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not independent objects, and are not built in the absence of
a biological milieu. Biological devices and modules typically
function within a cellular environment. When synthetic
biologists engineer devices or modules, they do so using the
resources and machinery of host cells, but in the process also
modify the cells themselves. A major concern in this process is
our present inability to fully predict the functions of even
simple devices in engineered cells and construct systems that
perform complex tasks with precision and reliability. The lack
of predictive power stems from several sources of uncertainty,
some of which signify the incompleteness of available
information about inherent cellular characteristics. The effects
of gene expression noise, mutation, cell death, undefined and
changing extracellular environments, and interactions with
cellular context currently hinder us from engineering single
cells with the confidence that we can engineer computers to
do specific tasks. However, most applications or tasks we set to
our synthetic biological systems are generally completed by a
population of cells, not any single cell. In a synthetic system,
predictability and reliability may be achieved in two ways:
statistically by utilizing large numbers of independent cells or
by synchronizing individual cells through intercellular com-
munication to make each cell more predictable and reliable.
More importantly, intercellular communication can coordinate
tasks across heterogeneous cell populations to elicit highly
sophisticated behavior. Thus, it may be best to focus on
multicellular systems to achieve overall reliability in perform-
ing complex tasks.

Biological devices

Biologists are familiar withmanipulation of genes and proteins
to probe their properties and understand biological processes.
Synthetic biologists must also manipulate the material
elements of the cell, but they do so for the purpose of design,
to build synthetic biological systems. Synthetic biologists
design complex systems by combining basic design units that
represent biological functions. The notion of a device is an
abstraction overlaid on physical processes that allows for
decomposition of systems into basic functional parts. Biolo-
gical devices process inputs to produce outputs by regulating
information flow, performing metabolic and biosynthetic
functions, and interfacing with other devices and their envi-
ronments. Biological devices represent sets of one or more
biochemical reactions including transcription, translation,
protein phosphorylation, allosteric regulation, ligand/recep-
tor binding, and enzymatic reactions. Some devices may
include many diverse reactants and products (e.g. a transcrip-
tional device includes a regulated gene, transcription factors,
promoter site, and RNA polymerase), or very few (e.g. a protein
phosphorylation device includes a kinase and a substrate). The
diverse biochemistries underlying the different devices each
provide their own advantages and limitations. Particular device
types may be more suitable for specific biological activities and
timescales. Although the diversity of biochemical reactions
makes it difficult to interface devices, it enables the construction
of complex systems with rich functionalities.

Figure 1 A possible hierarchy for synthetic biology is inspired by computer engineering.
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¡ 20th century	biology	was	
largely	about	finding	
and	describing	
components

¡ DNA,	RNA,	proteins	and	
other	molecules	do	not	
operate	in	isolation

¡ We	want	to	understand	
how	biological	systems	
are	organized
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¡ Network	biology	provides	a	better	understanding	of	life	
and	evolution

¡ Applications	in	medicine:	disease	diagnosis,	drug	
development
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Figure 4 | Diabetes and cardiovascular disease trajectory clusters. (a) Diabetes cluster showing progression from non-insulin-dependent to
insulin-dependent diabetes. Retinal disorders are key diagnoses marking progression to worse conditions. (b) Cardiovascular cluster. A key finding
is that gout is a central diagnosis in the cardiovascular cluster, supporting evidence that gout is important to progression of cardiovascular diseases
in a keystone manner.
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Precision medicine
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¡ Precision	medicine	takes	biology	into	personal	grounds

Link a person 
with disease and 

traits

Provide insight 
into ancestry of 

the customer

Sequence a 
customer’s 

genome

4Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



Link a person 
with disease and 

traits

Provide insight 
into ancestry of 

the customer

Sequence a 
customer’s 

genome

¡ Precision	medicine	takes	biology	into	personal	grounds

5Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



1) Very	basic	biology
2) Protein-protein	interaction	networks
3) Finding	disease	modules	in	networks

§ It	is	a	community	detection	task!	

4) Predicting	biological	attributes,	such	as	
protein	functions
§ Guilt-by-association	principle
§ Gene	recommender	systems
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¡ Gene is	a	basic	unit	of	heredity
¡ Genes	are	segments	of	DNA	that	determine	properties	of	an	

organism	as	a	whole	and	functions	of	cells	within	it
¡ Genes	encode	a	functional	unit	called	protein
¡ Central	dogma describes	a	two-step	process,	transcription and	

translation,	by	which	the	information	in	DNA	flows	into	proteins
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¡ Transcription:	Producing	RNA	sequence	from	DNA	
template	in	the	nucleus

¡ Translation:	The	synthesis	of	a	protein	from	RNA	
template	in	the	cytoplasm

¡ Transformation	of	a	gene	into	a	protein	is	called	
expression
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¡ Human	Genome	Project:	
1990-2003,	$3	billion

¡ Genome	consists	of	23	pairs	
of	chromosomes and	has	a	
total	of	3.2G bp

¡ Average	gene	length	is	8k bp,	
there	are	~25k	genes

¡ Only	2-3% of	the	human	DNA	
are	genes,	the	rest	of	the	DNA	
does	not	encode	genes	but	
has	important	regulatory roles
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2) Protein-protein	interaction	networks
3) Finding	disease	modules	in	networks
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¡ A	very	common	
type	of	biological	
networks

¡ Undirected,	
binary/weighted	
network

¡ Nodes:	proteins

¡ Edges:	interactions
Yeast protein-protein 

interaction (PPI) network

Color signifies the 
phenotypic effect of 
removing a protein 
- red, lethal
- green, non-lethal
- orange, slow growth
- yellow, unknown

Jeong et al., Nature 2001
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¡ How	do	we	know	that	a	pair	of	proteins	interact?
¡ A	complex containing	these	two	proteins	has	
been	crystallized	

¡ High	throughput	screening	methods	enable	
rapid,	parallel	acquisition	of	experimental	data
§ Yeast	two-hybrid	system

¡ Problems	with	high	throughput	methods:
§ False	positive	and	false	negative edges
§ Networks	are	incomplete and	noisy	

13Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



¡ Classical	screening	technology	for	the	study	of	PPI
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No PPI interaction! PPI interaction!

Checking for interaction 
between two proteins, 
called here Bait and Prey



Is there a relation between network
structure and biological function and disease?
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YEAST GENETICS

A global genetic interaction
network maps a wiring diagram
of cellular function
Michael Costanzo,* Benjamin VanderSluis,* Elizabeth N. Koch,* Anastasia Baryshnikova,*
Carles Pons,* Guihong Tan,* Wen Wang, Matej Usaj, Julia Hanchard, Susan D. Lee,
Vicent Pelechano, Erin B. Styles, Maximilian Billmann, Jolanda van Leeuwen,
Nydia van Dyk, Zhen-Yuan Lin, Elena Kuzmin, Justin Nelson, Jeff S. Piotrowski,
Tharan Srikumar, Sondra Bahr, Yiqun Chen, Raamesh Deshpande, Christoph F. Kurat,
Sheena C. Li, Zhijian Li, Mojca Mattiazzi Usaj, Hiroki Okada, Natasha Pascoe,
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Jamie Snider, Harsha Garadi Suresh, Yizhao Tan, Hongwei Zhu, Noel Malod-Dognin,
Vuk Janjic, Natasa Przulj, Olga G. Troyanskaya, Igor Stagljar, Tian Xia, Yoshikazu Ohya,
Anne-Claude Gingras, Brian Raught, Michael Boutros, Lars M. Steinmetz, Claire L. Moore,
Adam P. Rosebrock, Amy A. Caudy, Chad L. Myers,† Brenda Andrews,† Charles Boone†

INTRODUCTION: Genetic interactions occur
when mutations in two or more genes com-
bine to generate an unexpected phenotype. An
extreme negative or synthetic lethal genetic
interaction occurs when two mutations, neither
lethal individually, combine to cause cell death.
Conversely, positive genetic interactions occur
when two mutations produce a phenotype that
is less severe than expected. Genetic interactions
identify functional relationships between genes
and can be harnessed for biological discovery
and therapeutic target identification. They may
also explain a considerable component of the
undiscovered genetics associated with human

diseases. Here, we describe construction and
analysis of a comprehensive genetic interac-
tion network for a eukaryotic cell.

