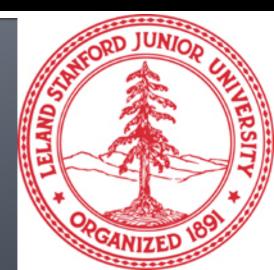
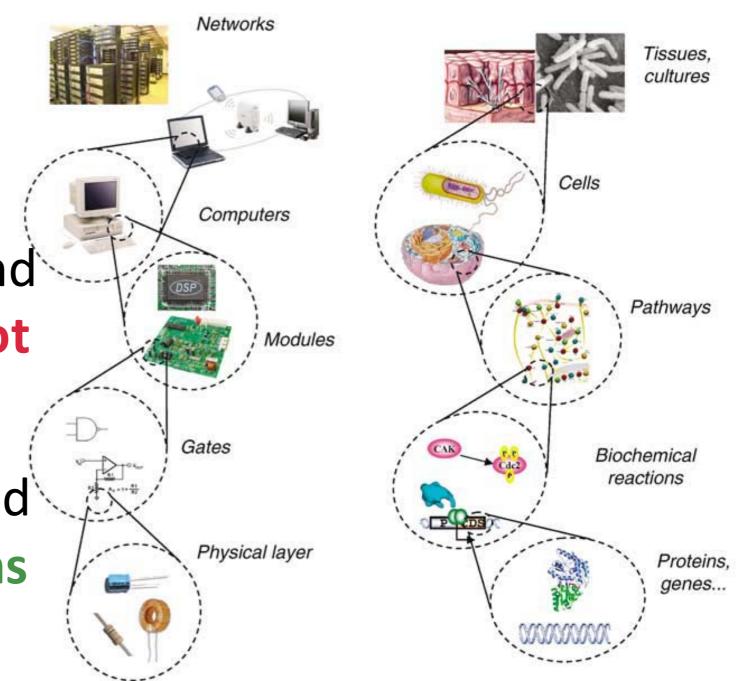
Biological Network Analysis

CS224W: Social and Information Network Analysis Marinka Zitnik, Jure Leskovec, Stanford University http://cs224w.stanford.edu



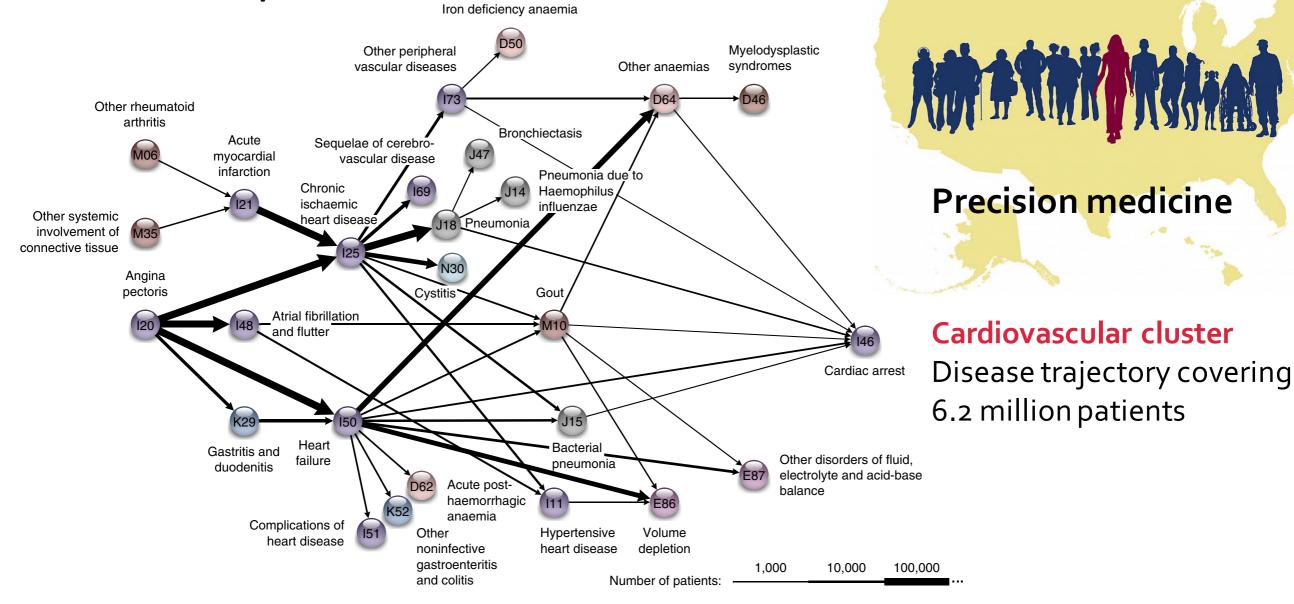
Why Biological Networks?

- 20th century biology was largely about finding and describing components
- DNA, RNA, proteins and other molecules do not operate in isolation
- We want to understand how biological systems are organized



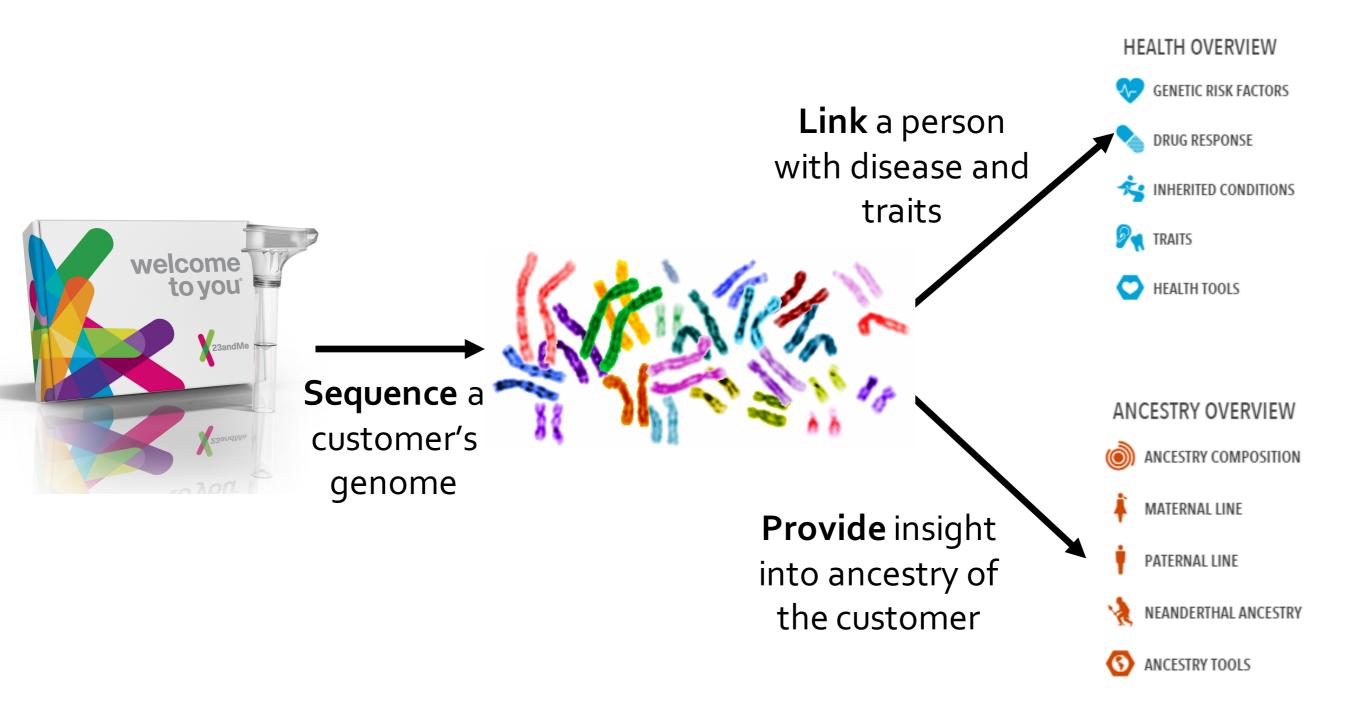
Network Biology

- Network biology provides a better understanding of life and evolution
- Applications in medicine: disease diagnosis, drug development



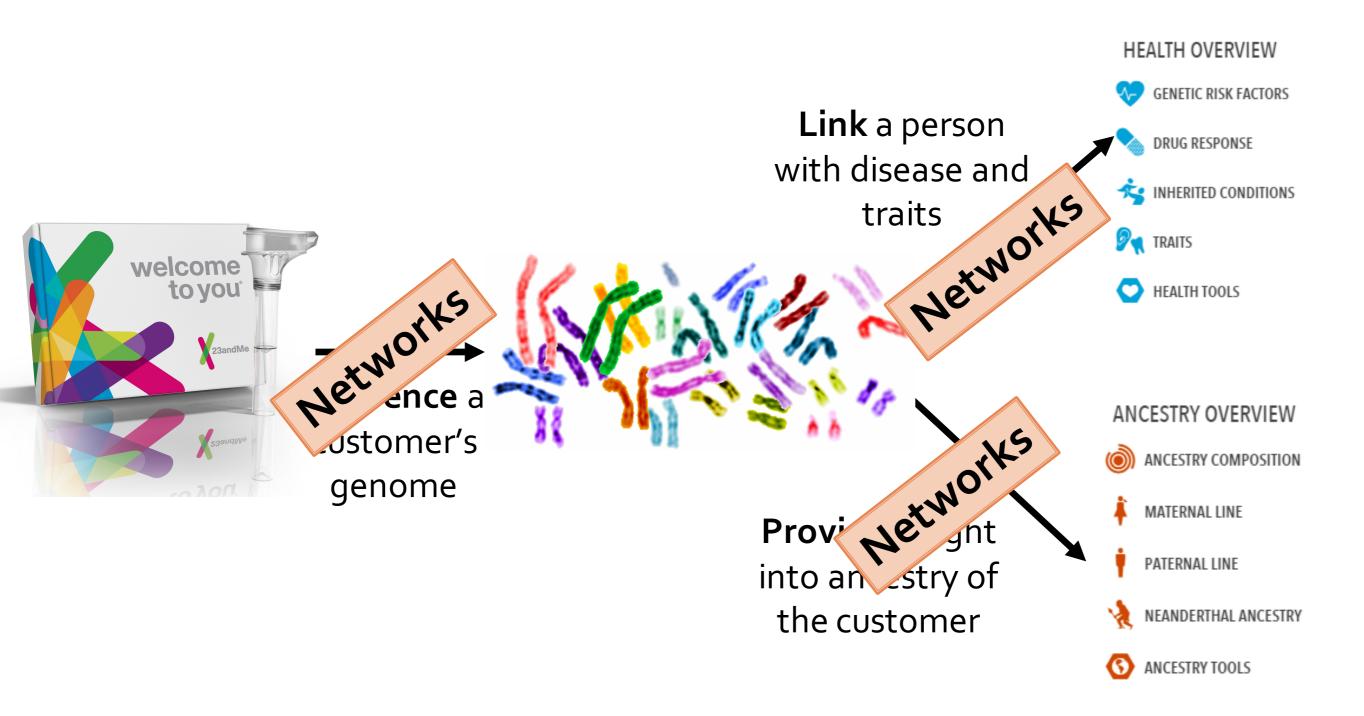
An Example of Precision Medicine

Precision medicine takes biology into personal grounds



An Example of Precision Medicine

Precision medicine takes biology into personal grounds



Plan For Today

- 1) Very basic biology
- 2) Protein-protein interaction networks
- 3) Finding disease modules in networks
 - It is a community detection task!
- Predicting biological attributes, such as protein functions
 - Guilt-by-association principle
 - Gene recommender systems

