Announcements: Project milestones graded

Keep up the good work!

Community Detection: Overlapping Communities

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Non-overlapping Communities

Overlapping Communities

Non-overlapping vs. overlapping communities

Overlaps of Social Circles

A node can belong to many social "circles"

What if communities overlap?

Clique Percolation Method (CPM)

- Two nodes belong to the same community if they can be connected through adjacent k-cliques:
 - k-clique:
 - Fully connected graph on k nodes
 - Adjacent k-cliques:
 - overlap in k-1 nodes
- k-clique community
 - Set of nodes that can be reached through a sequence of adjacent k-cliques

Two overlapping 3-clique communities

Clique Percolation Method (CPM)

Two nodes belong to the same community if they can be connected through adjacent kcliques:

Non-adjacent 4-cliques

Communities for k=4

CPM: Steps

Clique Percolation Method:

- Find maximal-cliques
 - Def: Clique is maximal if no superset is a clique
- Clique overlap super-graph:
 - Each clique is a super-node
 - Connect two cliques if they overlap in at least k-1 nodes
- Communities:
 - Connected components of the clique overlap matrix
- How to set k?
 - Set k so that we get the "richest" (most widely distributed cluster sizes) community structure

CPM method: Example

- Start with graph
- Find maximal cliques
- Create clique overlap matrix
- Threshold the matrix at value k-1
 - If $a_{ij} < k 1$ set 0
- Communities are the connected components of the thresholded matrix

Example: Phone-Call Network

Communities in a "tiny" part of a phone call network of 4 million users [Palla et al., '07]

Example: Website

- No nice way, hard combinatorial problem
- Maximal clique: Clique that can't be extended
 - $\{a,b,c\}$ is a clique but not maximal clique
 - $\{a, b, c, d\}$ is maximal clique
- Algorithm: Sketch
 - Start with a seed node
 - Expand the clique around the seed
 - Once the clique cannot be further expanded we found the maximal clique
 - Note:
 - This will generate the same clique multiple times

- Start with a seed vertex a
- ullet Goal: Find the max clique $oldsymbol{Q}$ that $oldsymbol{a}$ belongs to
 - Observation:
 - If some x belongs to Q then it is a neighbor of a
 - Why? If $a, x \in Q$ but edge (a, x) does not exist, Q is not a clique!
- Recursive algorithm:
 - Q ... current clique
 - R ... candidate vertices to expand the clique to
- **Example:** Start with *a* and expand around it

Steps of the recursive algorithm

 $\Gamma(u)$...neighbor set of u

- Start with a seed vertex a
- ullet Goal: Find the max clique $oldsymbol{Q}$ that $oldsymbol{a}$ belongs to
 - Observation:
 - If some x belongs to Q then it is a neighbor of a
 - Why? If $a, x \in Q$ but edge (a, x) does not exist, Q is not a clique!
- Recursive algorithm:
 - Q ... current clique
 - R ... candidate vertices to expand the clique to
- **Example:** Start with *a* and expand around it

Q= {a} {a,b} {a,b,c} bktrack {a,b,d} R= {
$$\underline{b}$$
,c,d} { \underline{b} ,c,d} { \underline{c} ,d} { \underline{d} , \underline{c}) \underline{c} , \underline{d}

Steps of the recursive algorithm

 $\Gamma(u)$...neighbor set of u

- Q ... current clique
- R ... candidate vertices
- Expand(R,Q)
 - while R ≠ { }
 - p = vertex in R
 - $Q_p = Q \cup \{p\}$
 - $\mathbb{R}_{p} = \mathbb{R} \cap \Gamma(p)$
 - if R_p ≠ {}: Expand(R_p,Q_p)
 else: output Q_p
 - $R = R \{p\}$

- Q ... current clique
- R ... candidate vertices
- Expand(R,Q)
 - **while** R ≠ {}
 - p = vertex in R
 - $Q_p = Q \cup \{p\}$
 - $R_p = R \cap \Gamma(p)$
 - if $R_p \neq \{\}$: Expand (R_p, Q_p) else: output Q_n
 - $R = R \{p\}$


```
R=\{a,...f\}, Q=\{\}
p = \{b\}
Q_{p} = \{b\}
R_p = \{a,c,d\}
Expand(R_p, Q):
  R = \{a,c,d\}, Q = \{b\}
  p = \{a\}
  Q_{p} = \{b,a\}
  R_{p} = \{d\}
  Expand(R_p, Q):
     R = \{d\}, Q = \{b,a\}
     p = \{d\}
    Q_{0} = \{b,a,d\}
     R_p = \{\} : output \{b,a,d\}
  p = \{c\}
  Q_{D} = \{b,c\}
  R_p = \{d\}
  Expand(R_p, Q):
     R = \{d\}, Q = \{b,c\}
     p = \{d\}
     Q_{D} = \{b,c,d\}
     R_p = \{\} : output \{b,c,d\}
```

Start: Expand(V, {})

- How to prevent maximal cliques to be generated multiple times?
 - Only output cliques that are lexicographically minimum
 - $\bullet \{a,b,c\} < \{b,a,c\}$
 - Even better: Only expand to the nodes higher in the lexicographical order

How to Model Networks with Communities?

Network and Communities

- How should we think about large scale organization of clusters in networks?
 - Finding: Community Structure

Network and Communities

- How should we think about large scale organization of clusters in networks?
 - Finding: Core-periphery structure

Nested Core-Periphery

Network and Communities

How do we reconcile these two views?
 (and still do community detection)

Community structure

Core-periphery

Community Score

- How community-like is a set of nodes?
- A good cluster S has
 - Many edges internally
 - Few edges pointing outside
- What's a good metric:
 Conductance

$$\phi(S) = \frac{|\{(i,j) \in E; i \in S, j \notin S\}|}{\sum_{s \in S} d_s}$$

Small conductance corresponds to good clusters

(Note
$$|S| < |V|/2$$
)

Network Community Profile Plot

(Note |S| < |V|/2)

Define:

Network community profile (NCP) plot

Plot the score of **best** community of size *k*

$$\Phi(k) = \min_{S \subset V, |S| = k} \phi(S)$$

How to (Really) Compute NCP?

NCP Plot: Meshes

Meshes, grids, dense random graphs:

California road network

NCP plot: Network Science

Collaborations between scientists in networks

Dips in the conductance graph correspond to the "good" clusters we can visually detect

Natural Hypothesis

Natural hypothesis about NCP:

- NCP of real networks slopes downward
- Slope of the NCP corresponds to the "dimensionality" of the network

What about large networks?

• Social nets	Nodes	Edges	Description
LiveJournal	4,843,953	42,845,684	Blog friendships [5]
Epinions	75,877	405,739	Trust network [28]
CA-DBLP	317,080	1,049,866	Co-authorship [5]
• Information (citation) networks			
Cit-hep-th	$\begin{array}{c} 27,400 \\ 524,371 \end{array}$	352,021	Arxiv hep-th [14]
AmazonProd		1,491,793	Amazon products [8]
• Web graphs			
Web-google	855,802	4,291,352	Google web graph
Web-wt10g	1,458,316	6,225,033	TREC WT10G
 Bipartite affiliation (authors-to-papers) networks 			
ATP-DBLP	$\begin{array}{c} 615,678 \\ 2,076,978 \end{array}$	944,456	DBLP [21]
ATM-IMDB		5,847,693	Actors-to-movies
• Internet networks			
AsSkitter	1,719,037 $62,561$	12,814,089	Autonom. sys.
Gnutella		147,878	P2P network [29]

Large Networks: Very Different

Typical example: General Relativity collaborations (n=4,158, m=13,422)

More NCP Plots of Networks

- -- Rewired graph
- -- Real graph

NCP: LiveJournal (n=5m, m=42m)

Explanation: The Upward Part

 As clusters grow the number of edges inside grows slower that the number crossing

Explanation: Downward Part

 Empirically we note that best clusters (corresponding to green nodes) are barely connected to the network

⇒ Core-periphery structure

What If We Remove Good Clusters?

Suggested Network Structure

Part 2: Explanation

How do we reconcile these two views?

Overlapping Community Detection

- Many methods for overlapping communities
 - Clique percolation [Palla et al. '05]
 - Link clustering [Ahn et al. '10] [Evans et al.'09]
 - Clique expansion [Lee et al. '10]
 - Mixed membership stochastic block models [Airoldi et al. '08]
 - Bayesian matrix factorization [Psorakis et al. '11]
- What do these methods assume about community overlaps?

Overlapping Communities

- Many overlapping community detection methods make an implicit assumption:
 - Edge probability decreases with the number of shared communities

matrix

Is this true?

Example: CPM

Clique Percolation Method fails to detect dense overlaps:

Clique percolation

Ground-truth Communities

- Basic question: nodes u, v share k communities
- What's the edge probability?

Communities as Tiles!

Edge density in the overlaps is higher!

"The more different foci (communities) that two individuals share, the more likely it is that they will be tied" - S. Feld, 1981

Communities as "tiles"

Communities as Tiles/Circles

Communities as overlapping tiles

Communities in Networks

What does this mean?

Non-overlapping methods (spectral, modularity optimization)

Clique percolation, and many other overlapping methods as well

From Networks to Communities

Community-Affiliation Graph Model (AGM)

- Generative model: How is a network generated from community affiliations?
- Model parameters:
 - Nodes V, Communities C, Memberships M
 - lacktriangle Each community c has a single probability $oldsymbol{p}_c$

AGM: Generative Process

- Given parameters (V, C, M, { p_c })
 - Nodes in community c connect to each other by flipping a coin with probability p_c
 - Nodes that belong to multiple communities have multiple coin flips: Dense community overlaps
 - If they "miss" the first time, they get another chance through the next community"

$$p(u,v) = 1 - \prod_{c \in M_u \cap M_v} (1 - p_c)$$

AGM: Dense Overlaps

AGM: Flexibility

AGM can express a variety of community structures:

Non-overlapping, Overlapping, Nested

Detecting Communities

Detecting communities with AGM:

Given a Graph, find the Model

- 1) Affiliation graph M
- 2) Number of communities C
- 3) Parameters p_c

MAG Model Fitting

Task:

- Given network G(V,E). Find $B(V,C,M,\{p_c\})$
- Optimization problem (MLE)

$$\arg\max_{B} P(G \mid B) = \prod_{(i,j) \in E} P(i,j) \prod_{(i,j) \notin E} (1 - P(i,j))$$

How to solve?

$$P(i,j) = 1 - \prod_{c \in M_i \cap M_j} (1 - p_c)$$

- Approach: Coordinate ascent
 - (1) Stochastic search over B, while keeping $\{p_c\}$ fixed
 - (2) Optimize $\{p_c\}$, while keeping B fixed (convex!)
- Works relatively well in practice!

Communities: Issues and Questions

Communities: Issues and Questions

Some issues with community detection:

- Many different formalizations of clustering objective functions
- Objectives are NP-hard to optimize exactly
- Methods can find clusters that are systematically "biased"

• Questions:

- How well do algorithms optimize objectives?
- What clusters do different methods find?

Many Different Objective Functions

Single-criterion:

- Modularity: m-E(m)
- Edges cut: c
- Multi-criterion:
 - Conductance: c/(2m+c)
 - Expansion: c/n
 - Density: 1-m/n²
 - CutRatio: c/n(N-n)
 - Normalized Cut: c/(2m+c) + c/2(M-m)+c
 - Flake-ODF: frac. of nodes with more than ½ edges pointing outside S

n: nodes in Sm: edges in S

c: edges pointing

outside S

Many Classes of Algorithms

Many algorithms to that implicitly or explicitly optimize objectives and extract communities:

- Heuristics:
 - Girvan-Newman, Modularity optimization: popular heuristics
 - Metis: multi-resolution heuristic [Karypis-Kumar '98]
- Theoretical approximation algorithms:
 - Spectral partitioning

NCP: Live Journal

Properties of Clusters (1)

500 node communities from Spectral:

500 node communities from Metis:

Properties of Clusters (2)

- Metis gives sets with better conductance
- Spectral gives tighter and more well-rounded sets

Multi-criterion Objectives

All qualitatively similar

Observations:

- Conductance, Expansion, Normcut, Cut-ratio are similar
- Flake-ODF prefers larger clusters
- Density is bad
- Cut-ratio has high variance

Internal Density Cut Ratio Normalized Cut Maximum ODF

Avg ODF Flake ODF

Single-criterion Objectives

Observations:

- All measures are monotonic
- Modularity
 - prefers large clusters
 - Ignores small clusters

Modularity ★ Modularity Ratio ■ Volume • Edges cut