RATIONALE: Genome sequencing projects are
providing an unprecedented view of genetic
variation. However, our ability to interpret ge-
netic information to predict inherited pheno-
types remains limited, in large part due to the
extensive buffering of genomes, making most
individual eukaryotic genes dispensable for
life. To explore the extent to which genetic in-
teractions reveal cellular function and contrib-
ute to complex phenotypes, and to discover the

general principles of genetic networks, we used
automated yeast genetics to construct a global
genetic interaction network.

RESULTS: We tested most of the ~6000 genes
in the yeastSaccharomyces cerevisiae for all possible
pairwise genetic interactions, identifying nearly
1 million interactions, including ~550,000 negative
and ~350,000 positive interactions, spanning

~90% of all yeast genes. Es-
sential genes were network
hubs, displaying five times
as many interactions as
nonessential genes. The set
of genetic interactions or
the genetic interaction pro-

file for a gene provides a quantitative mea-
sure of function, and a global network based
on genetic interaction profile similarity re-
vealed a hierarchy of modules reflecting the
functional architecture of a cell. Negative in-
teractions connected functionally related genes,
mapped core bioprocesses, and identified pleio-
tropic genes, whereas positive interactions often
mapped general regulatory connections asso-
ciated with defects in cell cycle progression or
cellular proteostasis. Importantly, the global
network illustrates how coherent sets of nega-
tive or positive genetic interactions connect
protein complex and pathways to map a func-
tional wiring diagram of the cell.

CONCLUSION: A global genetic interaction
network highlights the functional organization
of a cell and provides a resource for predicting
gene and pathway function. This network em-
phasizes the prevalence of genetic interactions
and their potential to compound phenotypes
associated with single mutations. Negative ge-
netic interactions tend to connect functionally

related genes and thus may be
predicted using alternative func-
tional information. Although less
functionally informative, positive
interactions may provide insights
into general mechanisms of ge-
netic suppression or resiliency.
We anticipate that the ordered
topology of the global genetic net-
work, in which genetic interac-
tions connect coherently within
and between protein complexes
and pathways, may be exploited
to decipher genotype-to-phenotype
relationships.▪

RESEARCH
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the full article online.
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A global network of genetic interaction profile similarities. (Left) Genes with similar genetic interaction
profiles are connected in a global network, such that genes exhibiting more similar profiles are located
closer to each other, whereas genes with less similar profiles are positioned farther apart. (Right) Spatial
analysis of functional enrichment was used to identify and color network regions enriched for similar Gene
Ontology bioprocess terms.
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Read the full article
at http://dx.doi.
org/10.1126/
science.aaf1420
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The overlaps of Uetz-screen (27%) and Ito-
core (35%) with CCSB-YI1 (Fig. 2D) can be ex-
plained by the completeness, assay sensitivity,
and sampling sensitivity of the three experiments
(SOM VII) and agree well with the results of the

pairwise confirmation of those two data sets (Fig.
1C). Similar principles apply to other large-scale
experiments such as AP/MS, likely accounting
for the low overlap between Krogan and Gavin
(~25%; fig. S5B).

Factoring in completeness, precision, and assay
and sampling sensitivity, we estimated that the
yeast binary interactome consists of ~18,000 T
4500 interactions (SOMVI), experimentally val-
idating previous computational estimates of 17,000
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Fig. 3. Network analysis of Y2H-union, Combined-AP/MS, and LC-multiple data sets.
(A) Network representations. Shown are relationships between increasing degree of a
gene product and (B) the fraction of essential genes with the corresponding degree,
(C) the fraction of essential genes with the corresponding degree for Y2H data sets,
and (D) the number of phenotypes associated with deletion of the encoding gene. (E)
Contribution of date hubs and party hubs as measured by change in the characteristic
path length after simulated removal of edges by deleting the indicated types of nodes.
(Inset) Fraction of date hubs and party hubs for each data set. All error bars indicate SE.

www.sciencemag.org SCIENCE VOL 322 3 OCTOBER 2008 107

REPORTS

 o
n 

D
ec

em
be

r 3
, 2

01
6

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

¡ Data:	
§ Three	yeast	protein-protein	 interaction	(PPI)	networks

§ List	of	essential yeast	proteins,	these	proteins	form	a	
minimal	protein	set	required	for	a	living	cell

§ Mapping	of	proteins	to	phenotypes (i.e.,	observable	traits,	
such	as	diseases)	associated	with	deletion	of	each	protein
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¡ Hub	proteins:	20%	nodes	in	the	network	with	the	highest	degree

¡ Observations:

§Hub	proteins	associate	with	essential	proteins,	confirmed	in	
many	but	not	all	networks

§Hub	proteins	associate	with	larger	numbers	of	phenotypes than	
non-hub	proteins

17
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The overlaps of Uetz-screen (27%) and Ito-
core (35%) with CCSB-YI1 (Fig. 2D) can be ex-
plained by the completeness, assay sensitivity,
and sampling sensitivity of the three experiments
(SOM VII) and agree well with the results of the

pairwise confirmation of those two data sets (Fig.
1C). Similar principles apply to other large-scale
experiments such as AP/MS, likely accounting
for the low overlap between Krogan and Gavin
(~25%; fig. S5B).
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The overlaps of Uetz-screen (27%) and Ito-
core (35%) with CCSB-YI1 (Fig. 2D) can be ex-
plained by the completeness, assay sensitivity,
and sampling sensitivity of the three experiments
(SOM VII) and agree well with the results of the

pairwise confirmation of those two data sets (Fig.
1C). Similar principles apply to other large-scale
experiments such as AP/MS, likely accounting
for the low overlap between Krogan and Gavin
(~25%; fig. S5B).
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Fig. 3. Network analysis of Y2H-union, Combined-AP/MS, and LC-multiple data sets.
(A) Network representations. Shown are relationships between increasing degree of a
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and (D) the number of phenotypes associated with deletion of the encoding gene. (E)
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path length after simulated removal of edges by deleting the indicated types of nodes.
(Inset) Fraction of date hubs and party hubs for each data set. All error bars indicate SE.
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¡ For	a	protein	𝑝", take	the	fraction	of	essential	
proteins among	all	proteins	whose	distance	to	
protein	𝑝" is	equal	to	𝑑:

Q(𝑝", 𝑑) = )
𝐼(𝑝	is	essential) 

|𝑆5 𝑝" |6∈89	(6:)

18

Yu et al., Science 2008

Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

Note: 

𝐼 𝑋 = <1	if	X	is	true
0	otherwise

to 25,000 interactions (31, 32). To obtain a more
comprehensive map of the binary yeast inter-
actome, we combined the three available high-
quality proteome-scale Y2H data sets (SOMVII).
The union of Uetz-screen, Ito-core, and CCSB-
YI1, “Y2H-union,” contains 2930 binary inter-
actions among 2018 proteins, which, according
to our empirical estimate of the interactome size,
represents ~20% of the whole yeast binary in-
teractome (Fig. 3A).

We reexamined global topological features of
this new yeast interactome network, facing lower
risk of overinterpreting properties due to limited
sampling and various biases in the data (18). To
contrast topological properties of the binary
Y2H-union network with that of the co-complex
network, we used an integrated AP/MS data set
(33), which was generated by combining raw
high-throughput AP/MS data (15, 16). This
“Combined-AP/MS” data set, composed of 9070
co-complex membership associations between
1622 proteins, attempts to model binary inter-
actions from co-complex data (Fig. 3A).