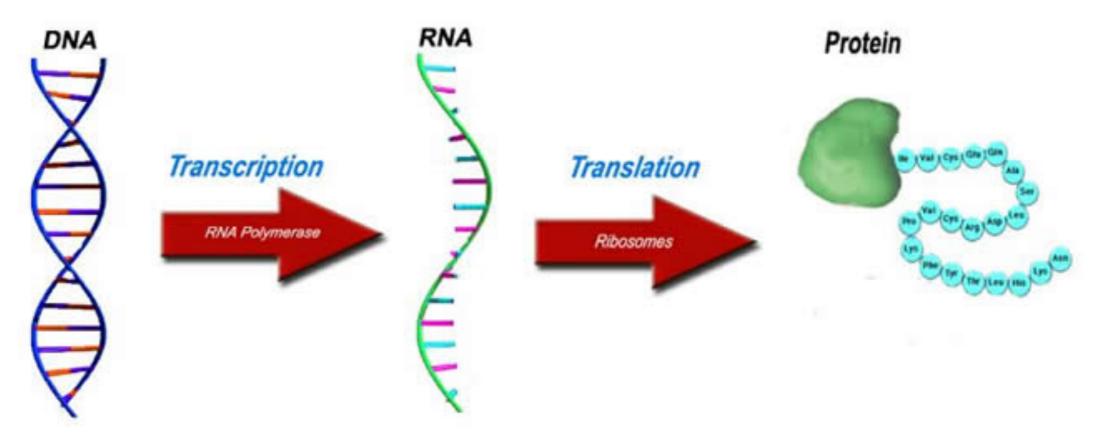
Plan For Today

1) Very basic biology

- 2) Protein-protein interaction networks
- 3) Finding disease modules in networks
 - It is a community detection task!
- Predicting biological attributes, such as protein functions
 - Guilt-by-association principle
 - Gene recommender systems

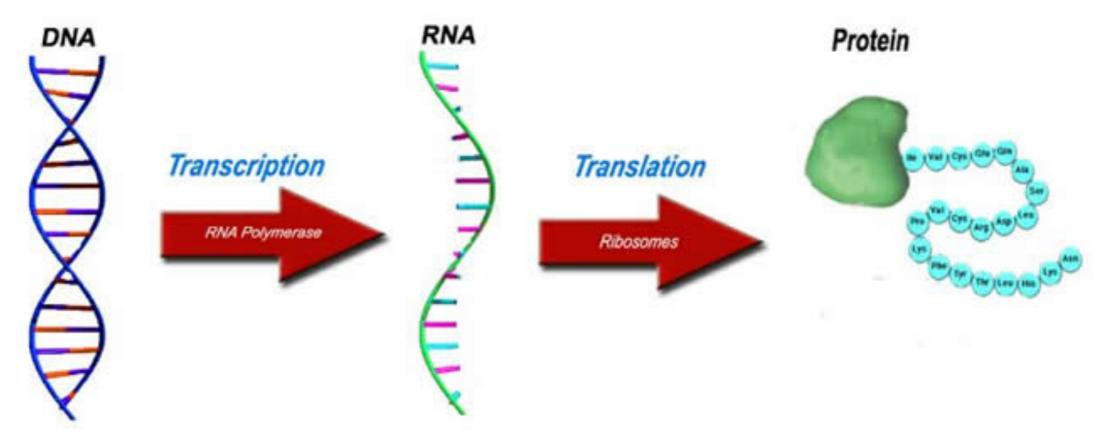
Central Dogma of Biology (1)

- Gene is a basic unit of heredity
- Genes are segments of DNA that determine properties of an organism as a whole and functions of cells within it
- Genes encode a functional unit called protein
- Central dogma describes a two-step process, transcription and translation, by which the information in DNA flows into proteins



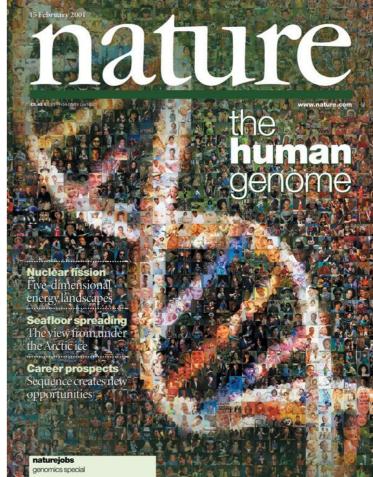
Central Dogma of Biology (2)

- Transcription: Producing RNA sequence from DNA template in the nucleus
- Translation: The synthesis of a protein from RNA template in the cytoplasm
- Transformation of a gene into a protein is called expression



The Human Genome

- Human Genome Project: 1990-2003, \$3 billion
- Genome consists of 23 pairs of chromosomes and has a total of 3.2G bp
- Average gene length is 8k bp, there are ~25k genes
- Only 2-3% of the human DNA are genes, the rest of the DNA does not encode genes but has important regulatory roles



Plan For Today

1) Very basic biology

- 2) Protein-protein interaction networks
- 3) Finding disease modules in networks
 - It is a community detection task!
- Predicting biological attributes, such as protein functions
 - Guilt-by-association principle
 - Gene recommender systems

Protein Interaction Networks

Color signifies the phenotypic effect of removing a protein A very common red, lethal green, non-lethal type of biological orange, slow growth **yellow**, unknown networks Undirected, binary/weighte network Nodes: proteins Edges: interactions

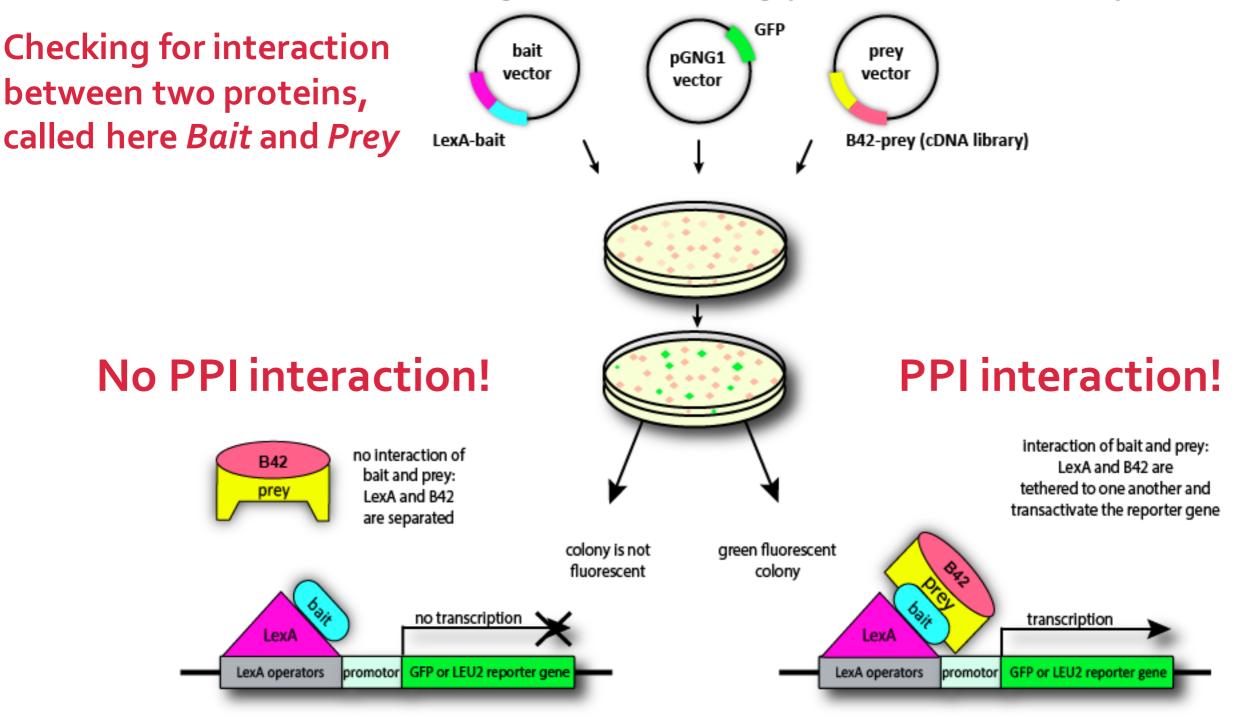
Yeast protein-protein interaction (PPI) network

Protein-Protein Interactions

- How do we know that a pair of proteins interact?
- A complex containing these two proteins has been crystallized
- High throughput screening methods enable rapid, parallel acquisition of experimental data
 - Yeast two-hybrid system
- Problems with high throughput methods:
 - False positive and false negative edges
 - Networks are incomplete and noisy

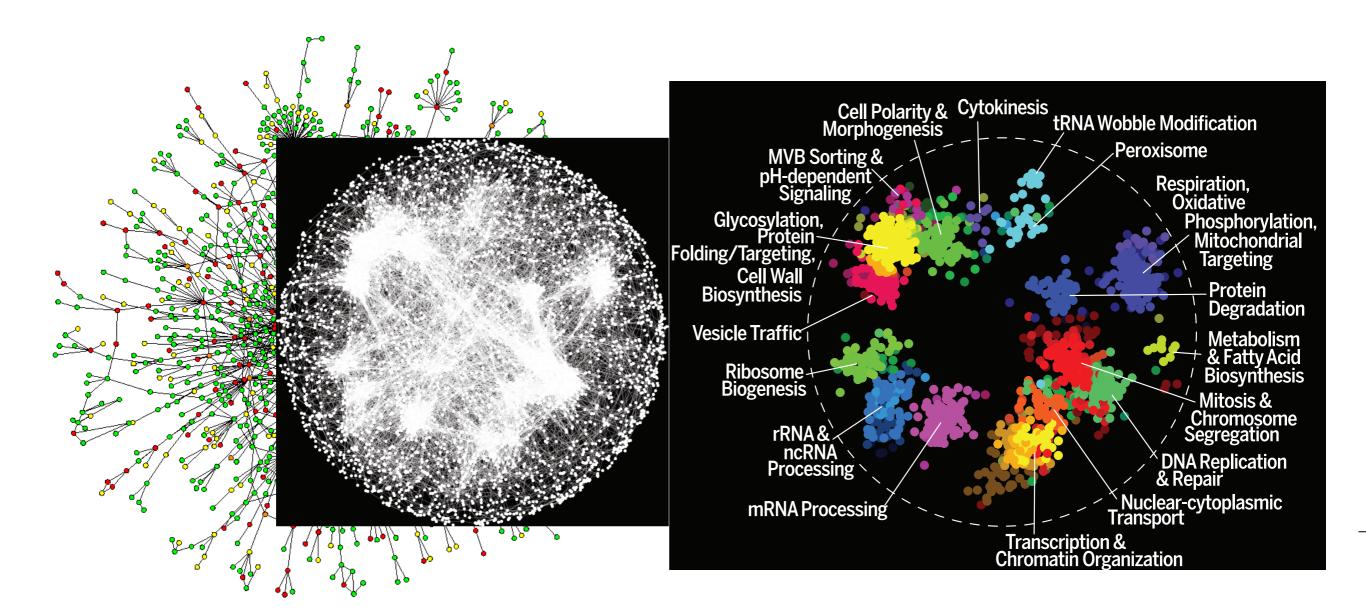
Yeast Two-Hybrid Screening (Y2H)

Classical screening technology for the study of PPI



Jeong et al., Nature 2001 Costanzo et al., Science 2016

Protein Interaction Network

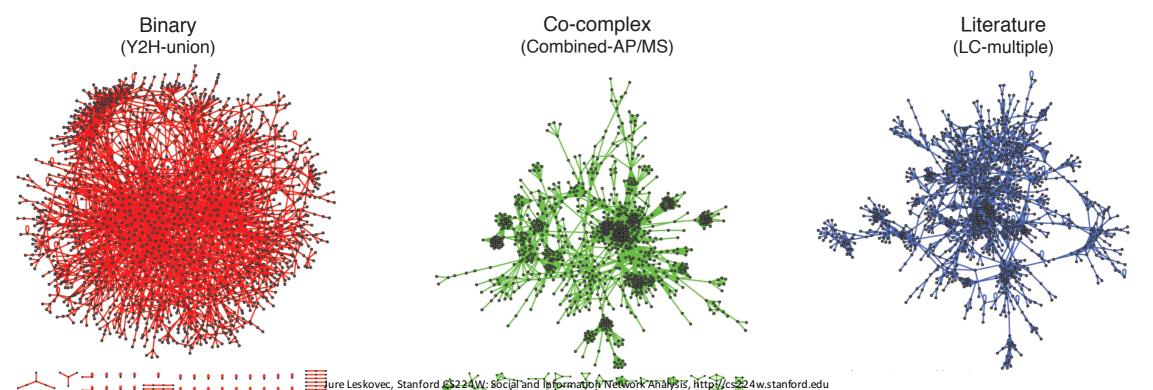


Is there a relation between <u>network</u> <u>structure</u> and <u>biological function and disease</u>?

