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¡ The	link	prediction	task:
§ Given	𝐺[𝑡$, 𝑡$& ] a	graph	on	edges	
up	to	time𝑡$& ,output	a	ranked	list	L
of	links	(not	in	𝐺[𝑡$, 𝑡$& ])	that	are	
predicted	to	appear	in	𝐺[𝑡(, 𝑡(& ]

¡ Evaluation:
§ n = |Enew|:	#	new	edges	that	appear	during	
the	test	period	[𝑡(, 𝑡(& ]

§ Take	top	n elements	of	L and	count	correct	edges
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¡ Predict	links	in	a	evolving	collaboration	
network

¡ Core: Because	network	data	is	very	sparse
§ Consider	only	nodes	with	degree	of	at	least	3

§ Because	we	don't	know	enough	about	nodes	with	less	than	
3	edges	to	make	good	inferences
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¡ Methodology:
§ For	each	pair	of	nodes	(x,y) compute	score	c(x,y)

§ For	example,	c(x,y) could	be	the	#	of	common	neighbors	
of	x and	y

§ Sort	pairs	(x,y) by	the	decreasing	score	c(x,y)
§ Note: Only	consider/predict	edges	where	
both	endpoints	are	in	the	core	(deg. ≥ 3)

§ Predict	top	n pairs	as	new	links
§ See	which	of	these	links	actually
appear	in	𝐺[𝑡(, 𝑡(& ]
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¡ Different	scoring	functions		𝒄(𝒙, 𝒚) =
§ Graph	distance: (negated)	Shortest	path	length
§ Common	neighbors: |Γ 𝑥 ∩ Γ(𝑦)|
§ Jaccard’s coefficient: Γ 𝑥 ∩ Γ 𝑦 /|Γ 𝑥 ∪ Γ(𝑦)|
§ Adamic/Adar: ∑ 1/log	|Γ(𝑧)|=∈? @ ∩?(A)
§ Preferential	attachment: |Γ 𝑥 | ⋅ |Γ(𝑦)|
§ PageRank: 𝑟@(𝑦) + 𝑟A(𝑥)

§ 𝑟@ 𝑦 …	stationary	distribution	score	of	y under	the	random	walk:
§ with	prob.	0.15,	jump	to	x
§ with	prob.	0.85,	go	to	random	neighbor	of	current	node

¡ Then,	for	a	particular	choice	of	c(·)
§ For	every	pair	of	nodes	(x,y) compute	c(x,y)
§ Sort	pairs	(x,y) by	the	decreasing	score	c(x,y)
§ Predict	top	n pairs	as	new	links
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of node x
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Performance score: Fraction
of new edges that are guessed 
correctly.



¡ Improvement	over	#common	neighbors

11/30/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 7





¡ Can	we	learn	to	predict	new	friends?
§ Facebook’s People	You	May	Know
§ Let’s	look	at	the	FB	data:	

§ 92%	of	new	friendships	on	
FB	are	friend-of-a-friend

§ More	mutual	friends	helps
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¡ Goal:	Recommend	a	list	of	possible	friends
¡ Supervised	machine	learning	setting:
§ Labeled	training	examples:	

§ For	every	user	𝑠 have	a	list	of	others	she	
will	create	links	to	{𝑑( 	…	𝑑I} in	the	future
§ Use	FB	network	from	May	2012	and	{𝑑(	…	𝑑I}
are	the	new	friendships	you	created	since	then

§ These	are	the	“positive”	training	examples

§ Use	all	other	users	as	“negative”	example

§ Task:
§ For	a	given	node	𝑠,	score nodes	{𝑑( 	…	𝑑I}
higher than	any	other	node	in	the	network
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¡ How	to	combine	node/edge	features	and
the	network	structure?
§ Estimate	strength of	each	friendship (𝑢, 𝑣) using:

§ Profile	of	user	𝑢,	profile	of	user	𝑣
§ Interaction	history	of	users	𝑢 and	𝑣

§ This	creates	a	weighted	graph
§ Do	Personalized	PageRank	from	𝒔
and	measure	the	“proximity”	(the	
visiting	prob.) of	any	other	
node	𝑤 from	𝑠