As found previously for other macromolecular
networks, the connectivity or “degree” distribu-
tion of all three data sets is best approximated by a
power-law (34) (fig. S6 and SOM VIII). Highly
connected proteins, or “hubs,” are reportedly
more likely encoded by essential genes than
less-connected proteins (35). Surprisingly, Y2H-
union lacked any correlation between degree and
essentiality (Fig. 3B). This discrepancy might
stem from biases in the data sets available at the
time of the original observation: interactions
reported in Uetz et al. (Uetz-array and Uetz-
screen) and literature-curated interactions. Al-
though Uetz-array is of high quality (fig. S7), its
experimental design could negatively influence
network analyses. Most hub proteins in Uetz-array
were found as baits (fig. S8), and the percentage of
essential proteins in the 193 bait proteins is twice as
high (34.7%) as that of all protein-encoding ORFs
in the yeast genome (18.4%), explaining the high
correlation between degree and essentiality (Fig.
3C). Likewise, literature-curated interactions seem
prone to sociological and other inspection biases
(SOM VII). Thus, we refrain hereinafter from
using LC-multiple in our further topological
and biological analyses. No significant correlation
between degree of connectedness and essentiality
was observed in any of the three proteome-wide
high-throughput binary data sets currently availa-
ble (i.e., Ito-core, Uetz-screen, and CCSB-YI1;
Fig. 3C), as well as in new versions of our C.
elegans and human interactome maps (fig. S9 and
SOM IX).

Hub proteins instead relate to pleiotropy, the
number of phenotypes observed as a consequence
of gene knockout (SOMI). Therewas a significant
correlation in Y2H-union between connectivity
and the number of phenotypes observed in global
phenotypic profiling analyses of yeast genes (36)
(Fig. 3D). Thus, the number of binary physical
interactions mediated by a protein seems to better
correlate with the number of cellular processes in

which it participates than with its essentiality. The
correlation between degree and number of phe-
notypes is not observed in Combined-AP/MS,
likely because co-complex associations reflect the
size of protein complexesmore than the number of
processes they might be involved in.

We confirmed the concept of modularity in
the yeast interactome network, whereby date hubs
that dynamically interact with their partners appear
particularly central to global connectivity, whereas
static party hubs appear to function locally in
specific biological modules (37). The propor-
tion of date and party hubs is substantially differ-
ent between Y2H-union and Combined-AP/MS
(Fig. 3E). There are significantly more date hubs
in the binary network, whereas party hubs are
prevalent in the co-complex network. In the bi-
nary network, date hubs are crucial to the topo-
logical integrity of the network, whereas party
hubs have minimal effects. However, in the co-
complex network, date and party hubs affect
the topological integrity of the network equally,
likely because most hubs in Combined-AP/MS
reside in large stable complexes, whereas hubs
in Y2H-union preferentially connect diverse cel-
lular processes.

Surprisingly, essential proteins strongly tended
to interact with each other (Fig. 4A and SOM IX).
By concentrating on the subnetwork formed by
interactions mediated by and among essential
proteins (fig. S10), we found a giant component
whose size ismuch larger than expected by chance
(Fig. 4B). To better understand the clustering of
essential proteins, we examined the interacting
essential protein pairs that are also reported to be in
the same complex; we found 106 interacting
essential protein pairs, a number greater than
expected by chance (Fig. 4C and SOM IX).

We investigated the overall relationships be-
tween Y2H-union and Gene Ontology (GO) at-
tributes (38), phenotypic and expression profiling
similarities (39), and transcriptional regulatory
networks (40). Both Y2H-union and Combined-
AP/MS show significant enrichment (allP < 10−10)
for functionally similar pairs in all three GO
branches (Fig. 5A) (41). There is also significant
enrichment of positive correlations of phenotypic
profiles (36) between interacting pairs in both
data sets (Fig. 5B and fig. S11). Such interactions,
when supported by strong phenotypic informa-
tion, constitute likely possibilities of functional
relationships. Lastly, both data sets are significant-

Fig. 4. Clustering of essential
proteins. (A) Average fraction of
essential proteins among pro-
teins whose distance is equal to
d from a protein selected from
essential, nonessential, and all
proteins. (B) Giant component
size of network formed by es-
sential proteins (arrow) compared
to 100,000 random networks of
same topological properties. (C)
The number of interacting es-
sential proteins that are also
found in the same complex com-
pared to 10,000 random selec-
tions of proteins of the same
number as essential proteins
(SOM IX).
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to 25,000 interactions (31, 32). To obtain a more
comprehensive map of the binary yeast inter-
actome, we combined the three available high-
quality proteome-scale Y2H data sets (SOMVII).
The union of Uetz-screen, Ito-core, and CCSB-
YI1, “Y2H-union,” contains 2930 binary inter-
actions among 2018 proteins, which, according
to our empirical estimate of the interactome size,
represents ~20% of the whole yeast binary in-
teractome (Fig. 3A).

We reexamined global topological features of
this new yeast interactome network, facing lower
risk of overinterpreting properties due to limited
sampling and various biases in the data (18). To
contrast topological properties of the binary
Y2H-union network with that of the co-complex
network, we used an integrated AP/MS data set
(33), which was generated by combining raw
high-throughput AP/MS data (15, 16). This
“Combined-AP/MS” data set, composed of 9070
co-complex membership associations between
1622 proteins, attempts to model binary inter-
actions from co-complex data (Fig. 3A).

As found previously for other macromolecular
networks, the connectivity or “degree” distribu-
tion of all three data sets is best approximated by a
power-law (34) (fig. S6 and SOM VIII). Highly
connected proteins, or “hubs,” are reportedly
more likely encoded by essential genes than
less-connected proteins (35). Surprisingly, Y2H-
union lacked any correlation between degree and
essentiality (Fig. 3B). This discrepancy might
stem from biases in the data sets available at the
time of the original observation: interactions
reported in Uetz et al. (Uetz-array and Uetz-
screen) and literature-curated interactions. Al-
though Uetz-array is of high quality (fig. S7), its
experimental design could negatively influence
network analyses. Most hub proteins in Uetz-array
were found as baits (fig. S8), and the percentage of
essential proteins in the 193 bait proteins is twice as
high (34.7%) as that of all protein-encoding ORFs
in the yeast genome (18.4%), explaining the high
correlation between degree and essentiality (Fig.
3C). Likewise, literature-curated interactions seem
prone to sociological and other inspection biases
(SOM VII). Thus, we refrain hereinafter from
using LC-multiple in our further topological
and biological analyses. No significant correlation
between degree of connectedness and essentiality
was observed in any of the three proteome-wide
high-throughput binary data sets currently availa-
ble (i.e., Ito-core, Uetz-screen, and CCSB-YI1;
Fig. 3C), as well as in new versions of our C.
elegans and human interactome maps (fig. S9 and
SOM IX).

Hub proteins instead relate to pleiotropy, the
number of phenotypes observed as a consequence
of gene knockout (SOMI). Therewas a significant
correlation in Y2H-union between connectivity
and the number of phenotypes observed in global
phenotypic profiling analyses of yeast genes (36)
(Fig. 3D). Thus, the number of binary physical
interactions mediated by a protein seems to better
correlate with the number of cellular processes in

which it participates than with its essentiality. The
correlation between degree and number of phe-
notypes is not observed in Combined-AP/MS,
likely because co-complex associations reflect the
size of protein complexesmore than the number of
processes they might be involved in.