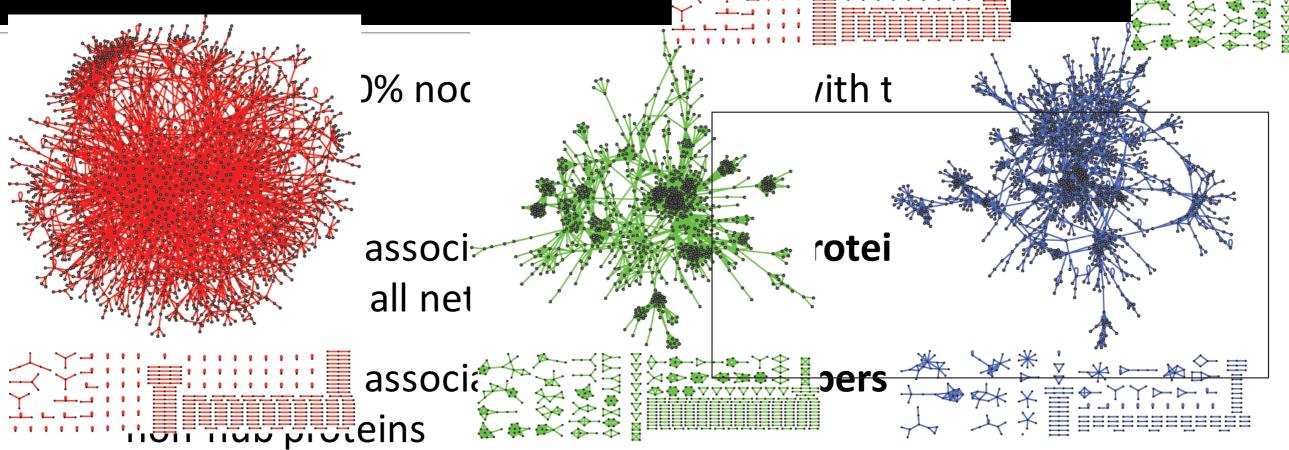
Protein Interaction Networks

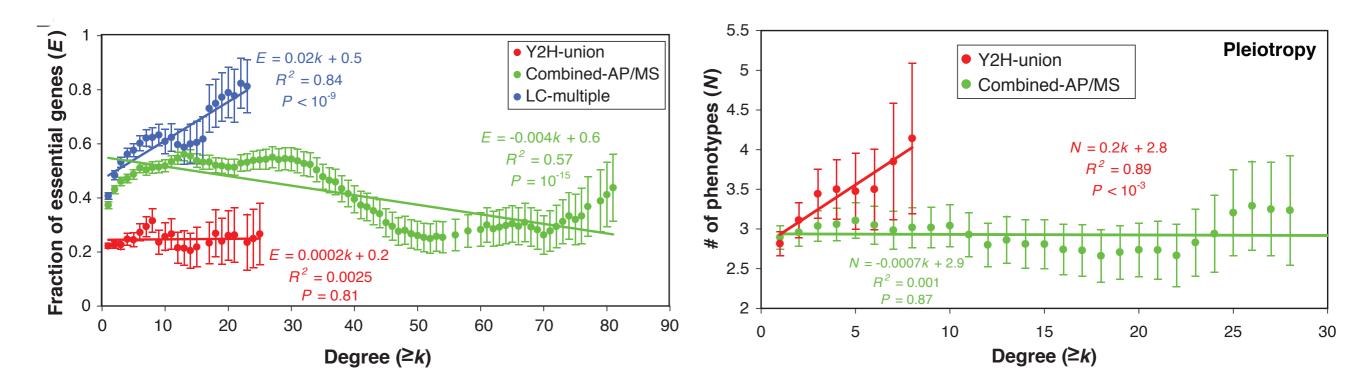
Data:

- Three yeast protein-protein interaction (PPI) networks
- List of essential yeast proteins, these proteins form a minimal protein set required for a living cell
- Mapping of proteins to phenotypes (i.e., observable traits, such as diseases) associated with deletion of each protein



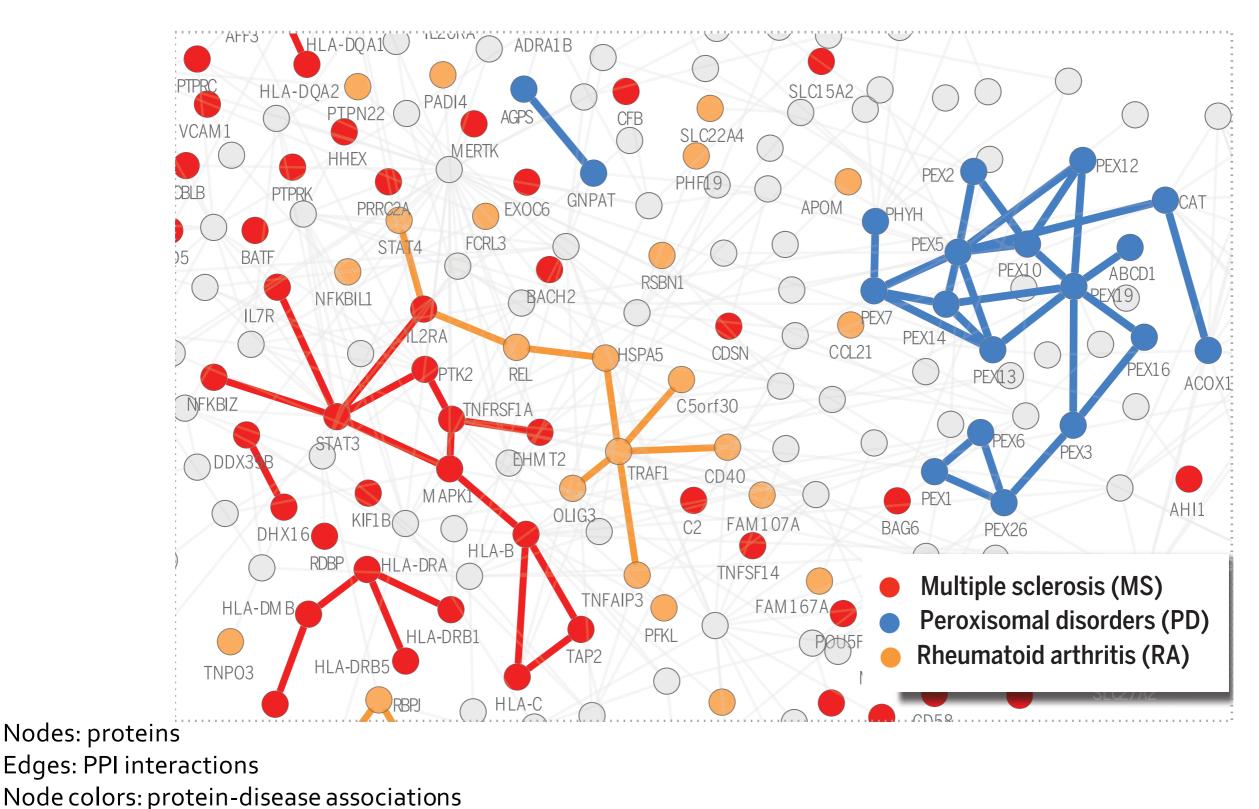
Hub Proteins





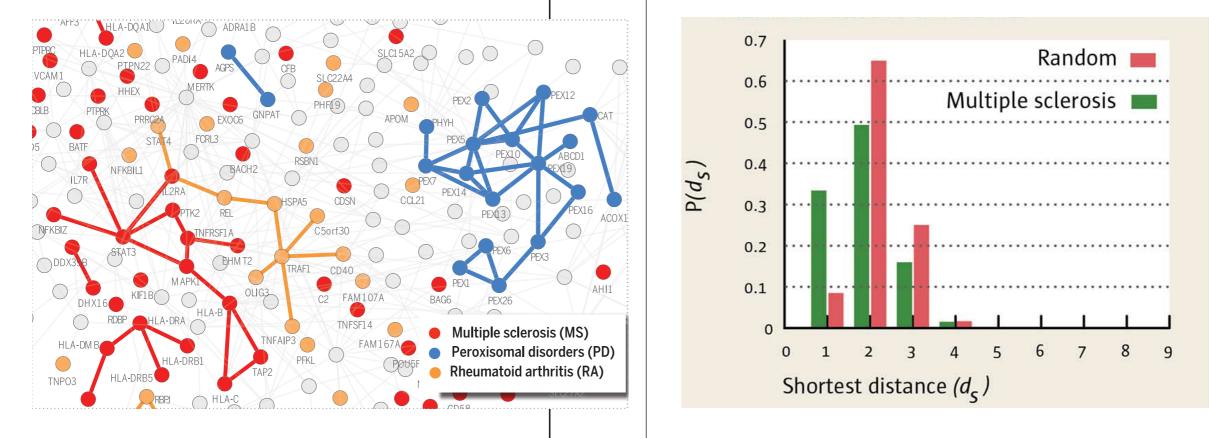
Subnetwork of Essential Proteins

For a protein p_{1_i} take the **fraction of essential** proteins among all proteins whose distance to protein p_1 is equal to d: $Q(p_1, d) =$ *I*(*p* is essential) $|S_{d}(p_{1})|$ Note: $p \in S_d(p_1)$ 0.02 0.45 Fraction of essential proteins Observed Essential $P < 10^{-3}$ 0.015 - All Distribution 0.35 📥 Non Essential 0.01 0.25 0.005 0 0 20 40 60 80 100 140 180 120 160 200 0.15 2 5 1 3 6 7 8 Giant component size of network among essential proteins Distance from reference protein (d)



Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

- Given disease proteins, compute shortest path distance d_s of each disease protein to the closest disease protein
- $P(d_s)$ is shifted towards smaller d_s compared to the random expectation $P^{\text{rand}}(d_s)$
 - ⇒ Disease proteins agglomerate in one network neighborhood



- Disease module principle: Disease proteins tend to cluster in one network neighborhood
- Local interaction principle: Disease proteins tend to interact with each other
- Mutations in interacting proteins tend to lead to diseases with similar phenotypes (i.e., symptoms)

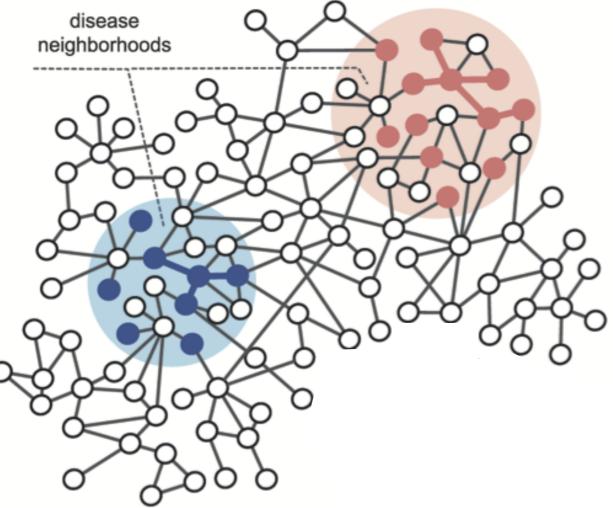
- Disease module principle: Disease proteins tend to cluster in one network neighborhood
- Local interaction principle: Disease proteins tend to interact with each other
- Mutations in interacting proteins tend to lead to diseases with similar phenotypes (i.e., symptoms)

Can we use these principles to detect disease modules in biological networks?

