Announcements:

Project milestones graded
Keep up the good work!

Community Detection:
Overlapping Communities




Non-overlapping Communities

Nodes
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Network Adjacency matrix



Overlapping Communities

Non-overlapping vs. overlapping communities
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[Palla et al., ‘05]

Overlaps of Social Circles

Ill

A node can belong to many social “circles”

Department of
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What if communities overlap?
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[Palla et al., ‘05]

Clique Percolation Method (CPM)

Two nodes belong to the same community if they
can be connected through adjacent k-cliques:

k-clique:
Fully connected
graph on k nodes

Adjacent k-cliques: 3-clique Adjacent .
3-cliques  Non-adjacent

overlapin k-1 nodes 3-cliques
k-clique community

Set of nodes that can
be reached through a
sequence of adjacent
k-cliques

Two overlapping 3-cliqgue communities
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[Palla et al., ‘05]

Clique Percolation Method (CPM)

Two nodes belong to the same community if
they can be connected through adjacent k-
cliques:

D

Adjacent 4-cliques

A

Non-adjacent 4-cliques Communities for k=4

4-clique
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CPM: Steps

Clique Percolation Method:

Find maximal-cliques
Def: Clique is maximal if
no supersetis a clique

Clique overlap super-graph:
Each cliqueis a super-node Cliques Communities

Connecttwo cliques if they
overlapin at least k-1 nodes

Communities:
Connected components of
the cligue overlap matrix
How to set k?

Set k so that we get the “richest” (most widely
distributed cluster sizes) communlty structure
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CPM method: Example

Overlap
Cliques size

Start with graph

Find maximal _E[R[R[E=w
Cllques § CE I E
. — o m:|> |
Create clique AL NNBRDE
overlap matrix e P

Threshold the _~ (2) Clique overlap
matrix at value k-1 k=4 matrix

/
Ifaij<l.(._15a.0 [ [ .
Communities are JEnnnine
the connected wo ool o »
components of e R
the threShOIded WMo ojlolo|o|l
matrix (3) Thresholded

matrix at 3

(4) Communities
(connected components)
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[Palla etal., ‘07]

Example: Phone-Call Network

50014 50014

Communities in a
“tiny” part of a phone
call network of 4
million users

[Palla et al., ‘07]
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[Farkas et. al. 07]

Example: Website
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How to Find Maximal Cliques?

No nice way, hard combinatorial problem
Maximal clique: Clique that can’t be extended

{a, b, c}is a clique but not maximal clique
{a,b,c,d} is maximal clique

Algorithm: Sketch

11/28/16

Start with a seed node
Expand the cligue around the seed

Once the clique cannot be further
expanded we found the maximal clique

Note:
This will generate the same clique multiple times

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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How to Find Maximal Cliques?

Start with a seed vertex a
Goal: Find the max clique Q that a belongs to

Observation:

If some x belongsto Q thenitisa neighborofa
Why? If a,x € Q butedge (a, x) does not exist, Q isnota clique!

Recursive algorithm: c@
Q ... currentclique
R ... candidate vertices to expand the clique to
Example: Start with a and expand around it

O

R=

Steps of the recursive algorithm I'(u)...neighbor set of u

11/28/16 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 14



How to Find Maximal Cliques?

Start with a seed vertex a
Goal: Find the max clique Q that a belongs to

Observation:

If some x belongsto Q thenitisa neighborofa
Why? If a,x € Q butedge (a, x) does not exist, Q isnota clique!

Recursive algorithm: @Q@
Q ... currentclique
R ... candidate vertices to expand the clique to
Example: Start with a and expand around it

Q= {a) {a,b} bktrack

R= bcd  {b,cd ATI(C)={) SITId)=0)
NI(b)={c.d}
Steps of the recursive algorithm I'(u)...neighbor set of u
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How to Find Maximal Cliques?

Q ... currentclique

R ... candidate vertices

Expand (R, Q)
while R # {}

p = vertex 1n R

O = QU {p}
R, = R N I (p)
if R, # {}: Expand (R, Q)

else: output Q,
R =R - {p}

11/28/16 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 16



How to Find Maximal Cliques?