We confirmed the concept of modularity in
the yeast interactome network, whereby date hubs
that dynamically interact with their partners appear
particularly central to global connectivity, whereas
static party hubs appear to function locally in
specific biological modules (37). The propor-
tion of date and party hubs is substantially differ-
ent between Y2H-union and Combined-AP/MS
(Fig. 3E). There are significantly more date hubs
in the binary network, whereas party hubs are
prevalent in the co-complex network. In the bi-
nary network, date hubs are crucial to the topo-
logical integrity of the network, whereas party
hubs have minimal effects. However, in the co-
complex network, date and party hubs affect
the topological integrity of the network equally,
likely because most hubs in Combined-AP/MS
reside in large stable complexes, whereas hubs
in Y2H-union preferentially connect diverse cel-
lular processes.

Surprisingly, essential proteins strongly tended
to interact with each other (Fig. 4A and SOM IX).
By concentrating on the subnetwork formed by
interactions mediated by and among essential
proteins (fig. S10), we found a giant component
whose size ismuch larger than expected by chance
(Fig. 4B). To better understand the clustering of
essential proteins, we examined the interacting
essential protein pairs that are also reported to be in
the same complex; we found 106 interacting
essential protein pairs, a number greater than
expected by chance (Fig. 4C and SOM IX).

We investigated the overall relationships be-
tween Y2H-union and Gene Ontology (GO) at-
tributes (38), phenotypic and expression profiling
similarities (39), and transcriptional regulatory
networks (40). Both Y2H-union and Combined-
AP/MS show significant enrichment (allP < 10−10)
for functionally similar pairs in all three GO
branches (Fig. 5A) (41). There is also significant
enrichment of positive correlations of phenotypic
profiles (36) between interacting pairs in both
data sets (Fig. 5B and fig. S11). Such interactions,
when supported by strong phenotypic informa-
tion, constitute likely possibilities of functional
relationships. Lastly, both data sets are significant-
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proteins. (A) Average fraction of
essential proteins among pro-
teins whose distance is equal to
d from a protein selected from
essential, nonessential, and all
proteins. (B) Giant component
size of network formed by es-
sential proteins (arrow) compared
to 100,000 random networks of
same topological properties. (C)
The number of interacting es-
sential proteins that are also
found in the same complex com-
pared to 10,000 random selec-
tions of proteins of the same
number as essential proteins
(SOM IX).

0

0.005

0.01

0.015

0.02

0 20 40 60 80 100 120 140 160 180 200

Giant component size of network among essential proteins

D
is

tr
ib

ut
io

n

Observed
P < 10-3

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100 120
Number of protein pairs connected by an edge that are 

in the same complex 

D
is

tr
ib

ut
io

n

Observed
P < 10-5

A

C

B

0.15

0.25

0.35

0.45

1 2 3 4 5 6 7 8
Distance from reference protein (d )

Fr
ac

tio
n 

of
 e

ss
en

tia
l p

ro
te

in
s

Essential
All
Non Essential

3 OCTOBER 2008 VOL 322 SCIENCE www.sciencemag.org108

REPORTS

 o
n 

D
ec

em
be

r 3
, 2

01
6

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

𝑄



RESEARCH ARTICLE SUMMARY
◥

DISEASE NETWORKS

Uncovering disease-disease
relationships through the
incomplete interactome
Jörg Menche, Amitabh Sharma, Maksim Kitsak, Susan Dina Ghiassian, Marc Vidal,
Joseph Loscalzo, Albert-László Barabási*

INTRODUCTION: Adisease is rarely a straight-
forward consequence of an abnormality in a
single gene, but rather reflects the interplay
of multiple molecular processes. The rela-
tionships among these processes are encoded
in the interactome, a network that integrates
all physical interactions within a cell, from
protein-protein to regulatory protein–DNA
and metabolic interactions. The documented
propensity of disease-associated proteins to
interact with each other suggests that they
tend to cluster in the same neighborhood of
the interactome, forming a disease module, a
connected subgraph that contains all molecu-
lar determinants of a disease. The accurate
identification of the corresponding disease
module represents the first step toward a sys-

tematic understanding of themolecularmech-
anisms underlying a complex disease. Here,
we present a network-based framework to iden-
tify the location of disease modules within the
interactome and use the overlap between the
modules to predict disease-disease relationships.

RATIONALE: Despite impressive advances
in high-throughput interactome mapping and
disease gene identification, both the interac-
tome and our knowledge of disease-associated
genes remain incomplete. This incomplete-
ness prompts us to ask to what extent the
current data are sufficient to map out the
disease modules, the first step toward an in-
tegrated approach toward human disease.
To make progress, we must formulate math-

ematically the impact of network incomplete-
ness on the identifiability of disease modules,
quantifying the predictive power and the lim-
itations of the current interactome.

RESULTS:Using the tools of network science,
we show that we can only uncover disease
modules for diseases whose number of asso-

ciated genes exceeds a crit-
ical threshold determined
by thenetwork incomplete-
ness.We find that disease
proteins associated with
226 diseases are clustered
in the samenetworkneigh-

borhood, displaying a statistically significant
tendency to form identifiable diseasemodules.
The higher the degree of agglomeration of the
disease proteins within the interactome, the
higher the biological and functional similar-
ity of the corresponding genes. These find-
ings indicate that many local neighborhoods
of the interactome represent the observable
part of the true, larger and denser disease
modules.
If two disease modules overlap, local per-

turbations causing one disease can disrupt
pathways of the other disease module as well,
resulting in shared clinical and pathobiolog-
ical characteristics. To test this hypothesis,
wemeasure the network-based separation of
each disease pair, observing a direct relation
between the pathobiological similarity of
diseases and their relative distance in the
interactome. We find that disease pairs with
overlapping diseasemodules display significant
molecular similarity, elevated coexpression of
their associated genes, and similar symptoms
and high comorbidity. At the same time, non-
overlapping disease pairs lack any detectable
pathobiological relationships. The proposed
network-based distance allows us to predict
the pathobiological relationship even for dis-
eases that do not share genes.

CONCLUSION: Despite its incompleteness,
the interactome has reached sufficient cov-
erage to allow the systematic investigation
of disease mechanisms and to help uncover
the molecular origins of the pathobiological
relationships between diseases. The intro-
duced network-based framework can be ex-
tended to address numerous questions at the
forefront of network medicine, from inter-
preting genome-wide association study data
to drug target identification and repurposing.▪

RESEARCH

SCIENCE sciencemag.org 20 FEBRUARY 2015 • VOL 347 ISSUE 6224 841

ON OUR WEB SITE
◥

Read the full article
at http://dx.doi.
org/10.1126/
science.1257601
..................................................

Diseases within the interactome.The interactome collects all physical interactions between
a cell’s molecular components. Proteins associated with the same disease form connected
subgraphs, called disease modules, shown for multiple sclerosis (MS), peroxisomal disorders
(PD), and rheumatoid arthritis (RA). Disease pairs with overlapping modules (MS and RA)
have some phenotypic similarities and high comorbidity. Non-overlapping diseases, like MS
and PD, lack detectable clinical relationships.

The list of author affiliations is available in the full article online.
*Corresponding author. E-mail: alb@neu.edu
Cite this article as J. Menche et al., Science 347, 1257601
(2015). DOI: 10.1126/science.1257601
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Nodes: proteins
Edges: PPI interactions
Node colors: protein-disease associations

Menche et al., Science 2015
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¡ Given	disease	proteins,	compute	shortest	path	distance	
𝑑G of	each	disease	protein	to	the	closest	disease	protein	

¡ 𝑃(𝑑G) is	shifted	towards	smaller	𝑑G	compared	to	the	
random	expectation	𝑃IJKL 𝑑G
§ ⇒ Disease	proteins	agglomerate in	one	network	neighborhood

of increasing agglomeration of the disease genes,
the significance of the biological similarity in
Gene Ontology (GO) annotations (biological pro-
cesses, molecular function, and cellular compo-
nent) increases 10- to 100-fold (Fig. 2, C to E, and
fig. S3, a to c), an exceptionally strong effect (see
SM sect. 2 for statistical analysis). Similarly, as
the mean shortest distance between disease pro-
teins increases from 1 (agglomerated disease pro-
teins) to 3 (scattered disease proteins), we observe
a factor of 10 to 100 decrease in the significance of
GO termsimilarity (Fig. 2, F toH, and fig. S3, d to f).
Taken together, we find that genes associated

with the same disease tend to agglomerate in the
same neighborhood of the interactome. Indeed,
although ~80% of the disease proteins are dis-
connected from the observable module, these
isolates tend to be localized in its network vicin-
ity. This result offers quantitative support to the
hypothesis thatmany local neighborhoods of the
interactome represent the observable parts of
the true, larger and denser disease modules.