- 1) Very basic biology
- 2) Protein-protein interaction networks
- **3)** Finding disease modules in networks
 - It is a community detection task!
- Predicting biological attributes, such as protein functions
 - Guilt-by-association principle
 - Gene recommender systems

Disease Modules

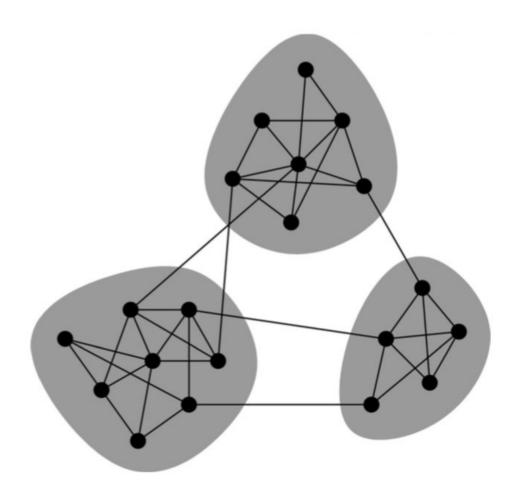
- By disease module principle, disease proteins are localized in network neighborhoods
- Disease module D:
 - Set of proteins involved in disease D
 - Abnormalities/mutation
 s in these proteins cause
 a disease to develop



Disease modules, communities, clusters, groups

Finding Disease Modules

- Goal: Find disease modules in a PPI network
- This is a community detection problem
- Many community detection methods:
 - Girvan-Newman method
 - Clique percolation method
 - Louvain method
 - Spectral clustering
 - Link clustering



Finding Disease Modules

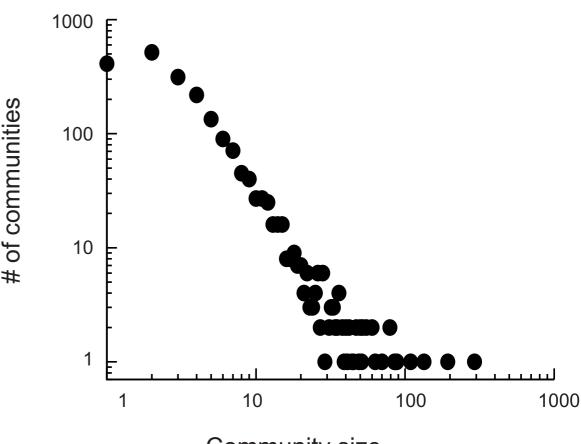
- Three basic stages:
 - 1. Construct a **PPI network**
 - 2. Apply a community detection method
 - 3. Evaluate the quality of detected communities

Questions:

- How to evaluate which detected communities are "good" disease modules?
- How to assign a detected community to a disease?

Evaluating Detected Communities

- A typical method detects many communities in a PPI network
- Some detected communities might have a biological meaning, some might represent spurious effects.
- Task: Evaluate the quality of each detected community



Community size

Is there a significant association between proteins in a detected community and a disease?

Evaluating Detected Communities

Is there a significant association between proteins in a detected community and a disease?

This means:

"Are unusually many (or: unusually few) proteins in a community actually disease proteins?"

More precise:

"If I picked n proteins at random (with n being the size of a community), how probable is it that among these proteins, there are at least as many disease proteins as there are in the community?"

Evaluating Detected Communities

- Let $C = \{g_1, g_2, \dots, g_n\}$ be a **detected community**
- Let $D = \{d_1, d_2, ..., d_K\}$ be **disease proteins** involved in disease D
- Let $k = |C \cap D|$ be the size of the overlap between C and D

If I picked *n* proteins at random, how probable is it that among these proteins there are at least *k* disease proteins?

What is the probability of observing association at least this extreme due to chance?

Hypergeometric Distribution

Construct a 2 x 2 contingency table:

	Associated with disease D	Not associated with disease D	Total
Within community C	k	n-k	n
Outside community C	K - k	N-n-K+k	N-n
Total	K	N-K	N

$$c \qquad k = |C \cap D$$

$$D = \{d_1, d_2, \dots, d_K\}$$
$$C = \{g_1, g_2, \dots, g_n\}$$

Hypergeometric Distribution

Probability to get this contingency table if there is no association between C and D:

	Associated with disease D	Not associated with disease D	Total
Within community <i>C</i>	k	n-k	n
Outside community C	K - k	N-n-K+k	N-n
Total	K	N-K	Ν

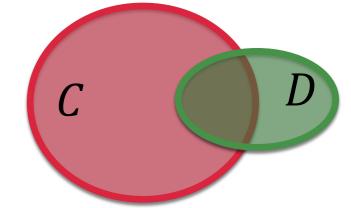
$$P(|C \cap D| = k) = \frac{\binom{K}{k}\binom{N-k}{n-k}}{\binom{N}{n}}$$

D

Fisher's Exact Test

Exact hypergeometric probability of observing this particular contingency table, assuming the given marginal totals:

$$P(|C \cap D| = k) = \frac{\binom{K}{k}\binom{N-k}{n-k}}{\binom{N}{n}}$$



- Goal: Probability of observing association between C and D at least this extreme due to chance
- Consider all possible overlaps between C and D that are equal or larger than k:

$$P(|C \cap D| \ge k) = \sum_{r=k}^{\min(K,n)} P(|C \cap D| = r)$$

Fisher's Exact Test

One-tailed Fisher's exact test: Probability of observing the overlap as extreme or more extreme under the null hypothesis of no association:

$$P(|C \cap D| \ge k) = \sum_{r=k}^{\min(K,n)} P(|C \cap D| = r)$$

Statistical enrichment of community C in disease D $P(|C \cap D| \ge k)$

Experiment: Data

Data:

- Human protein-protein interaction network
 - 13,460 nodes, 150,000 edges
- Human diseases
 - 70 diseases, each with at least 20 disease proteins
- Community detection methods:
 - Link clustering [Ahn et al., Nature 2010]
 - Louvain method [Blondel et al., TE 2008]
 - Markov clustering method (MCL) [Van Dongen, SIAM 2008]

Disease

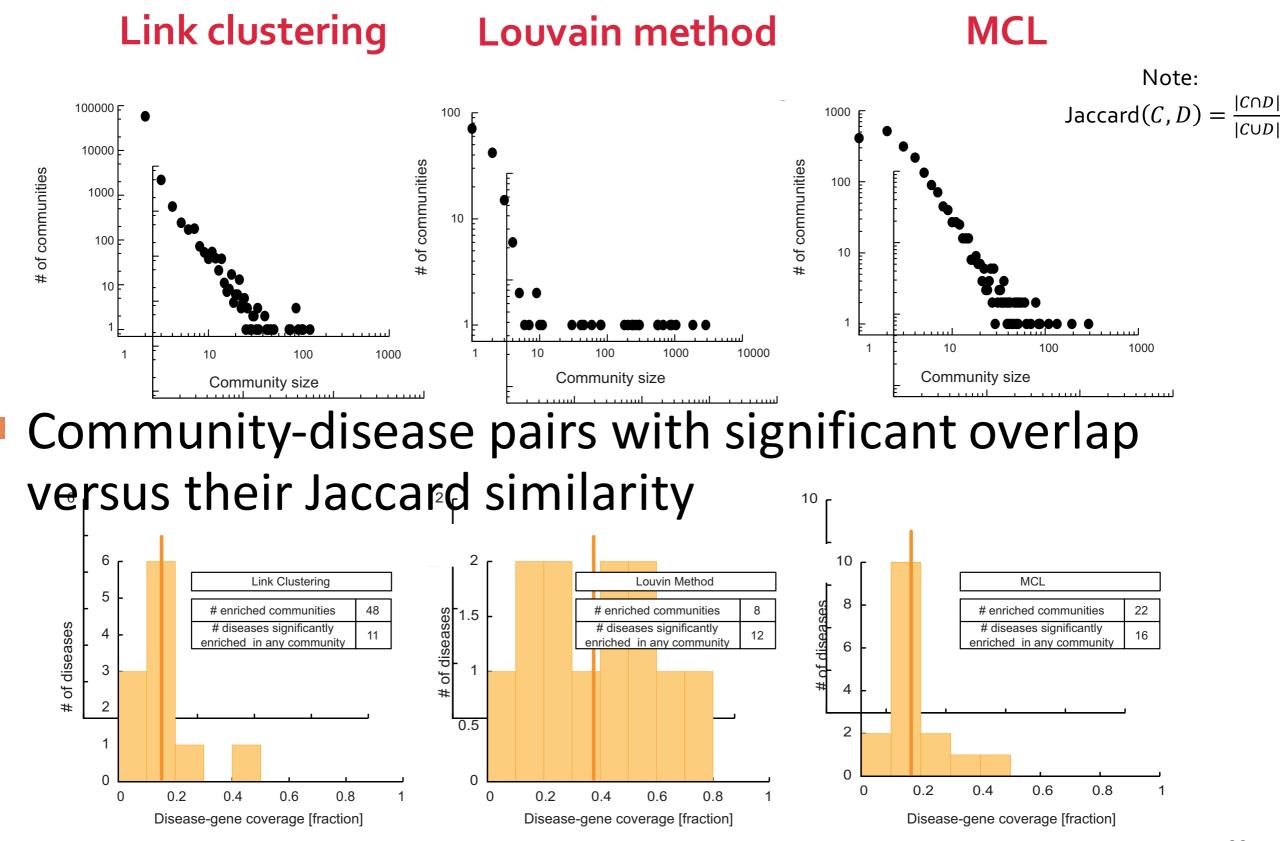
adrenal gland diseases
alzheimer disease
Amino acid metabolism inborn errors
amyotrophic lateral sclerosis
anemia aplastic
anemia hemolytic
aneurysm
arrhythmias cardiac
arthritis rheumatoid
asthma
arterial occlusive diseases
arteriosclerosis
basal ganglia diseases
behcet syndrome
bile duct diseases
blood coagulation disorders
blood platelet disorders