§ Sort	nodes	𝑤	by	decreasing	
“proximity”
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¡ Let	𝑠 be	the	starting	node
¡ Let	𝒇𝜷(𝒖, 𝒗) be	a	function	that	
assigns strength	𝒂𝒖𝒗 to	edge	 𝒖,𝒗
𝑎UV = 𝑓X 𝑢, 𝑣 = exp −∑ 𝛽^ ⋅ xUV 𝑖^
§ 𝒙𝒖𝒗 is	a	feature	vector	of	(𝒖,𝒗)

§ Features	of	node	𝑢
§ Features	of	node	𝑣
§ Features	of	edge	(𝑢, 𝑣)

§ Note:	𝜷 is	the	weight	vector	we	will	later	estimate!
¡ Do	Random	Walk	with	Restarts from	𝑠 where	
transitions	are	according	to	edge	strengths	𝑎UV
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¡ How	to	estimate	edge	strengths?
§ How	to	set	parameters	β of		fβ(u,v)?

¡ Idea: Set	𝛽 such	that	it	(correctly)	
predicts	known	future	links
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¡ 𝒂𝒖𝒗 ….	Strength	of	edge	(𝒖, 𝒗)
¡ Random	walk	transition	matrix:

¡ PageRank transition	matrix:

§ Where	with	prob.	𝛼 we	jump	back	to	node	𝑠

¡ Compute	PageRank vector: 𝑝	 = 	𝑝b	𝑄
¡ Rank nodes	𝑤 by	decreasing	𝑝d
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¡ Positive examples	
𝑫		 = {𝒅𝟏,… , 𝒅𝒌}

¡ Negative examples	
𝑳	 = 	 {𝒐𝒕𝒉𝒆𝒓	𝒏𝒐𝒅𝒆𝒔}

¡ What	do	we	want?

§ Note:
§ Exact	solution	to	this	problem	may	not	exist
§ So	we	make	the	constraints	“soft”	(i.e.,	optional)	

15
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¡ Want	to	minimize:

§ Loss: ℎ(𝑥) = 0	if	𝑥 < 0,	or	𝑥s else

16
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¡ Want	to	minimize F(β)

¡ Both	pl and	pd depend	on	β
§ Given	β assign	edge	weights	𝑎𝑢𝑣 = 𝑓X(𝑢, 𝑣)
§ Using	𝑄 = [𝑎𝑢𝑣] compute	PageRank	scores	𝑝X
§ Rank	nodes	by	the	decreasing	score

¡ Goal:	Want	to	find	β such	that		pl < pd

17

[WSDM ’11]

11/30/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

v3

v1
v2

s



¡ How	to	minimize 𝑭(𝜷) ?

¡ Idea:	
§ Start	with	some	random	𝛽($)

§ Evaluate the	derivative	of	𝐹(𝛽) and	
do	a	small	step	in	the	opposite	direction

𝛽(yz() = 𝛽(y) − 𝜂 |} X(~)

|X

§ Repeat	until	convergence

18
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¡ What’s	the	derivative	|} X(~)

|X
?

¡ We	know:
that	is

¡ So:
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¡ We	just	got:
§ Few	details:

§ Computing	𝜕𝑄�U/𝜕𝛽 is	easy.	Remember:

§ We	want	|��
|X

but	it	appears	on	both	
sides	of	the	equation.	Notice	the	
whole	thing	looks	like	a	PageRank	
equation:	𝑥 = 𝑄 ⋅ 𝑥 + 𝑧

¡ As	with	PageRank	we	can	use	the	
power-iteration to	solve	it:

§ Start	with	a	random		|�
|X

($)

§ Then	iterate:		|�
|X

(yz()
= 𝑄 ⋅ |�

|X

(y)
+
|���
|X

⋅ 𝑝
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= exp −�𝛽^ ⋅ xUV 𝑖
^

Details!