Relationship between diseases

If two disease modules overlap, local perturba-
tions leading to one disease will likely disrupt
pathways involved in the other disease module
as well, resulting in shared clinical characteristics.
To test the validity of this hypothesis, we introduce
the network-based separation of a disease pair, A
and B (Fig. 3A; see also figs. S5 to S7) using

sAB ≡ 〈dAB〉 −
〈dAA〉þ 〈dBB〉

2
ð1Þ

sAB compares the shortest distances between
proteins within each disease, 〈dAA〉 and 〈dBB〉, to
the shortest distances 〈dAB〉 between A-B protein
pairs. Proteins associated with both A and B have
dAB = 0. As discussed in SM section 3.3, the gen-
eralization of sAB to account for directed regulatory
and signaling interactions does not alter our sub-
sequent findings (fig. S8).
We find that only 7% of disease pairs have

overlapping disease neighborhoods with nega-
tive sAB (Fig. 3B); the remaining 93% have a po-
sitive sAB, indicating that their disease modules
are topologically separated (Fig. 3C). Because we
lack unambiguous true positive and true nega-
tive disease relationships that could be used as a
reference, we use two complementary null mod-
els to evaluate the statistical significance of each
disease pair compared to random expectation
(see SM section 2.2). At a global false discovery
level of 5%, we find that 75% of all disease pairs
exhibit significant sAB. To determine the degree
to which this network-based separation of two
diseases is predictive for pathobiological mani-
festations, we rely on four data sets:
1) Biological similarity: We find that the closer

two diseases are in the interactome, the higher
the GO annotation–based similarity of the pro-
teins associated with them (Fig. 3, D to F). The
effect is strong, resulting in a two-order-of-
magnitude decrease in GO term similarity as we
move from highly overlapping (sAB ≈ –2) to well-
separated disease pairs (sAB > 0).

SCIENCE sciencemag.org 20 FEBRUARY 2015 • VOL 347 ISSUE 6224 1257601-3

Fig. 2. Topological localization and biological similarity of disease genes. (A) The size of the largest
connected component S of proteins associated with the same disease shown for multiple sclerosis. The
observed module size, S = 11, is significantly larger than the random expectation Srand = 2 T 1. (B) The
distribution of the shortest distance of each disease protein to the next closest disease protein ds. For
multiple sclerosis, P(ds) is significantly shifted compared to the random expectation, indicating that
disease genes tend to agglomerate in each other’s network neighborhood. (C to H) The degree of the
network-based localization of a disease, as measured by the relative size of its observable module si =
Si/Nd and the mean shortest distance 〈ds〉, correlates strongly with the significance of the biological
similarity of the respective disease genes. Using the GO annotations, we determine for each disease how
similar its associated genes are in terms of their biological processes (C and F), molecular function (D
and G), and cellular component (E and H). Comparing the resulting values with random expectation, we
find that the more localized a disease is topologically (i.e., the larger si or the shorter 〈ds〉), the higher the
significance in the similarity of the associated genes.
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DISEASE NETWORKS

Uncovering disease-disease
relationships through the
incomplete interactome
Jörg Menche, Amitabh Sharma, Maksim Kitsak, Susan Dina Ghiassian, Marc Vidal,
Joseph Loscalzo, Albert-László Barabási*

INTRODUCTION: Adisease is rarely a straight-
forward consequence of an abnormality in a
single gene, but rather reflects the interplay
of multiple molecular processes. The rela-
tionships among these processes are encoded
in the interactome, a network that integrates
all physical interactions within a cell, from
protein-protein to regulatory protein–DNA
and metabolic interactions. The documented
propensity of disease-associated proteins to
interact with each other suggests that they
tend to cluster in the same neighborhood of
the interactome, forming a disease module, a
connected subgraph that contains all molecu-
lar determinants of a disease. The accurate
identification of the corresponding disease
module represents the first step toward a sys-

tematic understanding of themolecularmech-
anisms underlying a complex disease. Here,
we present a network-based framework to iden-
tify the location of disease modules within the
interactome and use the overlap between the
modules to predict disease-disease relationships.

RATIONALE: Despite impressive advances
in high-throughput interactome mapping and
disease gene identification, both the interac-
tome and our knowledge of disease-associated
genes remain incomplete. This incomplete-
ness prompts us to ask to what extent the
current data are sufficient to map out the
disease modules, the first step toward an in-
tegrated approach toward human disease.
To make progress, we must formulate math-

ematically the impact of network incomplete-
ness on the identifiability of disease modules,
quantifying the predictive power and the lim-
itations of the current interactome.

RESULTS:Using the tools of network science,
we show that we can only uncover disease
modules for diseases whose number of asso-

ciated genes exceeds a crit-
ical threshold determined
by thenetwork incomplete-
ness.We find that disease
proteins associated with
226 diseases are clustered
in the samenetworkneigh-

borhood, displaying a statistically significant
tendency to form identifiable diseasemodules.
The higher the degree of agglomeration of the
disease proteins within the interactome, the
higher the biological and functional similar-
ity of the corresponding genes. These find-
ings indicate that many local neighborhoods
of the interactome represent the observable
part of the true, larger and denser disease
modules.
If two disease modules overlap, local per-

turbations causing one disease can disrupt
pathways of the other disease module as well,
resulting in shared clinical and pathobiolog-
ical characteristics. To test this hypothesis,
wemeasure the network-based separation of
each disease pair, observing a direct relation
between the pathobiological similarity of
diseases and their relative distance in the
interactome. We find that disease pairs with
overlapping diseasemodules display significant
molecular similarity, elevated coexpression of
their associated genes, and similar symptoms
and high comorbidity. At the same time, non-
overlapping disease pairs lack any detectable
pathobiological relationships. The proposed
network-based distance allows us to predict
the pathobiological relationship even for dis-
eases that do not share genes.

CONCLUSION: Despite its incompleteness,
the interactome has reached sufficient cov-
erage to allow the systematic investigation
of disease mechanisms and to help uncover
the molecular origins of the pathobiological
relationships between diseases. The intro-
duced network-based framework can be ex-
tended to address numerous questions at the
forefront of network medicine, from inter-
preting genome-wide association study data
to drug target identification and repurposing.▪

RESEARCH
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Read the full article
at http://dx.doi.
org/10.1126/
science.1257601
..................................................

Diseases within the interactome.The interactome collects all physical interactions between
a cell’s molecular components. Proteins associated with the same disease form connected
subgraphs, called disease modules, shown for multiple sclerosis (MS), peroxisomal disorders
(PD), and rheumatoid arthritis (RA). Disease pairs with overlapping modules (MS and RA)
have some phenotypic similarities and high comorbidity. Non-overlapping diseases, like MS
and PD, lack detectable clinical relationships.

The list of author affiliations is available in the full article online.
*Corresponding author. E-mail: alb@neu.edu
Cite this article as J. Menche et al., Science 347, 1257601
(2015). DOI: 10.1126/science.1257601
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Menche et al., Science 2015

Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu
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Menche et al., Science 2015

Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

¡ Disease	module	principle:Disease	proteins	
tend	to	cluster in	one	network	neighborhood

¡ Local	interaction	principle:	Disease proteins	
tend	to	interact	with	each	other

¡Mutations	in	interacting	proteins	tend	to	lead	
to	diseases	with	similar	phenotypes	(i.e.,	
symptoms)



Can we use these principles to detect disease 
modules in biological networks?