Q ... currentclique

R ... candidate vertices

Expand (R, Q)

11/28/16

while R # {}
p = vertex 1n R

O = QU {p}
R, = R N I (p)
if R, # {}: Expand (R, Q)

else: output Q,
R =R - {p}

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis

, http://cs224w.sta Pd

Start: Expand(V, {})
R={a,...f}, Q={}
p = {b}
= {b}
R, ={a,c,d}
Expand(R,, Q):
R ={a,c,d}, Q={b}
p = {a}
Q, = {b,a}
Rp = {d}
Expand(R,, Q):
R = {d}, Q={b,a}
p = {d}
={b,a,d}
R, = {} : output {b,a,d}
= {c}
Q, = {b,c}
Rp = {d}
Expand(R,, Q):
R = {d}, Q={b,c}
p=m}
= {b,c,d}
{} : output {b, c d}



How to Find Maximal Cliques?

How to prevent maximal cliques
to be generated multiple times?

11/28/16

Only output cliques that are
lexicographically minimum
{a,b,c} < {b,a,c}

Even better: Only expand to
the nodes higher in the
lexicographical order

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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How to Model Networks with
Communities?



Network and Communities

How should we think about large scale
organization of clusters in networks?

Finding: Community Structure

11/28/16 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 20



Network and Communities

How should we think about large scale
organization of clusters in networks?

Finding: Core-periphery structure

Nested Core-Periphery

11/28/16



Network and Communities

How do we reconcile these two views?
(and still do community detection)

Community structure Core-periphery

11/28/16 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 22



Community Score

How community-like is a set of nodes?
A good cluster S has

Many edges internally

Few edges pointing outside
What’s a good metric:

Conductance

G HEEES, JESH
P(S) =
Ed
sES
Small conductance corresponds to good clusters
(Note |S| < |V]/2)
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[WWW *08]

Network Community Profile Plot

(Note |S]| < |V|/2)
Define:

Network community profile (NCP) plot

Plot the score of best community of size k

(k) = min | S5)

A ’/;Q
k= k= =10
- . %/
log B (k) ° \ =

Community size, log k
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How to (Really) Compute NCP?

dblp-lars
1
-
-
) ——
Ea 0.1
o))
S
q)‘\
—
S
% * Run the favorite clustering method
.01
2 * Each dot represents a cluster
5: e Foreach size find “best” cluster
Spectral «
Graclus +
0.001 : | ' — : E— ' 1 Metis -
10 100 1000 10000 pN%]1%)%]%]%) le+B6

Cluster size, log k
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[WWW *08]

NCP Plot: Meshes

Meshes, grids, dense random graphs:
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?8\ - i""'—,»% e, 7] 8 - ]
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NCP plot: Network Science

Collaborations between scientists in networks
[Newman, 2005]

11/28/16

0.01

Conductance, log ®(k)

0.001
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Community size, log k

Dips in the conductance graph correspond to the
"good" clusters we can visually detect
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Natural Hypothesis

[Internet Mathematics'og]

Natural hypothesis about NCP:
NCP of real networks slopes

downward

Slope of the NCP corresponds
to the “dimensionality” of the

network

What about

large networks?

11/28/16

10° T 1T T 1 T T T T 11 T 17
Clique, -1/d=0 7
) o 'O |
o
§ 107 B e, Cube, -1/d~-.33 —
6 "N %""'. =
= o o, 3
© “‘v\' ""4.,,"'. i
c "y, g, -
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& Grid, -1/d=-.50 3
“Chain, -1/d~1.0
10-3 ] I I R R BRI B,
10° 10" 10 10® 10* 10° 10°
n (number of nodes in the cluster)
e Social nets Nodes Edges | Description
LIvEJOURNAL | 4,843,953 | 42,845,684 | Blog friendships [5
EPINIONS 75,877 405,739 | Trust network [28]
CA-DBLP 317,080 1,049,866 | Co-authorship [5]
e Information (citation) networks
CIT-HEP-TH 27,400 352,021 | Arxiv hep-th [14
AMAZONPROD 524,371 1,491,793 | Amazon products [8]
e Web graphs
WEB-GOOGLE 855,802 4,291,352 | Google web graph
WEeB-wT10G 1,458,316 6,225,033 | TREC WT10G

e Bipartite affil

1ation (authors-to-papers) networks

ATp-DBLP 615,678 944,456 | DBLP [21]
ATM-IMDB 2,076,978 5,847,693 | Actors-to-movies
e Internet networks