Experiment: Setup

Setup:

- 1. Use **community detection method** to find communities in the PPI network
- 2. Use Fisher's exact test to determine, for each community-disease pair, if community is significantly enriched with disease proteins
- 3. Use **Bonferroni correction** to counteract the problem of **multiple statistical comparisons**
 - If testing m hypotheses at a desired significance level $\alpha = 0.05$, then the Bonferroni correction would test each individual hypothesis at $\alpha = 0.05/m$

Protein Communities

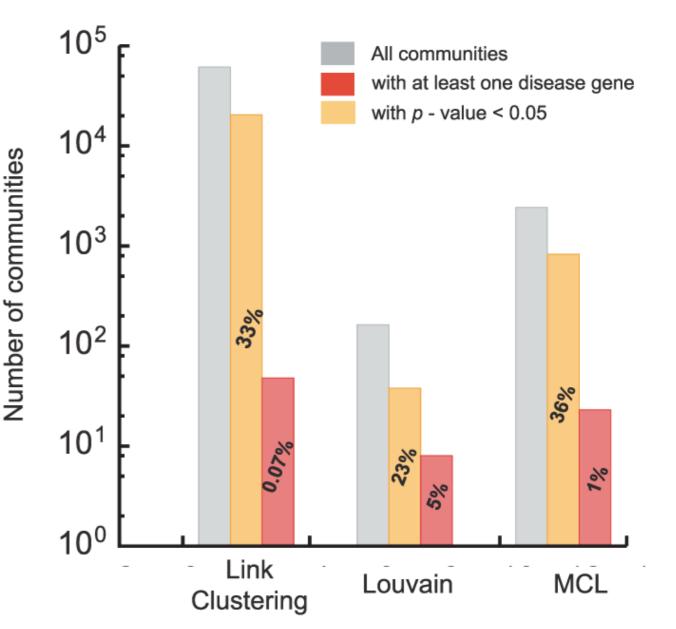


Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Ghiassian et al., PLoS Comp Bio 2015

Protein Communities

- No detected community coincides with a full set of disease proteins
- 36% of MCL communities are significantly enriched in at least one disease
- Proteins in an enriched community that are not yet associated with a disease are disease protein candidates



Other Statistical Issues

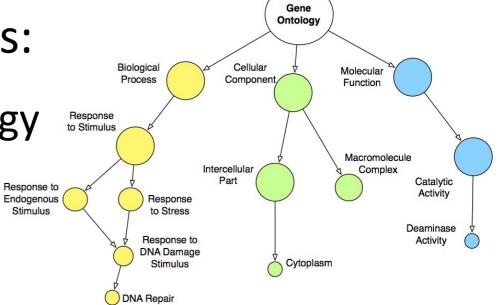
Other tests for enrichment:

- Binomial, Chi-squared, Z-test, Kolmogorov-Smirnov, permutation
- Gene Set Enrichment Analysis (GSEA) uses a variation of Kolmogorov-Smirnov statistic to get pvalues [http://software.broadinstitute.org/gsea]
- All tests look for over-enrichment; some look for under-enrichment
- Correction for multiple hypothesis testing
- Some diseases may be subsets of other diseases

See CS224W handout on biomedical databases

Beyond Disease Associations

- Proteins in detected communities should have something in common, e.g., they are:
 - part of the same biological pathway/cellular component
 - co-expressed under certain conditions
 - putative targets of the same regulatory factor
- Use enrichment tests to check whether communities are enriched in biological pathways, components, etc.
- Get data from biomedical databases:
 - Processes, components: Gene Ontology
 - Pathways: KEGG, Reactome, MSigDB

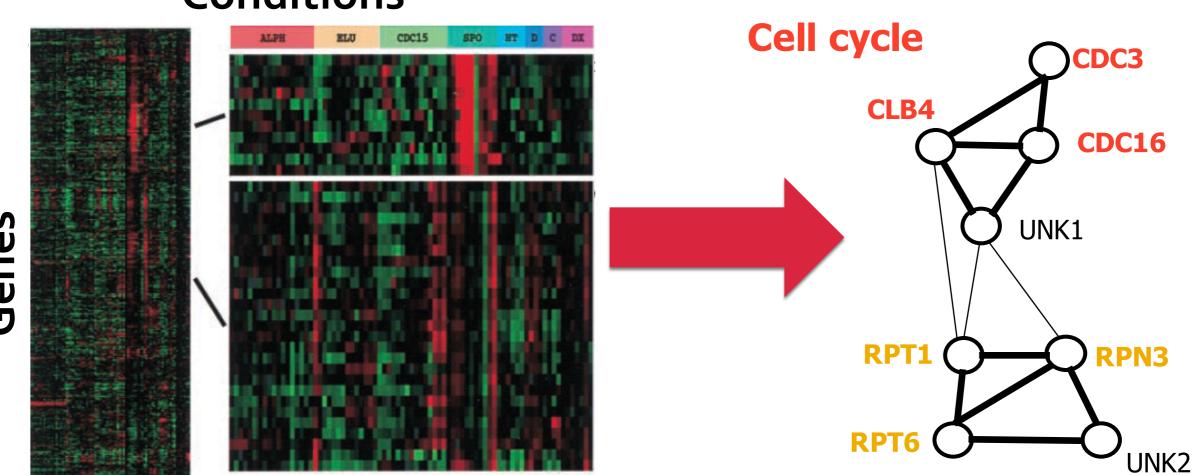


- 1) Very basic biology
- **2)** Protein-protein interaction networks
- **3)** Finding disease modules in networks
 - It is a community detection task!
- 4) Predicting biological attributes, such as protein functions
 - Guilt-by-association principle
 - Gene recommender systems

Fraser et al., Nat Genet 2004 Mostafavi, Morris, Proteomics 2012

Functional Interaction Networks

Gene co-expression network



Protein degradation

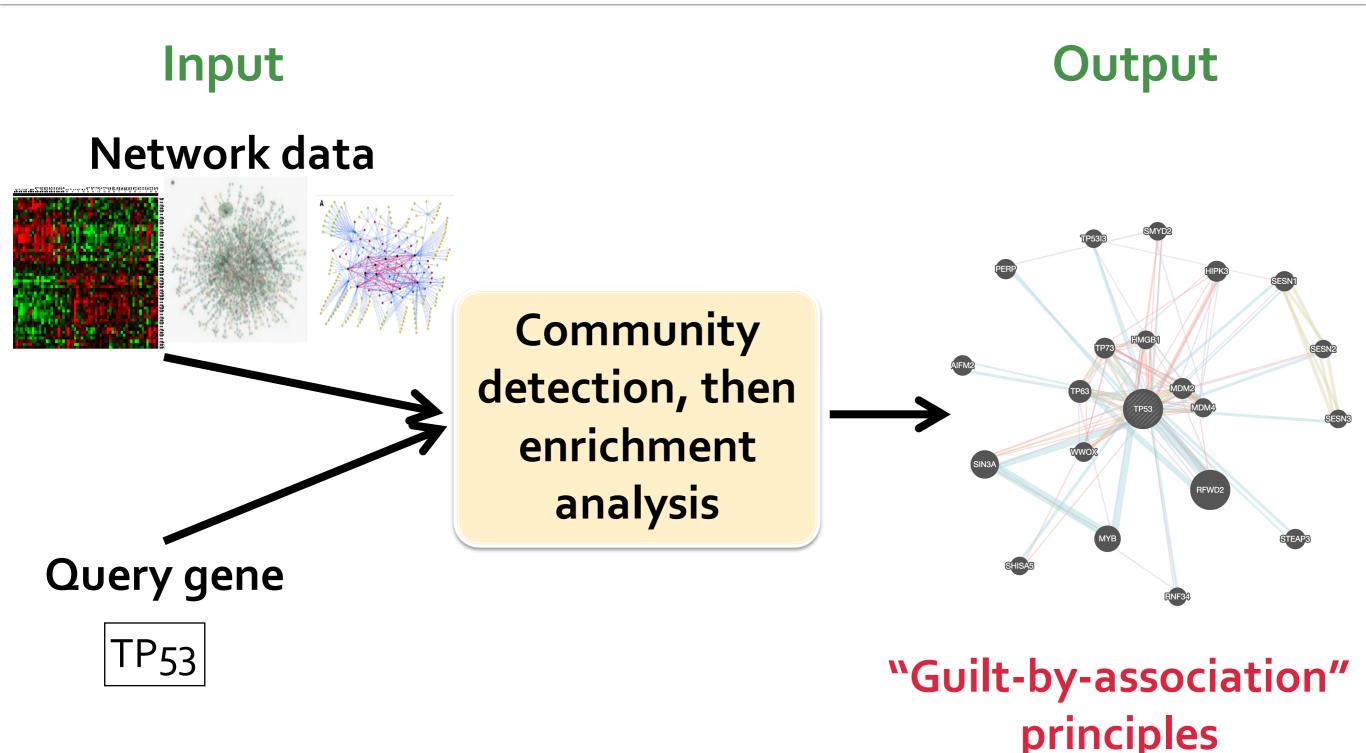
Conditions

Types of Gene Function Prediction

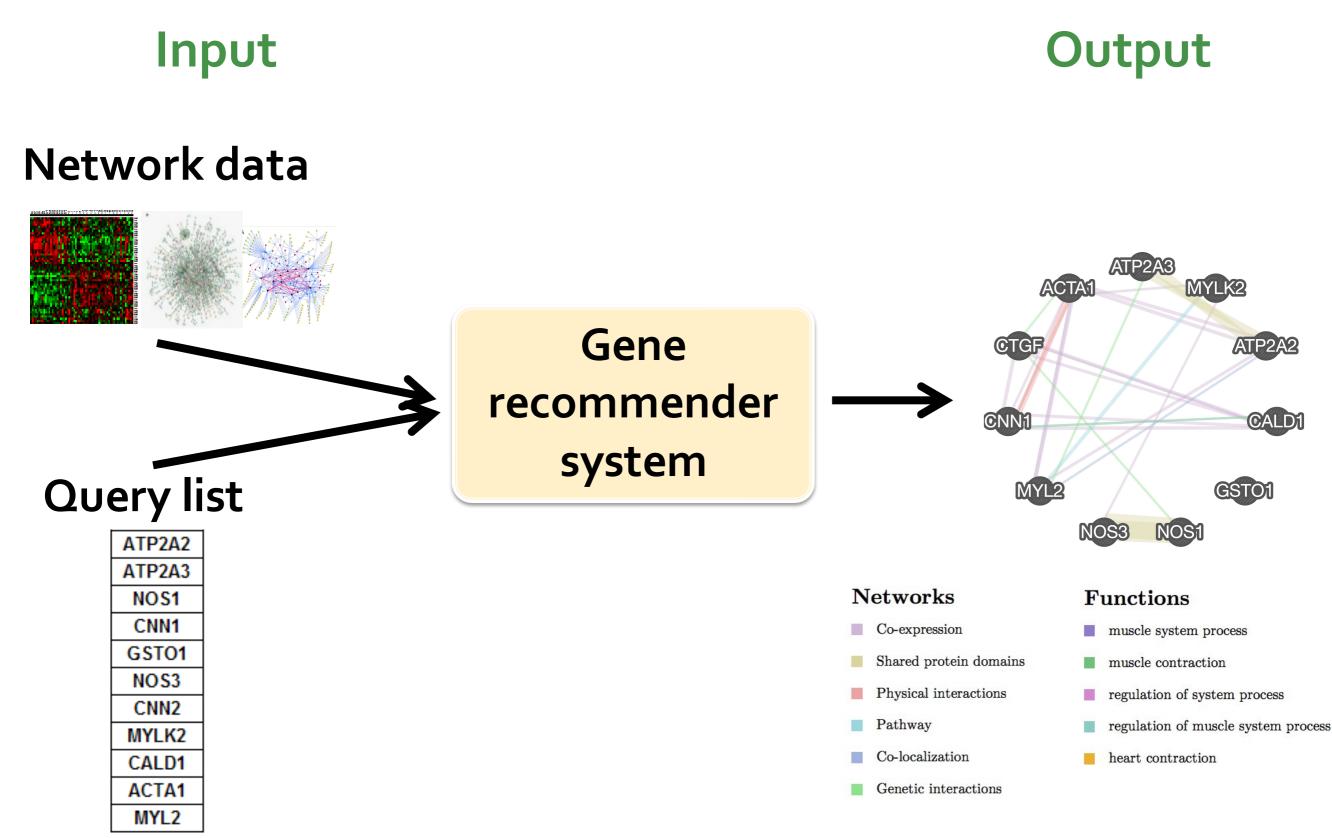
"What does my gene do?"