22

Menche et al., Science 2015

Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

¡ Disease	module	principle:Disease	proteins	
tend	to	cluster in	one	network	neighborhood

¡ Local	interaction	principle:	Disease proteins	
tend	to	interact	with	each	other

¡Mutations	in	interacting	proteins	tend	to	lead	
to	diseases	with	similar	phenotypes	(i.e.,	
symptoms)



1) Very	basic	biology
2) Protein-protein	interaction	networks
3) Finding	disease	modules	in	networks

§ It	is	a	community	detection	task!	

4) Predicting	biological	attributes,	such	as	
protein	functions
§ Guilt-by-association	principle
§ Gene	recommender	systems

23Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



¡ By	disease	module	
principle,	disease	
proteins	are	localized	in	
network	
neighborhoods

¡ Disease	module	𝑫:
§ Set	of	proteins	involved	
in	disease	𝐷

§ Abnormalities/mutation
s in	these	proteins	cause	
a	disease	to	develop	

24Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

Disease modules, communities, 
clusters, groups



¡ Goal:	Find	disease	modules	in	a	PPI	network
¡ This	is	a	community	detection	problem
¡Many	community	detection	methods:
§ Girvan-Newman	method
§ Clique	percolationmethod
§ Louvain	method
§ Spectral clustering
§ Link	clustering

25Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

See CS224W lectures on Community Detection



¡ Three	basic	stages:
1. Construct	a	PPI	network

2. Apply	a	community	detection	method	

3. Evaluate	the	quality	of	detected	communities

¡ Questions:
§ How	to	evaluate	which	detected	communities	are	
“good”	disease	modules?

§ How	to	assign a	detected	community	to	a	disease?

26Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu
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¡ A	typical	method	detects	
many	communities	in	a	PPI	
network

¡ Some	detected	communities	
might	have	a	biological	
meaning,	some	might	
represent	spurious	effects

¡ Task:	Evaluate	the	quality	of	
each	detected	community

Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

Is there a significant association between proteins in a 
detected community and a disease? 



¡ This	means:	
§ “Are	unusually	many	(or:	unusually	few)	proteins	in	a	
community	actually	disease	proteins?”

¡ More	precise:
§ “If	I	picked	𝑛 proteins	at	random	(with	𝑛 being	the	
size	of	a	community),	how	probable	is	it	that	among	
these	proteins,	there	are	at	least	as	many	disease	
proteins as	there	are	in	the	community?”

28Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

Is there a significant association between proteins in a 
detected community and a disease? 



¡ Let	𝐶 = 𝑔",𝑔S,… , 𝑔U be	a	detected	community
¡ Let	𝐷 = {𝑑", 𝑑S,… , 𝑑W} be	disease	proteins	
involved	in	disease	𝐷

¡ Let	𝑘 = |𝐶 ∩ 𝐷| be	the	size	of	the	overlap	
between	𝐶 and	𝐷

If I picked 𝒏 proteins at random, how probable is it that among 
these proteins there are at least 𝒌 disease proteins?

What is the probability of observing association at least this 
extreme due to chance?

29Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



¡ Construct	a	2	x	2	contingency	table:

Associated with 
disease	𝑫

Not associated 
with disease 𝑫

Total

Within
community 𝑪

𝑘 𝑛 − 𝑘 𝑛

Outside 
community 𝑪

𝐾 − 𝑘 𝑁 − 𝑛	 − 𝐾 + 𝑘 𝑁 − 𝑛

Total 𝐾 𝑁 −𝐾 𝑁

𝐶 = 𝑔", 𝑔S,… , 𝑔U

𝐷 = {𝑑", 𝑑S,… , 𝑑W}𝑘 = |𝐶 ∩ 𝐷|

30Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

𝐶 𝐷



¡ Probability	to	get	this	contingency	table	if	there	
is	no	association	between	𝐶 and	𝐷:

Associated with 
disease	𝑫

Not associated 
with disease 𝑫

Total

Within
community 𝑪

𝑘 𝑛 − 𝑘 𝑛

Outside 
community 𝑪

𝐾 − 𝑘 𝑁 − 𝑛	 − 𝐾 + 𝑘 𝑁 − 𝑛

Total 𝐾 𝑁 −𝐾 𝑁

𝑃 𝐶 ∩ 𝐷 = 𝑘 = 	
W
b

cdb
Udb
c
U𝐶 𝐷

31

This is our null model!
Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



¡ Exact	hypergeometric	probability of	observing	
this	particular	contingency	table,	assuming	the	
given	marginal	totals:

𝑃 𝐶 ∩ 𝐷 = 𝑘 = 	
W
b

cdb
Udb
c
U

𝐶 𝐷

𝑃 𝐶 ∩ 𝐷 ≥ 𝑘 = ∑ghb
ijK	(W,U)𝑃 𝐶 ∩ 𝐷 = 𝑟

32

¡ Goal: Probability	of	observing	association	between	
𝐶 and	𝐷	at	least	this	extreme	due	to	chance	

¡ Consider	all	possible	overlaps	between	𝐶 and	𝐷
that	are	equal	or	larger	than	𝒌:

Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



𝑃 𝐶 ∩ 𝐷 ≥ 𝑘 = ∑ghb
ijK	(W,U)𝑃 𝐶 ∩ 𝐷 = 𝑟

𝑘

𝑃

Statistical enrichment of 
community 𝑪 in disease 𝑫 : 𝑷 𝑪 ∩ 𝑫 ≥ 𝒌

33

¡ One-tailed	Fisher’s	exact	test: Probability	of	
observing	the	overlap as	extreme	or	more	extreme	
under	the	null	hypothesis	of	no	association:

Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

p-value



¡ Data:
§ Human	protein-protein	interaction	network

§ 13,460	nodes,	150,000	edges	

§ Human	diseases
§ 70	diseases,	each	with	at	least	20	disease	proteins

¡ Community	detection	methods:
§ Link	clustering	[Ahn et	al.,	Nature	2010]
§ Louvain	method	[Blondel et	al.,	TE	2008]
§ Markov	clustering	method	(MCL)	[Van	Dongen,	SIAM	2008]

34Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



¡ Setup:
1. Use	community	detection	method	to	find	

communities	in	the	PPI	network
2. Use	Fisher’s	exact	test	to	determine,	for	each	

community-disease	pair,	if	community	is	
significantly	enriched	with	disease	proteins

3. Use	Bonferroni correction	to	counteract	the	
problem	of	multiple	statistical	comparisons

§ If	testing	𝑚 hypotheses	at	a	desired	significance	level	
𝛼 = 0.05,	then	the	Bonferroni correction	would	test	
each	individual	hypothesis	at	𝛼 = 0.05/𝑚

𝐶 𝐷

35Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu
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¡ Community-disease	pairs	with	significant	overlap	
versus	their	Jaccard similarity

Ghiassian et al., PLoS Comp Bio 2015

Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

Link clustering MCLLouvain method
Note: 

Jaccard 𝐶, 𝐷 = |r∩s|
|r∪s|



Fig 1. Topological properties of disease proteins within the Interactome. (A) Proteins associated with the same phenotype tend to localize in specific
neighborhoods of the Interactome, indicating the approximate location of the corresponding disease modules. Topological network communities are highly
interconnected groups of nodes. (B) Distribution of the fraction of disease proteins within the largest connected component (LCC) for 70 diseases. Only 10%-
30% of the disease proteins are part of the LCC. (C) LCC size of proteins associated with lysosomal storage disease compared to random expectation. Out of
45 disease proteins, 24 (53%) are part of the LCC (z-score = 23.42, empirical p-value< 10–6). (D) Significance of the LCC sizes as measured by the z-score