ASSKITTER 1,719,037 | 12,814,089 | Autonom. sys.
JINUTELLA 62,561 ‘ 147,878 | P2P network [29]
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[Internet Mathematics'og]

Large Networks: Very Different

Typical example: General Relativity collaborations

(n=4,158, m=13,422)
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@ (conductance)

@ (conductance)

[Internet Mathematics'og]

More NCP Plots of Networks
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NCP: LiveJournal (n=5m, m=42m)

0
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Explanation: The Upward Part

As clusters grow the number of edges
inside grows slower that the number crossing

‘\ % ,,CD=1/7=0.14
\

e’

\ P=2/10=0.2
7 O= 8/20 0.4

\ G
Each node has twice

Y S q A
/ - a» /‘ ‘
/uh f/ ’, {/\ \
as many children
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Explanation: Downward Part

Empirically we note that best clusters
(corresponding to green nodes) are barely

connected to the network \/

NCP plot

=> Core-periphery structure
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What If We Remove Good Clusters?

1OO|||||||||||||||||

2
w107 & =
- — -
IS - -
O
2107 & =
- — =
c - .
g - N
& 107 & =
) - Original network -

I ' — ]
Nothing happens! Whiskers removed ———

= Nestedness of the
core-periphery structure

102 10° 10* 10° 10°
ber of nodes In the cluster)
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Suggested Network Structure

Denser and

denser core
of the

¢ =
network .\
>0

Core contains
Whiskers 60% node and | :
(| Whiskers are

0
\ N 80% edges ' responsible for

good communities

()
Nested Core-Periphery "‘
O (Jellyfish, octopus) C
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Part 2: Explanation

How do we reconcile these two views?

11/28/16 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 36



Overlapping Community Detection

Many methods for overlapping communities
Clique percolation [Palla et al. ‘05]
Link clustering [Ahn et al. “10] [Evans et al."09]
Clique expansion [Lee et al. “10]

Mixed membership stochastic block models
[Airoldi et al. '08]

Bayesian matrix factorization [Psorakis et al. “11]
What do these methods assume about

community overlaps?



Overlapping Communities

Many overlapping community detection
methods make an implicit assumption:

Edge probability decreases with the
number of shared communities

Nodes

(cNoNoNoNoNoN-oNo Moo NoNo]
; matrix
Is this true? |

Nodes
(oNoJoJoNoNoNoNoNoNoXoXo]

<




Example: CPM

Clique Percolation Method fails to detect dense
overlaps:




P(k), Edge probability

Ground-truth Communities

Basic question: nodes u, v share kK communities
What'’s the edge probability?

A 2 3 4 5 6 7

k, Number of shared communities
LiveJournal

social network

P(k), Edge probability

0.25

0.2 |

0.15

0.1 r

0.05 r

1 2 3 - 5 6 7

k, Number of shared communities
Amazon

product network



Communities as Tiles!

Edge density in the overlaps is higher!

“The more different foci (communities) that two individuals share,

the more likely it is that they will be tied” -S. Feld, 1981

Communities as “tiles”

41



Communities as Tiles/Circles

The densest
part of the

graph

C . t ] I . t . I
Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 42
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Communities in Networks

What does this mean?

Non-overlapping Clique percolation,
methods (spectral, and many other
modaularity optimization) overlapping

methods as well

11/28/16 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 43



From Networks to Communities

o

; .—‘ ‘\
- W I

Present methods

How do we detect communities
iIf they overlap as tiles?




Community-Affiliation Graph Model (AGM

| Model> %

Communities, C  p, |4

Memberships, M

Nodes,V © © © ©

Community Affiliation Network

Generative model: How is a network
generated from community affiliations?
Model parameters:

Nodes V, Communities C, Memberships M
Each community ¢ has a single probability p,



AGM: Generative Process

Communities, C  p, |4 Pg -
| Model
Memberships, M

Nodes,V @ © © ©

Community Affiliation Network

Given parameters (V, C, M, {p })

Nodes in community ¢ connect to each other by
flipping a coin with probability p.