- Goal: Determine a gene's function based on who it interacts with – "guilt-by-association" principle
- "Give me more genes like these"
 - E.g., Find more multiple sclerosis genes, find new ciliary genes, find more members of a protein complex

"What Does My Gene Do?"

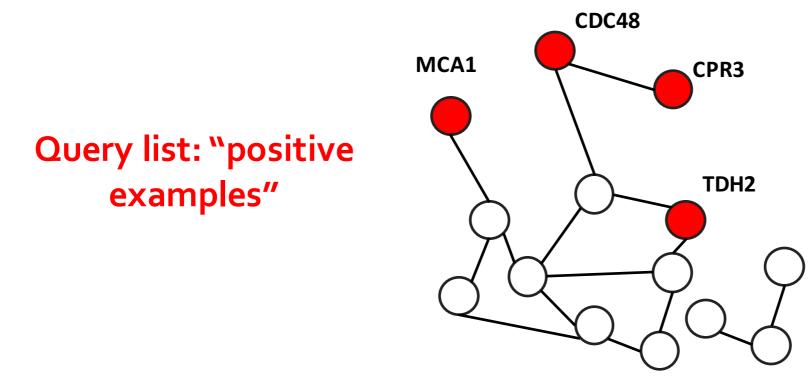


"Give Me More Genes Like These"



Finding "Guilty Associates"

Predict gene functions by guilt-by-association:



Red: Genes involved in a gene function/biological process **White:** Unlabeled genes

Question: Which of the unlabeled nodes are likely involved in this gene function/biological process?

- Two main approaches:
 - Direct/Indirect neighbor scoring
 - Label propagation

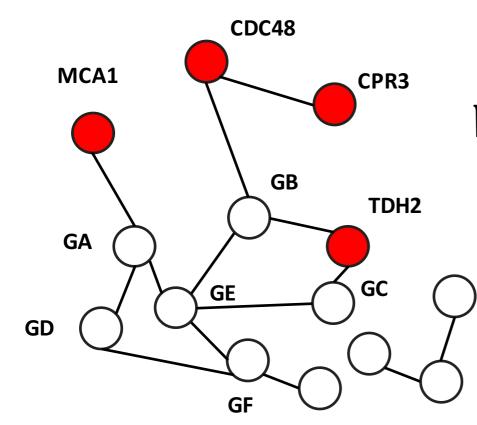
"Guilty Associates" Problem

- Let W be a n×n (weighted) adjacency matrix over n genes in a genome
- Let $y = \{-1, 0, 1\}^n$ be a vector of labels:
 - 1: positive gene, known to be involved in a gene function/biological process
 - -1: negative gene
 - O: unlabeled gene
- Goal: Predict which of the unlabeled genes are likely positive

"Guilty Associates" Problem

- Goal: Predict which of the unlabeled genes are likely positive
- Learn a vector of discriminant scores *f*, where *f*_i is the likelihood that node *i* is positive

Example:



$$y = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$$

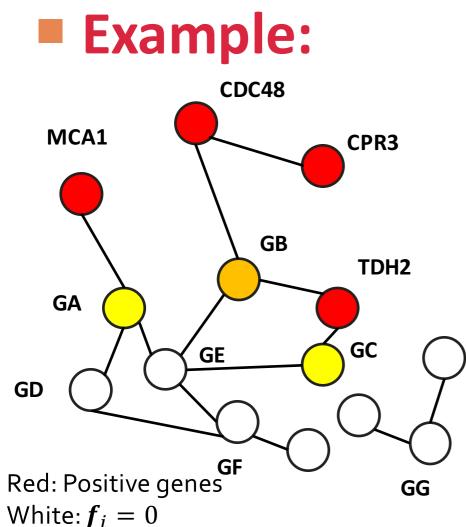
W = (weighted) adjacency matrix

$$f = ?$$

Direct Neighbor Scoring

Approach #1: Node score f_i is the weighted sum of the labels of i's direct neighbors:

$$\boldsymbol{f}_i = \sum_{j=1}^n \boldsymbol{W}_{ij} \boldsymbol{y}_j$$

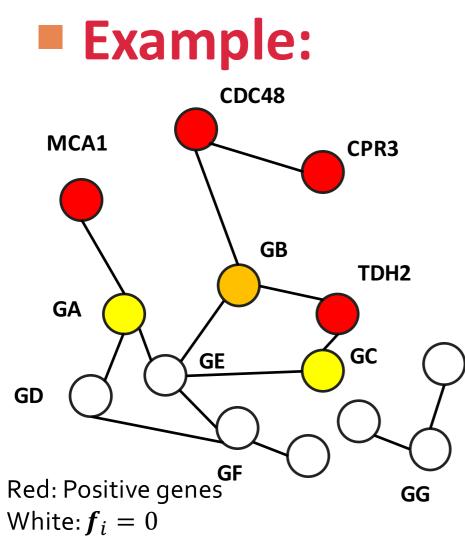


$$f_{GA} = W_{GA,MCA1} \cdot y_{MCA1}$$
$$f_{GB} = W_{GB,CDC48} \cdot y_{CDC48} + W_{GB,TDH2} \cdot y_{CDC48}$$
$$f_{GC} = W_{GC,TDH2} \cdot y_{TDH2}$$

Direct Neighbor Scoring

Approach #1: Node score f_i is a weighted sum of the labels of i's direct neighbors:

$$\boldsymbol{f}_i = \sum_{j=1}^n \boldsymbol{W}_{ij} \boldsymbol{y}_j$$

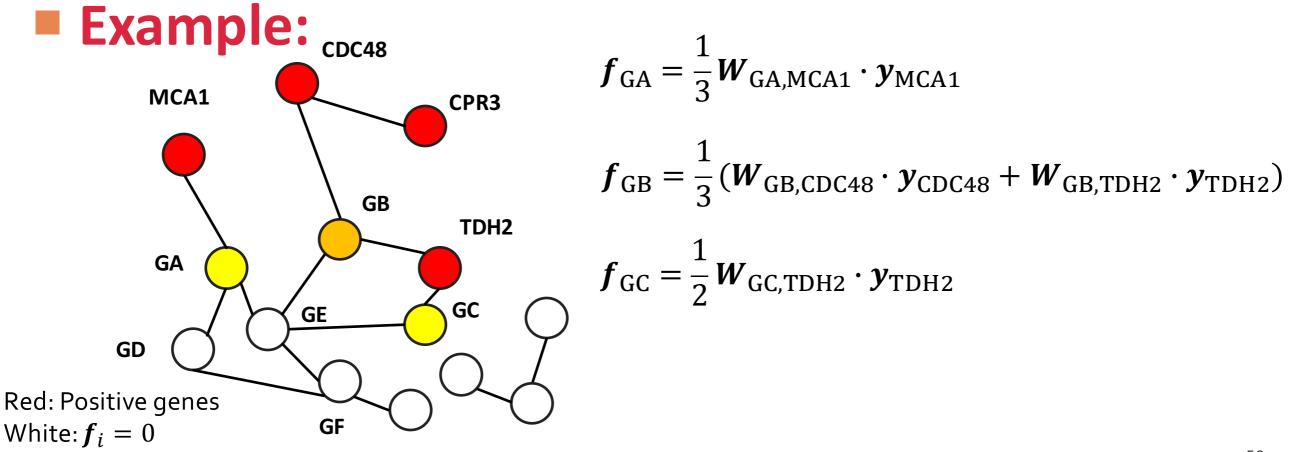


- $f_{GA} = W_{GA,MCA1} \cdot y_{MCA1}$ $f_{GB} = W_{GB,CDC48} \cdot y_{CDC48} + W_{GB,TDH2} \cdot y_{CDC48}$
 - $\boldsymbol{f}_{\rm GC} = \boldsymbol{W}_{\rm GC,TDH2} \cdot \boldsymbol{y}_{\rm TDH2}$
- One half of GC's neighbors are positives One third of GA's neighbors are positives But: $f_{GC} = f_{GA}$ (if W is binary)

Direct Neighbor Scoring

Approach #2: Normalize matrix W using the weighted node degrees:

$$f_i = \frac{1}{d_i} \sum_{j=1}^n W_{ij} y_j, \qquad d_i = \sum_j W_{ij} \qquad f_i = D^{-1} W y$$
$$D = diag(d)$$

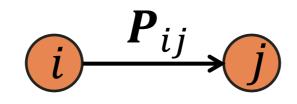


See also CS224W lecture on Link Analysis

Towards Indirect Neighbor Scoring

Matrix $P = D^{-1}W$ is known as Markov transition matrix

- D is a diagonal matrix with diagonal elements d_i
- **P** is a row stochastic matrix, $\sum_{j} P_{ij} = 1$
- Row i is a probability distribution over random walks starting at node i

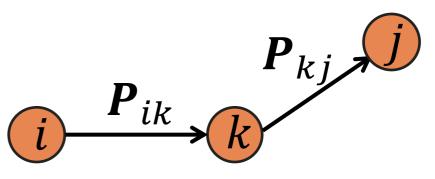


P_{ij} is probability of a random walker following a link from node *i* to node *j*