DIAMOnD and Disease Modules within the Human Interactome

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004120 April 8, 2015 3 / 21

• No detected community 
coincides with a full set of 
disease proteins

• 36% of MCL communities are 
significantly enriched in at 
least one disease

• Proteins in an enriched 
community that are not yet 
associated with a disease are 
disease protein candidates

37

Ghiassian et al., PLoS Comp Bio 2015

Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



¡ Other	tests	for	enrichment:
§ Binomial,	Chi-squared,	Z-test,	Kolmogorov-Smirnov,	
permutation

§ Gene	Set	Enrichment	Analysis	(GSEA)	uses	a	
variation	of	Kolmogorov-Smirnov	statistic	to	get	p-
values	[http://software.broadinstitute.org/gsea]

¡ All	tests	look	for	over-enrichment;	some	look	for	
under-enrichment

¡ Correction	for	multiple	hypothesis	testing	
¡ Some	diseases	may	be	subsets of	other	diseases	

38Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



¡ Proteins	in	detected	communities	should	have	
something	in	common,	e.g.,	they	are:
§ part	of	the	same	biological	pathway/cellular	component

§ co-expressed under	certain	conditions

§ putative	targets	of	the	same	regulatory	factor

¡ Use	enrichment	tests	to	check	whether	communities	
are	enriched	in	biological	pathways,	components,	etc.	

¡ Get	data	from	biomedical	databases:
§ Processes,	components:	Gene	Ontology

§ Pathways:	KEGG,	Reactome,	MSigDB

39Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

See CS224W handout on biomedical databases



1) Very	basic	biology
2) Protein-protein	interaction	networks
3) Finding	disease	modules	in	networks

§ It	is	a	community	detection	task!	

4) Predicting	biological	attributes,	such	as	
protein	functions
§ Guilt-by-association	principle
§ Gene	recommender	systems

40Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



G
en

es

Conditions
CDC3

CDC16
CLB4

RPN3RPT1

RPT6

UNK1

Protein degradation

Cell cycle

UNK2

Gene co-expression 
network

Fraser et al., Nat Genet 2004
Mostafavi, Morris, Proteomics 2012

41Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



¡ “What	does	my	gene	do?”
§ Goal: Determine	a	gene’s	function	based	on	who	
it	interacts	with	– “guilt-by-association”	principle

¡ “Give	me	more	genes	like	these”
§ E.g.,	Find	more	multiple	sclerosis	genes,	find	new	
ciliary	genes,	find	more	members	of	a	protein	
complex

Mostafavi, Morris, Proteomics 2012

42Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



Network data

Query gene

TP53

Community 
detection, then 

enrichment 
analysis

“Guilt-by-association” 
principles

Input Output

43Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



Network data

Query list

Gene 
recommender 

system

44

Input Output

Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



¡ Predict	gene	functions	by	guilt-by-association:

Query list: “positive 
examples”

MCA1

CDC48

CPR3

TDH2

45Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

¡ Question:	Which	of	the	unlabeled	nodes	are	likely	
involved	in	this	gene	function/biological	process?	

¡ Two	main	approaches:
§ Direct/Indirect	neighbor scoring
§ Label	propagation

Red: Genes involved in a gene 
function/biological process
White: Unlabeled genes



¡ Let	𝑾 be	a	𝑛×𝑛 (weighted)	adjacency	matrix	
over	𝑛 genes	in	a	genome

¡ Let	𝒚 = −1, 0, 1 U be	a	vector	of	labels:
§ 1:	positive gene,	known	to	be	involved	in	a	gene	
function/biological	process

§ -1:	negative gene
§ 0:	unlabeled gene

¡ Goal:	Predict	which	of	the	unlabeled	genes	
are	likely	positive
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¡ Goal: Predict	which	of	the	unlabeled	genes	are	
likely	positive

¡ Learn	a	vector	of	discriminant	scores	𝒇,	where	𝒇y
is	the	likelihood that	node	𝑖 is	positive

¡ Example:
𝒚 = [1, 1, 1, 1, 0,0,0,0,0,0,0,0,0,0]

𝒇 =	?

𝑾 = (weighted) adjacency matrix
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𝒇y =)𝑾y~𝒚~

U

~h"

48Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu

𝒇�� = 𝑾��,���" � 𝒚���"
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𝒇�� = 𝑾��,����� � 𝒚����� +𝑾��,���S � 𝒚�����

𝒇�� = 𝑾��,���S � 𝒚���S

Red: Positive genes
White: 𝒇y = 0

¡ Approach	#1:	Node	score	𝒇y is	the	weighted	
sum	of	the	labels	of	𝑖’s	direct	neighbors:

¡ Example:



𝒇y =)𝑾y~𝒚~

U

~h"
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𝒇�� = 𝑾��,���" � 𝒚���"
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𝒇�� = 𝑾��,����� � 𝒚����� +𝑾��,���S � 𝒚�����

𝒇�� = 𝑾��,���S � 𝒚���S

Red: Positive genes
White: 𝒇y = 0

¡ Approach	#1:	Node	score 𝒇y is	a	weighted	
sum	of	the	labels	of	𝑖’s	direct	neighbors:

¡ Example:

§ One half of GC’s neighbors are positives
§ One third of GA’s neighbors are positives
§ But: 𝒇�� = 𝒇�� (if 𝑾 is binary)



𝒇y =
1
𝒅y
)𝑾y~𝒚~

U

~h"

, 𝒅𝒊 =) 𝑾y~
~

𝒇y = 𝑫d"𝑾𝒚

𝑫 = 𝑑𝑖𝑎𝑔(𝒅)
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¡ Approach	#2:	Normalize	matrix	𝑾	using	the	
weighted	node	degrees:

¡ Example:
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Matrix notation:

Red: Positive genes
White: 𝒇y = 0

𝒇�� =
1
3𝑾��,���" � 𝒚���"	

𝒇�� =
1
3 (𝑾��,����� � 𝒚����� + 𝑾��,���S � 𝒚���S)

𝒇�� =
1
2𝑾��,���S � 𝒚���S
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¡Matrix	𝑷 = 𝑫d"𝑾 is	known	as	Markov	
transition	matrix
§ 𝑫 is	a	diagonal	matrix	with	diagonal	elements	𝒅y
§ 𝑷 is	a	row	stochastic	matrix,	∑ 𝑷y~ = 1~

¡ Row	𝑖 is	a	probability	distribution	over	
random	walks starting	at	node	𝑖

¡ 𝑷y~ is	probability	of	a	random	walker	
following	a	link	from	node	𝒊 to	node	𝒋

𝑖 𝑗
𝑷y~
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See also CS224W lecture on Link Analysis



[𝑷S]y~	= )𝑷yb𝑷b~

U

bh"

𝑷yb
𝑷b~

𝑖

𝑗

𝑘
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¡ Random	walk	interpretation	extends	a	direct	
neighbor	approach	to	include	indirect	
neighbors

¡ Idea:	Extend	the	formula	𝒇 =	𝑫d"𝑾𝒚 = 𝑷𝒚
to	include	second-degree	neighbors

¡ Probability	of	a	random	walk	of	length	two
between	node	𝑖 and	node	𝑗 is:

See also CS224W lecture on Link Analysis
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¡ Approach	#3: Consider	second-degree	
neighborswhen	calculating	node	score	𝒇y as:

𝑷yb
𝑷b~

𝑖

𝑗

𝑘

𝒇y = 	)𝑷y~𝒚~

U

~h"

+)[𝑷S]y~

U

~h"

𝒚~

Direct 
neighbors

Second-degree 
neighbors
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𝒇y = 	)𝑷y~𝒚~

U

~h"

+)[𝑷S]y~

U

~h"