¡ To	optimize	𝑭(𝜷),	use	gradient	descent:
§ Pick	a	random	starting	point	𝛽($)

§ Using	current	𝛽(y)	compute	edge	strenghts and	
the	transition	matrix	𝑄

§ Compute	PageRank	scores	𝑝
§ Compute	the	gradient	with	
respect	to	weight	vector	𝛽(y)

§ Update	𝛽(yz()
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¡ Facebook Iceland	network	
§ 174,000	nodes	(55%	of	population)
§ Avg.	degree	168
§ Avg.	person	added	26	friends/month

¡ For	every	node	s:
§ Positive	examples:

§ 𝐷 = { new	friendships	𝑠 created	in	Nov	‘09 }
§ Negative	examples:

§ 𝐿 = { other	nodes	𝑠 did	not	create	new	links	to	}
§ Limit	to	friends	of	friends:

§ On	avg.	there	are	20,000	FoFs (maximum	is	2	million)!

22
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¡ Node	and	Edge	features	for	learning:
§ Node: Age,	Gender,	Degree
§ Edge: Age	of	an	edge,	Communication,	Profile	
visits,	Co-tagged	photos

¡ Evaluation:
§ Precision	at	top	20

§ We	produce	a	list	of	20	candidates
§ By	taking	top	20	nodes	𝑥 with	highest	PageRank	score	𝑝@

§ Measure	to	what	fraction	of	these	nodes	
𝑠 actually	links	to
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¡ Facebook: Predict	future	friends
§ Adamic-Adar	already	works	great
§ Supervised	Random	Walks	(SRW)	gives	slight	
improvement
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¡ 2.3x	improvement	over	previous	FB-PYMK	
(People	You	May	Know)

2.3x
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¡ Arxiv Hep-Ph	collaboration	network:
§ Poor	performance	of	unsupervised	methods
§ SRW	gives	a	boost	of	25%!
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¡ Many	networks	are	implicit	or	hard	to	observe:
§ Hidden/hard-to-reach	populations:

§ Network	of	needle	sharing	between	drug	injection	users

§ Implicit	connections:
§ Network	of	information	propagation	in	online	news	media

¡ But	we	can	observe	results	of	the	processes	
taking	place	on	such	(invisible)	networks:
§ Virus	propagation:

§ Drug	users	get	sick,	and	we	observe	when	they	see	the	doctor

§ Information	networks:
§ We	observe	when	media	sites	mention	information

¡ Question:	Can	we	infer	the	hidden	networks?
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¡ There	is	a	hidden	diffusion	network:

¡ We	only	see	times	when	nodes	get	“infected”:
§ Cascade	c1:	(a,1),	(c,2),	(b,3),	(e,4)
§ Cascade	c2:	(c,1),	(a,4),	(b,5),	(d,6)

¡ Want	to	infer	who-infects-whom	network!

b

d
e

a

c

a

c

b

e
c

a b

d
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¡ Information	diffuses	through	the	blogosphere

¡ We	only	see	the	mention	but	not	the	source
¡ Can	we	reconstruct	(hidden)	diffusion	network?

30

[KDD, ‘09]
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Virus	propagation

31

Word	of	mouth &	
Viral	marketing

Can we infer the underlying network?

Viruses propagate
through the network

We only observe	when
people get sick

But NOT	who infected
whom

Recommendations and	
influencepropagate

We only observe	when
people buy products

But NOT	who influenced
whom

Process

We observe

It’s hidden

11/30/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



11/30/16 Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu 32



¡ Goal:	Find	a	graph	G	that	best	explains	the	
observed	infection	times
§ Given	a	graph	G,	define	the	likelihood	P(C|G):
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¡ Goal:	Find	a	graph	G	that	best	explains	the	
observed	infection	times
§ Given	a	graph	G,	define	the	likelihood	P(C|G):

Define	a	model	of	information	diffusion	over	a	graph
§ Pc(a,b)…	prob.	that	a infects	b in	contagion	c
§ P(c|T) …	prob.	that	c spread	in	particular	cascade-tree	T
§ P(c|G) …	prob.	that	cascade	c occurred	in	G
§ P(C|G) …	prob.	that	a	set	of	cascades	C occurred	in	G