Nodes that belong to multiple communities have
multiple coin flips: Dense community overlaps

If they "miss" thefirst time, they get another chance through the next community"

plwv)=1-[] (=p)

CE iz\/j[u m ]\/Ip

46



AGM: Dense Overlaps




licdm 12]

AGM: Flexibility

AGM can express a

variety of community . B
structures: A B
Non-overlapping, /I\] /I\
Overlapping, Nested

B A B




Detecting Communities

Detecting communities with AGM:

I, = N

Given a Graph, find the Model

1) Affiliation graph M
2) Number of communities C
3) Parameters p,



MAG Model Fitting

I =

Given network G(V,E). Find B(V, C, M, {p_})

argmax P(G|B) = ‘ ‘ P(@, j) (1-P(@,)))
b (7] E (0.7) N
PG.j)=1- T]0-p.)

EM,NM,

Approach:
(1) Stochastic search over B, while keeping {p_} fixed
(2) Optimize {p_.}, while keeping B fixed (convex!)

11/28/16 Jure Leskovec: Networks, Clusters and Communities 50



Communities:
Issues and Questions




Communities: Issues and Questions

Many different formalizations of clustering
objective functions

Objectives are NP-hard to optimize exactly

Methods can find clusters that are
systematically “biased”

How well do algorithms optimize objectives?
What clusters do different methods find?

11/28/16 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 52



[WWW ‘og]

Many Different Objective Functions

S
Modularity: m-E(m)
Edges cut: ¢
n:nodesinS
Conductance: ¢/(2m+c) m: edgesinS
Expansion: ¢/n c: edges pointing

Density: /-m/n? outside S
CutRatio: ¢/n(N-n)
Normalized Cut: ¢/(2m+c) + ¢/2(M-m)+c

Flake-ODF: frac. of nodes with more than % edges
pointing outside S
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Many Classes of Algorithms

Many algorithms to that implicitly or explicitly
optimize objectives and extract communities:

’

popular heuristics
multi-resolution heuristic [Karypis-Kumar ‘98]
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NCP: Live Journal

100 T T i 1 e e e = S e Y R
s oo | |
o 10 5 =
O = =
= = =
© B Spectral 7
O 2
8 107 F WE =
= 7 ==
e = -  Metis —]
o = J -
S T - -
- D
e 107 E ' =
-4 _1 11| LI 11| 1 11| 1 11| 1 |1| 1 11—
10

10Y 10" 40 40° 40* 10> 10° 10’
n (number of nodes in the cluster)
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Properties of Clusters (1)

500 node communities from Spectral:
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Properties of Clusters (2)

Diameter of the cluster
1@@ L ¢ o T " " —r " - e " " -t

Conductance of bounding cut

RMS avg pathlength in cluster

conductance of bounding cut

Disconnected Metis | N T S ST S

10 100 1000 10000 100000 le+06

o] . B S SR, SR External / Internal conductance
k {(number of nodes in the cluster> : | | + ;O |

Metis gives sets with better { Y
conductance Y § - s
g s
b4 1 n 2
Spectral gives tighter and 5
more well-rounded sets HE
o
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Multi-criterion Objectives

1
E 10 S L |MN§
R - z
@ 140 | = Observations:
S Conductance,
e} ! 1 Expansion, Norm-
© 107 | - cut, Cut-ratio are
S : ] similar
2 L l Flake-ODF prefers
2 : DN - larger clusters
- Yogey . . .
£ i ] Density is bad
O 107 . """"1 ' '2 """"3' """"4' E— Cut-ratio has high
K (number of nodes in the cluster)
Conductance Internal Density = Normalized Cut Avg ODF v
Expansion  * Cut Ratio e Maximum ODF Flake ODF ¢
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Single-criterion Objectives

10°
| IIIIIIII T IIIIIIII T IIIIIIII T IIIIIII| T T T TTTTT
| |

e / All measures are

ey ..-.;-:'~‘-'":"L< ) monotonic

10° L ....."""?\v \-u-\ |

102 - ,____,./" | prefers large

0t e | clusters

108 L1 T T T T Ignores small
10° 10’ 107 10° 10° 10° clusters

K (hnumber of nodes in the cluster)

Modularity * Modularity Ratio m Volume e 'Edgescut o
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