𝒚~

Direct 
neighbors

Second-degree 
neighbors

GD

GB

GA

MCA1

CDC48

CPR3

TDH2

GCGE

GF

Red: Positive genes
White: 𝒇y = 0

Direct neighbor of a positive gene
Second-order neighbor of a positive gene

𝒇�� = 𝑷��,���"S � 𝒚���" + 𝑷��,���SS � 𝒚���S
+ 𝑷��,�����S � 𝒚�����

𝑷 = 𝑫d"𝑾

𝒇�� = 𝑷��,���" � 𝒚���"

[𝑷S]y~> 0 if there is a walk of length 2 between 𝑖 and	𝑗



¡ Approach	#3 can	be	extended to	include	other	
nodes	at	a	distance	of	length	𝒓 (usually	𝑟 < 4)

¡ Increasing	𝑟 beyond	2	often	results	in	
degradation	of	prediction	performance	[Chua	et	
al.,	Bioinformatics	2006,	Myers	et	al.,	Genome	
Biology	2005]

¡ Note:	Probability	of	a	random	walk	from	𝑖 to	𝑗
in	𝒓 steps	is	given	by	[𝑷g]y~

¡ Next: Use	random	walks	to	derive	label	
propagation
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¡ Label	propagation	generalizes local	
neighborhood-based	approaches	by	considering	
random	walks	of	all	lengths between	nodes

¡ The	algorithm	can	be	derived	as:
1. Iterative	diffusion	process	[Zhou	et	al.,	NIPS	2004]

2. Solution	to	a	specific	convex	optimization	task	[Zhou	
et	al.,	NIPS	2004,	Zhu	et	al.,	ICML	2003]

3. Maximum	a	posteriori	(MAP)	estimation	in	Gaussian	
Markov	Random	Fields	[Rue	and	Held,	Chapman	&	
Hall,	2005]

¡ Next:	Derivation	using	an	iterative	formulation	
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Intuition: Diffuse labels through edges of the network

Red: positive nodes
White: unlabeled nodes

Score

high

low
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Red: positive nodes
Pink: 𝒇y > 0

White: 𝒇y = 0



¡ The	diffusion	process	is	defined	as	an	iterative	
process	[Zhou	et	al.,	NIPS	2004]

¡ Diffusion	of	labels	through	edges:

§ Start	with	initial	label	information,	𝒇y
(�) = 𝒚𝒊

§ In	each	iteration,	each	node	receives	label	information	
from	its	neighbors,	and	also	retains	its	initial	label

§ 𝜆 specifies	relative	amount	of	label	information	from	
its	neighbors	and	its	initial	label

§ Finally,	the	label	of	each	unlabeled	node	is	set	to	be	
the	label	of	which	it	has	received	most	information
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¡ The	diffusion	process	is	defined	as	the	
following	iteration	[Zhou	et	al.,	NIPS	2004]

¡ At	iteration	𝑟 = 0, define	𝒇y
(�) ← 𝒚𝒊

¡ At	iteration	𝑟 + 1,	the	score	of	node	𝑖 is	the	
weighted	average of	the	scores	of	𝑖’s	
neighbors	in	iteration	𝑟,	and	𝑖’s	initial	label:

𝒇y
(g�") ← 1− 𝜆 𝒚y + 𝜆)𝑾y~𝒇~

(g)
U

~h"

0 < 𝜆 < 1 is a model parameter
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Score
high

low

𝒇(S) = 𝜆𝑾𝒇(") + 1 − 𝜆 𝒚

𝒇(") = 𝜆𝑾𝒚 + 1− 𝜆 𝒚

All nodes reachable with a 
walk of length 2 are assigned 
a non-zero value
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𝒇(�) = 𝒚
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¡ If	all	eigenvalues of	𝑾 are	in	range	 −1, 1 ,	
then	the	sequence	𝒇(g) converges	to:

§ [𝑾g]y~> 0 if	a walk	of	length	𝑟 between	𝑖 and	𝑗
§ Weight	𝜆g decreases	with	increasing	distance

𝒇 = (1 − 𝜆)) 𝜆𝑾 g𝒚
�

gh�

61

¡ ⇒ Discriminant	scores	𝒇 are	weighted	sum	of	
walks	of	all	lengths	between	the	nodes

¡ ⇒ High	score	𝒇y is	assigned	to	𝑖 if	𝑖 is	connected	to	
positively	labeled	nodes	with	many	short	walks
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Zhou et al., NIPS 2004



Score
high

low

𝒇(S) = 𝜆𝑾𝒇(") + 1 − 𝜆 𝒚

𝒇(") = 𝜆𝑾𝒚 + 1− 𝜆 𝒚

All nodes reachable with a 
walk of length 2 are assigned 
a non-zero value
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𝒇(�) = 𝒚

𝒇 = (1 − 𝜆)) 𝜆𝑾 g𝒚
�

gh�
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¡ Recall: The	infinite	sum	converges	only	if	all	
eigenvalues	of	𝑾 are	in	range	 −1, 1

¡ To	satisfy	this	condition,	normalize	𝑾 before	diffusion:
§ Symmetric normalization:

§ Asymmetric normalization:

¡ Note:	Avoid	self-reinforcement by	setting	diagonal	
elements	of	𝑾 to	0

¡ Note:	Label	information	is	spread	symmetrically since	
𝑺 is	a	symmetric	matrix

𝑺 = 	𝑫d"/S𝑾𝑫d"/S

𝑷 =	𝑫d"𝑾
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𝑫 = 𝑑𝑖𝑎𝑔(𝒅)
Note:



¡ Given	that	𝜌 𝑊 ≤ 1,	use	Taylor	expansion	to	
compute	the	exact	solution	for	label	
propagation:

¡ Note: The	diffusion	result	𝒇 does	not	depend	
on	the	initial	value 𝒇(�)

𝒇 = (1 − 𝜆)(𝑰 − 𝜆𝑺)d"𝒚

(𝐼 − 𝑨)d"=) 𝑨g
�

gh�

Taylor expansion:
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𝒇 = (1 − 𝜆)) 𝜆𝑺 g𝒚
�

gh�⇒

Jure	Leskovec,	Stanford	CS224W:	Social	and	Information	Network	Analysis,	http://cs224w.stanford.edu



¡ Direct	neighbor	scoring depends	on:
§ Strength	of	links	to	query	genes
§ #	of	query	gene	neighbors
§ Example	algorithm:	BioPIXIE [Marcotte et	al.,	Nature	1999,	
Myers	et	al.,	Genome	Biology	2005]

¡ Label	propagation	scoring	depends	on:
§ Iteratively	propagating	“direct	neighbor	score”	allowing	
indirect	links	to	impact	scores

§ Whether	or	not	a	gene	is	in	a	connected	component	of	
genes	with	query	genes

§ Example	algorithm:	GeneMANIA [Mostafavi et	al.,	Genome	
Biology	2008]
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¡ Gene	function	prediction	is	a	multi-label	node	classification	task

¡ Every	node	(gene)	is	assigned	one	or	more	labels	(cellular	functions)

¡ Setup:

1. For	each	gene	function	we	use	a	guilt-by-association	based	
approach to	learn	a	discriminative	score	𝒇y for	each	node	𝑖

2. During	the	training	phase,	we	observe	only	a	certain	fraction	of	
genes	and	all	their	functions

3. The	task	is	then	to	predict	functions	for	the	remaining	genes

¡ Determine	the	optimal	value	of	𝜆 parameter	using	cross-validation
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Label propagation-based approaches outperform local 
neighborhood-based approaches
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Mostafavi et al., Genome Biology 2008
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Comparison of label propagation with three normalization 
methods on the protein-interaction (PI) and genetic-

interaction (GI) networks

Mostafavi et al., Genome Biology 2008
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MRE11A
RAD51
MLH1
MSH2
DMC1
RAD51AP1
RAD50
MSH6
XRCC3
PCNA
XRCC2

Query list:

69

Zuberi et al., NAR 2013
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