holes —_ few (manager C above, mean C in team below)

Network Constraint
many _- Structural Holes _ few
(C for manager's network)