Random Walk Interpretation

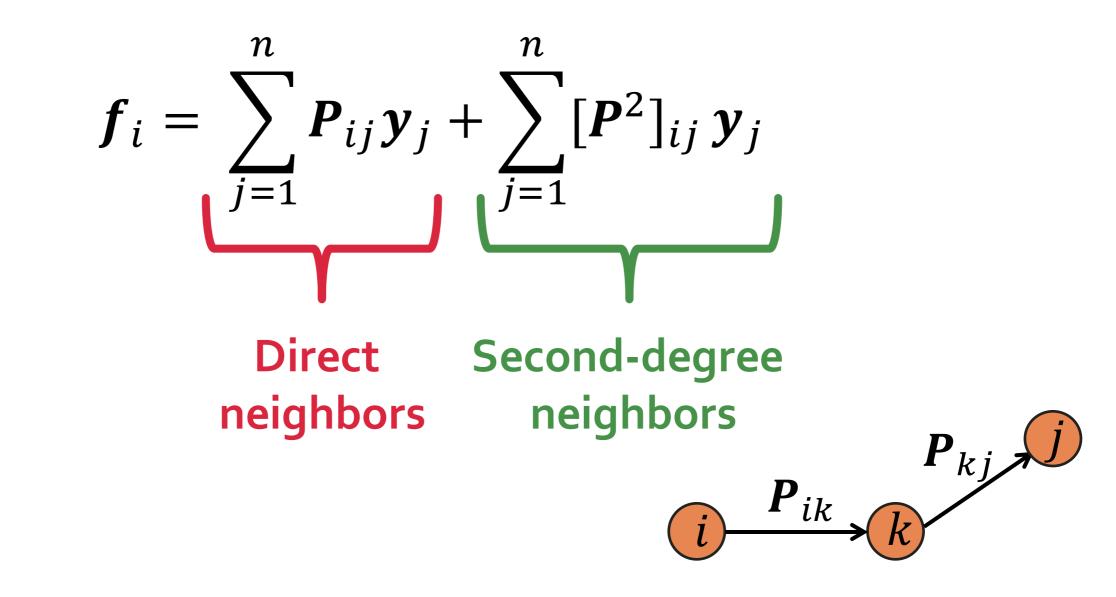
- Random walk interpretation extends a direct neighbor approach to include indirect neighbors
- Idea: Extend the formula $f = D^{-1}Wy = Py$ to include second-degree neighbors
- Probability of a random walk of length two between node *i* and node *j* is:

$$[\boldsymbol{P}^2]_{ij} = \sum_{k=1}^n \boldsymbol{P}_{ik} \boldsymbol{P}_{kj}$$

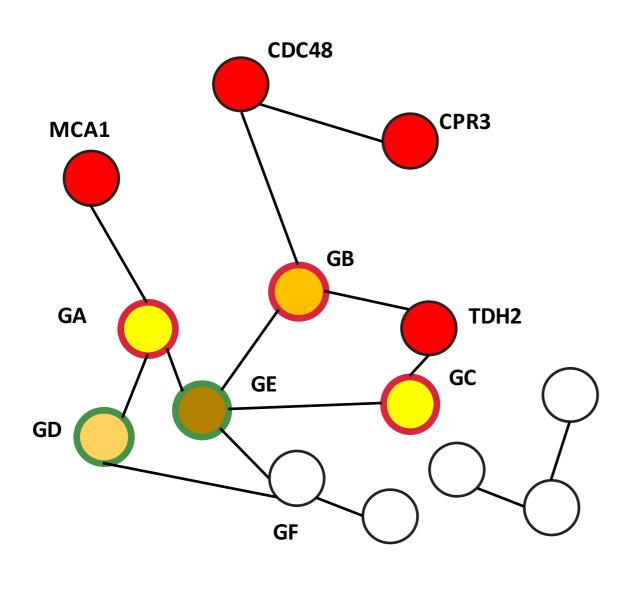


Indirect Neighbor Scoring

Approach #3: Consider second-degree neighbors when calculating node score f_i as:



Example of Indirect Neighbor Scoring



$$\boldsymbol{P} = \boldsymbol{D}^{-1} \boldsymbol{W}$$
$$\boldsymbol{f}_{i} = \sum_{j=1}^{n} \boldsymbol{P}_{ij} \boldsymbol{y}_{j} + \sum_{j=1}^{n} [\boldsymbol{P}^{2}]_{ij} \boldsymbol{y}_{j}$$

Direct Second-degree neighbors neighbors

 $f_{GA} = P_{GA,MCA1} \cdot y_{MCA1}$ $f_{GE} = P_{GE,MCA1}^{2} \cdot y_{MCA1} + P_{GE,TDH2}^{2} \cdot y_{TDH2}$ $+ P_{GE,CDC48}^{2} \cdot y_{CDC48}$

- O Direct neighbor of a positive gene
- Second-order neighbor of a positive gene

Red: Positive genes

White: $\boldsymbol{f}_i = 0$

 $[\mathbf{P}^2]_{ij} > 0$ if there is a walk of length 2 between *i* and *j*

Random Walk Interpretation

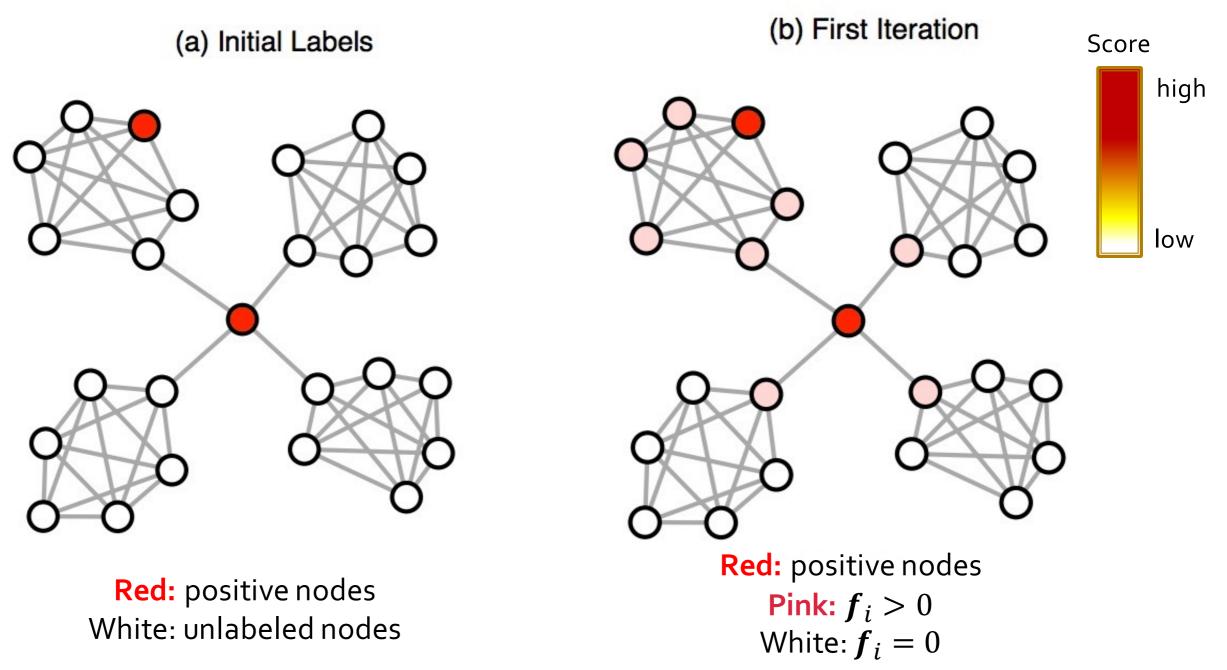
- Approach #3 can be extended to include other nodes at a distance of length r (usually r < 4)
- Increasing r beyond 2 often results in degradation of prediction performance [Chua et al., Bioinformatics 2006, Myers et al., Genome Biology 2005]
- Note: Probability of a random walk from *i* to *j* in *r* steps is given by [*P*^r]_{ij}
- Next: Use random walks to derive label propagation

Label Propagation Approach

- Label propagation generalizes local neighborhood-based approaches by considering random walks of all lengths between nodes
- The algorithm can be derived as:
 - 1. Iterative diffusion process [Zhou et al., NIPS 2004]
 - 2. Solution to a specific convex optimization task [Zhou et al., NIPS 2004, Zhu et al., ICML 2003]
 - 3. Maximum a posteriori (MAP) estimation in Gaussian Markov Random Fields [Rue and Held, Chapman & Hall, 2005]
- Next: Derivation using an iterative formulation

Label Propagation Approach

Intuition: Diffuse labels through edges of the network



Diffusion Process: <u>Idea</u>

- The diffusion process is defined as an iterative process [Zhou et al., NIPS 2004]
- Diffusion of labels through edges:
 - Start with initial label information, $f_i^{(0)} = y_i$
 - In each iteration, each node receives label information from its neighbors, and also retains its initial label
 - λ specifies relative amount of label information from its neighbors and its initial label
 - Finally, the label of each unlabeled node is set to be the label of which it has received most information

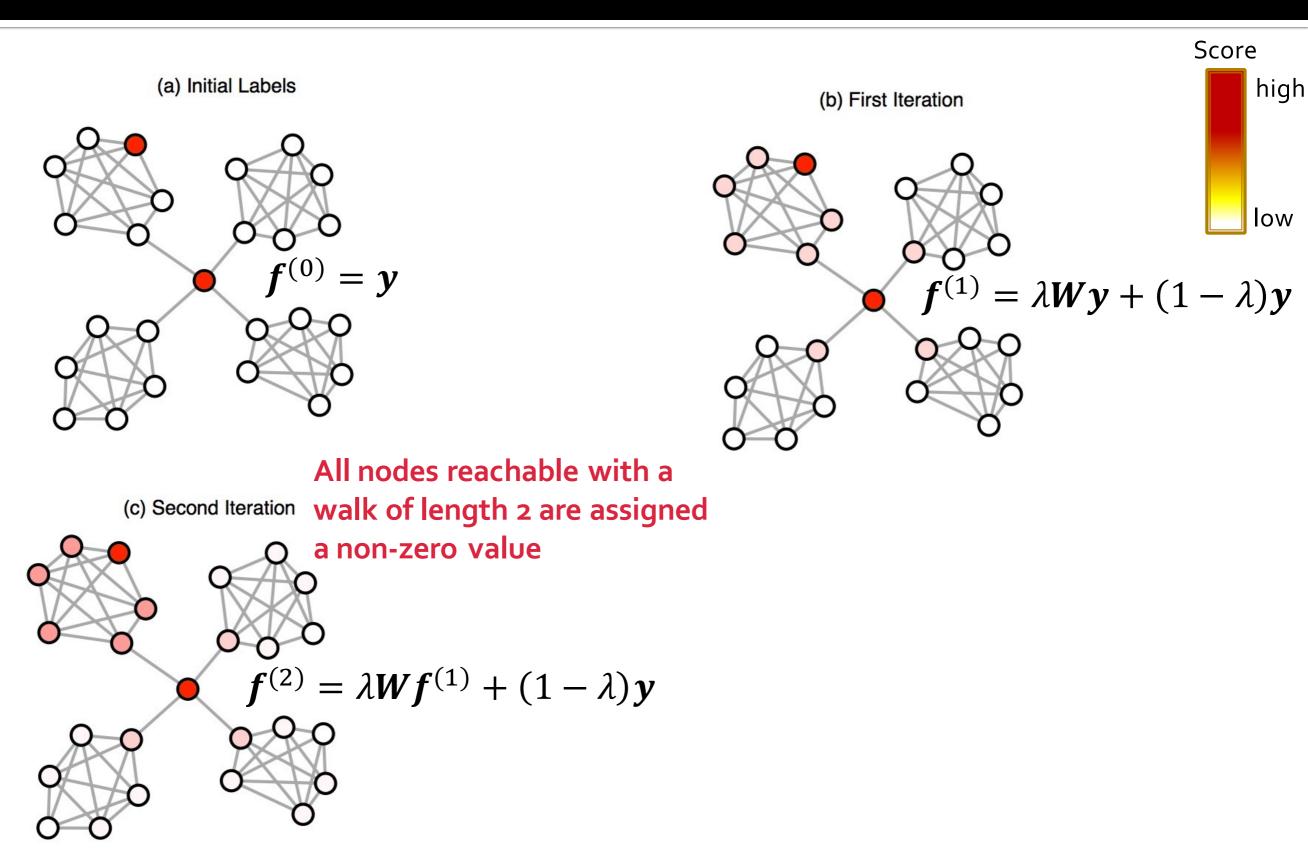
Diffusion Process: Formally

- The diffusion process is defined as the following iteration [Zhou et al., NIPS 2004]
- At iteration r = 0, define $f_i^{(0)} \leftarrow y_i$
- At iteration r + 1, the score of node i is the weighted average of the scores of i's neighbors in iteration r, and i's initial label:

$$\boldsymbol{f}_i^{(r+1)} \leftarrow (1-\lambda)\boldsymbol{y}_i + \lambda \sum_{j=1}^n \boldsymbol{W}_{ij} \boldsymbol{f}_j^{(r)}$$