¡ Questions:
§ How	to	efficiently	compute	P(G|C)?	(given	a	single	G)
§ How	to	efficiently	find G* that	maximizes	P(G|C)?	
(over	O(2N*N)	graphs)
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§ Continuous	time	cascade	diffusion	model:
§ Cascade	c reaches	node	u at	tu

and	spreads	to	u’s	neighbors:
§ With	probability	β cascade	propagates	along	edge	(u,	v)

and	we	determine	the	infection	time	of	node	v
tv =	tu +	Δ
e.g.:	Δ ~ Exponential
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¡ The	model	for	one	cascade:
§ Cascade	reaches	node	u at	time	tu,	
and	spreads	to	u’s	neighbors	v:
With	prob.	β cascade	propagates	
along	edge	(u,v) and	tv =	tu+Δ

¡ Transmission	probability:
Pc(u,v) ∝ P(tv -tu ) if	tv> tu else		ε
e.g.: Pc(u,v) ∝ e -Δt

§ ε captures	influence	external	to	the	network
§ At	any	time	a	node	can	get	infected	from	outside	
with	small	probability	ε, equal	for	all	nodes
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¡ Given	node	infection	times	&	cascade-tree	T:
§ c = { (a,1), (c,2), (b,3), (e,4) }
§ T = { a→b, a→c, b→e }

¡ Prob.	that	c propagates	in	cascade-tree T

¡ Approximate	it	as:
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¡ How	likely	is	cascade	c to	spread	in	graph	G?
§ c = {(a,1), (c,2), (b,3), (e,4)}

¡ Need	to	consider	all	possible	ways	for	c to	
spread	over	G (i.e.,	all	spanning	trees	T):
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¡ Score	of	a	graph	G	for	a	set	of	cascades	C:

¡ Want	to	find	the	“best”	graph:
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¡ Given	a	cascade	c,	what	is	the	most	likely	
propagation	tree?

§ Maximum	directed spanning	tree
§ Edge	(i,j) in	G	has	weight	wc(i,j)=log Pc(i,j)
§ The	maximum	weight	spanning	tree	on	
infected	nodes:	Each	node	picks	an	in-edge	of	
max	weight:
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¡ Theorem:	
Fc(G)	is	monotonic,	and	submodular

¡ Proof:
§ Single	cascade	c,	some	edge	e=(r,s) of	weight.	wrs

§ Show	Fc(G∪ {e})	– Fc(G)	≥	Fc(G’∪ {e})	– FC	(G’)
§ Let	w.s be	max	weight	in-edge	of	s	in	G
§ Let	w’.s be	max	weight	in-edge	of	s in	G’
§ Since G	⊆ G’	:	w.s ≤ w’.s and		wrs=	w’rs
§ 𝐹�(𝐺 ∪ 𝑟, 𝑠 − 𝐹� 𝐺

= max 𝑤.�,𝑤�� − 𝑤.�
≥ max 𝑤.�& ,𝑤�� − 𝑤.�&

= 𝐹� 𝐺& ∪ 𝑟, 𝑠 − 𝐹�(𝐺′)
41
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¡ The	NetInf algorithm:	
Use	greedy	hill-climbing	to	maximize	FC(G):
§ Start	with	empty	G0 (G	with	no	edges)
§ Add	k edges	(k is	parameter)
§ At	every	step	i add	an	edge to	the	graph	Gi that	
maximizes	the	marginal	improvement

Note:	This	is	the	same	algorithm	we	used	for	influence	maximization
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¡ Synthetic	data:
§ Take	a	graph	G	on	k edges
§ Simulate	info.	diffusion
§ Record	node	infection	times
§ Reconstruct	G

¡ Evaluation:
§ How	many	edges	of	G	
can	NetInf find?
§ Break-even	point	
(precision=recall):	0.95

§ Performance	is	independent	
of	the	structure	of	G!
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§ NetInf achieves	≈	90	%	of	the	best	possible	
network!
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§ With	2x	as	many	infections	as	edges,	
the	break-even	point	is	already	0.8	- 0.9!
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¡ Memetracker	dataset:
§ 172m	news	articles	
§ Aug	‘08	– Sept	‘09
§ 343m	textual	phrases
§ Times	tc(w) when	site	
wmentions	phrase	c

¡ Given	times	when	sites	mention	phrases
¡ Infer	the	network	of	information	diffusion:
§ Who	tends	to	copy	(repeat	after)	whom
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¡ 5,000	news	sites:
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