 $0 < \lambda < 1$ is a model parameter

Example of Label Propagation



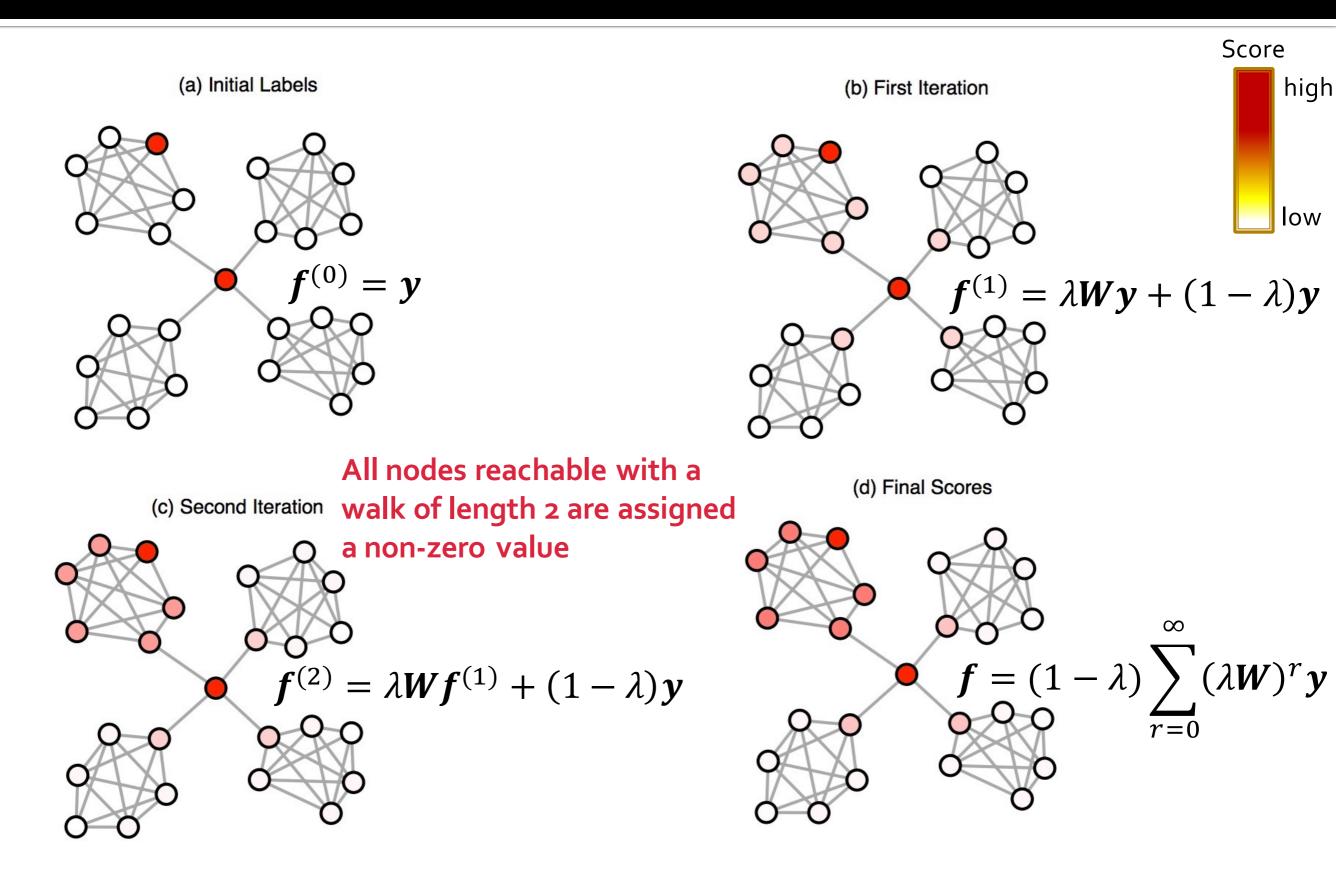
Convergence Condition

If all **eigenvalues** of W are in range [-1, 1], then the sequence $f^{(r)}$ converges to:

$$\boldsymbol{f} = (1 - \lambda) \sum_{r=0}^{r} (\lambda \boldsymbol{W})^r \boldsymbol{y}$$

- $[W^r]_{ij} > 0$ if a walk of length r between i and j
- Weight λ^r decreases with increasing distance
- ⇒ Discriminant scores *f* are weighted sum of walks of all lengths between the nodes
- ⇒ High score f_i is assigned to i if i is connected to positively labeled nodes with many short walks

Example of Label Propagation



Normalizing Matrix W

- Recall: The infinite sum converges only if all eigenvalues of W are in range [-1, 1]
- To satisfy this condition, normalize W before diffusion:

• Symmetric normalization:

$$S = D^{-1/2} W D^{-1/2}$$
Note:
$$D = diag(d)$$

Asymmetric normalization:

$$\boldsymbol{P} = \boldsymbol{D}^{-1} \boldsymbol{W}$$

- Note: Avoid self-reinforcement by setting diagonal elements of W to 0
- Note: Label information is spread symmetrically since S is a symmetric matrix

Exact Solution of Label Propagation

Given that $\rho(W) \le 1$, use Taylor expansion to compute the exact solution for label propagation:

$$f = (1 - \lambda) \sum_{r=0}^{r} (\lambda S)^r y$$
$$\bigcup$$

Taylor expansion: $(I - A)^{-1} = \sum_{r=0}^{\infty} A^r$

$$\boldsymbol{f} = (1-\lambda)(\boldsymbol{I}-\lambda\boldsymbol{S})^{-1}\boldsymbol{y}$$

Note: The diffusion result *f* does not depend on the initial value *f*⁽⁰⁾

"Guilty Associates": Recap

- Direct neighbor scoring depends on:
 - Strength of links to query genes
 - # of query gene neighbors
 - Example algorithm: BioPIXIE [Marcotte et al., Nature 1999, Myers et al., Genome Biology 2005]
- Label propagation scoring depends on:
 - Iteratively propagating "direct neighbor score" allowing indirect links to impact scores
 - Whether or not a gene is in a connected component of genes with query genes
 - Example algorithm: GeneMANIA [Mostafavi et al., Genome Biology 2008]

Example Biological Application

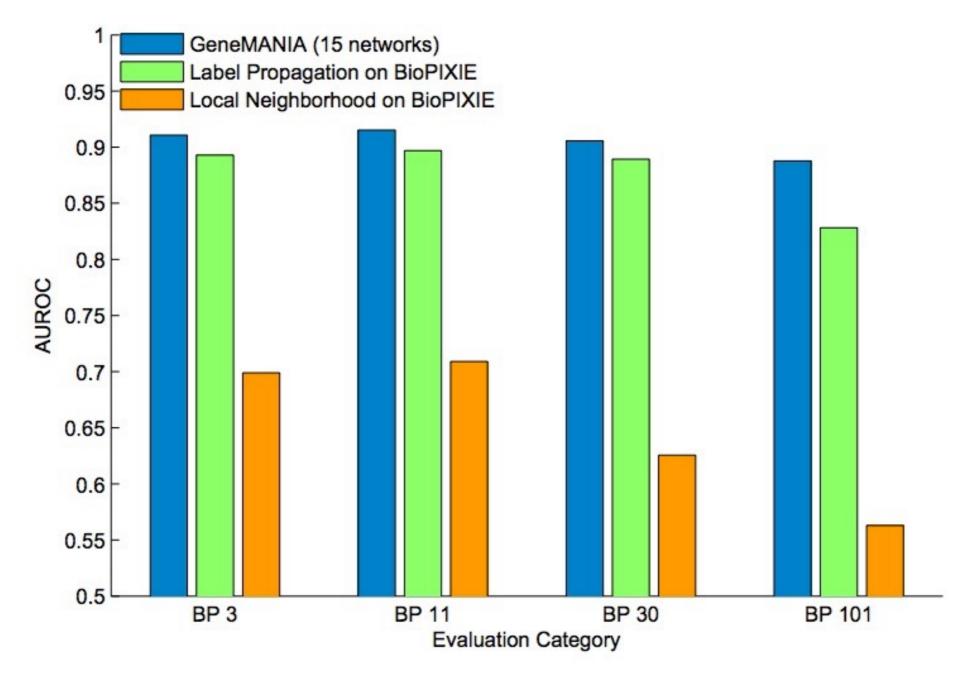
- Gene function prediction is a multi-label node classification task
- Every node (gene) is assigned one or more labels (cellular functions)

Setup:

- 1. For each gene function we use a **guilt-by-association based approach** to learn a discriminative score f_i for each node i
- During the training phase, we observe only a certain fraction of genes and all their functions
- 3. The task is then to predict functions for the remaining genes
- Determine the optimal value of λ parameter using cross-validation

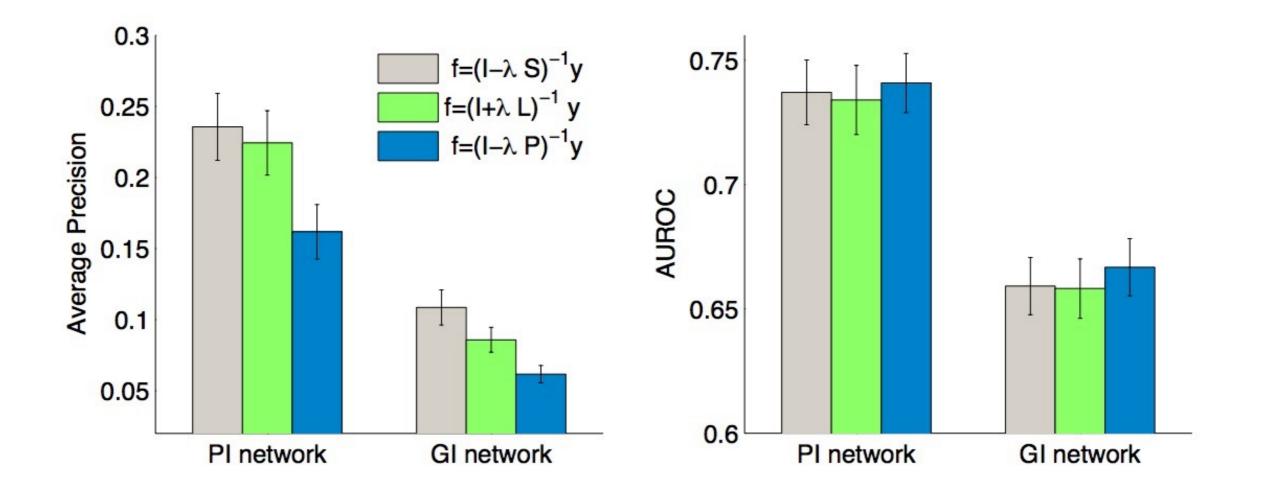
Gene Function Prediction: Results

Label propagation-based approaches outperform local neighborhood-based approaches



Gene Function Prediction: Results

Comparison of label propagation with three normalization methods on the protein-interaction (**PI**) and geneticinteraction (**GI**) networks



GeneMANIA Tool

Query list:

