Color

Maneesh Agrawala

CS 448B: Visualization
Spring 2016

Assignment 3: Dynamic Queries

Create a small interactive dynamic query application similar to Homefinder, but for SF Crime Data.

1. Storyboard interface
2. Implement interface and produce final writeup
3. Submit the application and a final writeup on the wiki

Can work alone or in pairs
Final write up due before class on May 4, 2016

Color

Color in Visualization

Identify, Group, Layer, Highlight

Purpose of Color

To label
To measure
To represent and imitate
To enliven and decorate
"Above all, do no harm."

- Edward Tufte

Topics

Color Perception
Color Naming
Using Color in Visualization

Color Perception
 Physical World, Visual System, Mental Models

What is Color?

Physical World Visual System Mental Models
Lights, surfaces,

objects $\quad \longrightarrow$\begin{tabular}{c}
Eye, optic

nerve, visual

cortex

\longrightarrow

Red, green, brown

Bright, light, dark,

vivid, colorful, dull
\end{tabular}

Warm, cool, bold,
blah, attractive, ugly, pleasant, jarring

Color Models

Physical World		
Light Energy	Cone Response Spectral distribution functions	Encode as three values $(\mathrm{L}, \mathrm{M}, \mathrm{S})$
$\mathrm{F}(\lambda)$		

Physical World

Light is radiation in range of wavelengths

Light of single wavelength is monochromatic

Most Colors not Monochromatic

Curves describe spectral composition $\Phi(\lambda)$ of stimulus

Most Colors not Monochromatic

Curves describe spectral composition $\Phi(\lambda)$ of stimulus

Emissive vs. reflective light

Additive
(digital displays)

Subtractive
(print, e-paper)

Perception Vs. Measurement

You do not see the spectrum of light

- Eyes make limited measurements

Eyes physically adapt to circumstance

- You brain adapts in various ways
\square Weird stuff also happens

Retina

Rods and Cones

Rods

\square No color (sort of)

- Spread over the retina
\square More sensitive
Cones
- 3 types sensitive to different frequencies
\square Concentrated in fovea (center of the retina)
\square Less sensitive

As light enters our cones...

LMS (Long, Middle, Short) Cones

Sensitive to different wavelength

A Field Guide to Digital Color, Maureen Stone

Cone Response

Integrate cone response with input spectra

Computing Cone Response

Integrate cone response with input spectra

Metamers

All spectra that stimulate the same cone response are indistinguishable

Two different spectra
$\Phi_{1}(\lambda), \Phi_{2}(\lambda)$
produce same L,M,S response

CIE XYZ Color Space

Standardized in 1931 to mathematically represent tri-stimulus response
"Standard observer" response curves

Chromaticity Diagram

Chromaticity Diagram

Project $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ on a plane to separate colorfulness from brightness

$$
\begin{aligned}
& x=X /(X+Y+Z) \\
& y=Y /(X+Y+Z) \\
& z=Z /(X+Y+Z) \\
& 1=x+y+Z
\end{aligned}
$$

CIE chromaticity diagram

Spectrum locus

Courtesy of PhotoResearch, Inc.

CIE chromaticity diagram

Spectrum locus
Purple line

CIE chromaticity diagram

Spectrum locus
Purple line
Mixture of two lights appears as a straight line

Courtesy of PhotoResearch, Inc.

Display Gamut

Typically defined by:

3 "Primaries"
Convex region

Other Gamuts

Fig. 3. The color gamut of LCDs with backlights employing CCFL, white LEDs and RGB LEDs are shown here along with the NTSC (television) color gamut.

Color Models

Physical World

Visual System

Mental Models

Light Energy	Cone Response	Opponent Encoding	Perceptua Models	Appearance Models
Spectral distribution functions$F(\lambda)$	Encode as three values (L,M,S) CIE (X,Y,Z)	Separate lightness, chroma	Color "Space"	Color in Context
		(A,R-G, Y-B)	lightness saturation	Background, Size, ...
		Separate ness, chroma	CIELAB Munsell	CIECAM02
		olor blindness		
		age encoding		

Opponent processing

LMS are linearly combined to create:

Lightness

Red-green contrast
Yellow-blue contrast

Fairchild

Opponent Color

Definition
\square Achromatic, lightness axis
\square R-G and Y-B axis

- Separate lightness from chroma channels First level encoding
\square Linear combination of LMS
- Before optic nerve
- Basis for perception
\square Defines "color blindness"

Color blindness

Missing one or more retina cones or rods

Deuteranope

Luminance

Vischeck

Simulates color vision deficiencies

\square Web service or Photoshop plug-in
\square Robert Dougherty and Alex Wade

www.vischeck.com

Deuteranope

Protanope
Tritanope

Color Models

Physical World

Visual System

Mental Models

Light Energy	Cone Response	Opponent Encoding	Perceptual Models	Appearance Models
Spectral distribution functions	Encode as three values (L,M,S)	Separate lightness, chroma	$\begin{aligned} & \text { Color } \\ & \text { "Space" } \end{aligned}$	Color in Context
$F(\lambda)$	CIE (X,Y,Z)	(A,R-G, Y-B)	lightness saturation	Background, Size, ...
			CIELAB Munsell (HVC)	CIECAM02
		Color differences "Intuitive" color spaces		
		Color scales		

Axes of CIE LAB

Correspond to opponent signals
L* = Luminance
a* $=$ Red-green contrast
$b^{*}=$ Yellow-blue contrast
Scaling of axes to represent "color distance" JND = Just noticeable difference (~2.3 units)

Munsell Atlas

Developed the first perceptual color system based on his experience as an artist (1905)

Hue, Value, Chroma

Hue, Value, Chroma

Hue, Value, Chroma

Hue, Value, Chroma

Psuedo-Perceptual Models

HLS, HSV, HSB

NOT perceptual models
Simple renotation of RGB
\square View along gray axis

- See a hue hexagon
$\square \mathrm{L}$ or V is grayscale pixel value
Cannot predict perceived lightness

Perceptual brightness

(Photoshop)

Perceptual brightness

(CIE XYZ)

Perceptual brightness

Color Models

Physical World

Visual System

Mental Models

Light Energy	Cone Response	Opponent Encoding	Perceptual Models	Appearance Models
Spectral distribution functions$F(\lambda)$	$\begin{gathered} \text { Encode as } \\ \text { three values } \\ (\mathrm{L}, \mathrm{M}, \mathrm{~S}) \\ \mathrm{CIE}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \end{gathered}$	Separate lightness, chroma$(A, R-G, Y-B)$	Color "Space"	Color in Context
			Hue, lightness saturation	Adaptation, Background, Size, ...
			CIELAB Munsell (HVC)	CIECAM02 Adaptation
				ontrast effects ge appearance mplex matching

Simultaneous Contrast

The inner and outer thin rings are the physical purple

Simultaneous Contrast

Simultaneous Contrast

Affects Lightness Scale

Bezold Effect

Crispening

Perceived difference depends on background

From Fairchild, Color Appearance Models

Spreading

Adjacent colors blend

Spatial frequency

- The paint chip problem
- Small text, lines, glyphs
- Image colors

Redrawn from Foundations of Vision © Brian Wandell, Stanford University

Color Naming

What color is this?

What color is this?

"Yellow"

What color is this?

What color is this?

"Blue"

What color is this?

What color is this?

Colors according to XKCD...

Basic color terms

Chance discovery by Brent Berlin and Paul Kay

Basic color terms

Chance discovery by Brent Berlin and Paul Kay

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay
Initial study in 1969
Surveyed speakers from 20 languages
Literature from 69 languages

World color survey

World color survey

World color survey

Naming information from 2616 speakers from 110 languages on 330 Munsell color chips

Results from WCS (Mexico)

Language \#72 (Mixteco)
Wutual into $=0.942 /$ Contribution $=0.476$

Results from WCS (South Pacific)

Mutual info $=0.939 /$ Contribution $=0.487$

tual info $=0.939 /$ Contribution $=0.51$

Universal (?) Basic Color Terms

Basic color terms recur across languages

White	Red	Pink
Grey	Yellow	Brown
Black	Green	Orange
	Blue	Purple

Evolution of Basic Color Terms

Proposed universal evolution across languages

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors

400nm

Naming affects color perception

Color name boundaries

> Green Blue

Color naming models

Model 3 million responses from XKCD survey
Bins in LAB space sized by saliency:
How much do people agree on color name?
Modeled by entropy of p(name | color)

lcicle tree with colors

Using Color in Visualization

Gray's Anatomy

Superficial dissection of the right side of the neck,
showing the carotid and subclavian arteries
http://www.bartleby.com/107/illus520.html

Molecular Models

Product Categories

Grouping, Highlighting

	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
red	25.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
green	22.14	51.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
blue	13.17	3.71	74.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
gray	63.46	73.30	78.05	64.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
black	0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71
	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
red	25.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
green	22.14	51.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
blue	13.17	3.71	74.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
gray	63.46	73.30	78.05	64.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
black	0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71

Radio Spectrum Map (33 colors)

http://www.cybergeography.org/atlas/us spectrum map.pdf

Distinguishable on Inspection

Palette Design + Color Names

Minimize overlap and ambiguity of color names

Color Name Distance										Salience	Name blue 62.9\%
0.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.20	. 47	
1.00	0.00	1.00	0.97	1.00	1.00	1.00	1.00	0.96	1.00	. 90	orange 93.9\%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.90	0.99	. 67	green 79.8\%
1.00	0.97	1.00	0.00	1.00	0.95	0.99	1.00	1.00	1.00	. 66	red 80.4\%
0.98	1.00	1.00	1.00	0.00	0.96	0.91	0.97	1.00	0.99	. 47	purple 51.4\%
1.00	1.00	1.00	0.95	0.96	0.00	0.97	0.93	0.98	1.00	. 37	brown 54.0\%
1.00	1.00	1.00	0.99	0.91	0.97	0.00	1.00	1.00	1.00	. 58	pink 71.7%
1.00	1.00	1.00	1.00	0.97	0.93	1.00	0.00	1.00	1.00	. 67	grey 79.4\%
1.00	0.96	0.90	1.00	1.00	0.98	1.00	1.00	0.00	1.00	. 18	yellow 31.2\%
0.20	1.00	0.99	1.00	0.99	1.00	1.00	1.00	1.00	0.00	. 25	blue 25.4%
Tableau-10							Average 0.97			. 52	

http://vis.stanford.edu/color-names

Palette Design + Color Names

Minimize overlap and ambiguity of color names

Color Name Distance										Salience	Name blue 50.5\%
0.00	1.00	1.00	0.89	0.07	1.00	0.35	0.99	1.00	0.89	. 30	
1.00	0.00	0.99	1.00	1.00	0.92	1.00	0.84	0.98	0.99	. 21	red 27.8\%
1.00	0.99	0.00	1.00	0.98	1.00	1.00	1.00	0.17	1.00	. 34	green 36.8\%
0.89	1.00	1.00	0.00	0.98	1.00	0.71	0.93	1.00	0.32	. 55	purple 67.3\%
0.07	1.00	0.98	0.98	0.00	1.00	0.36	1.00	0.97	0.95	. 20	blue 36.6%
1.00	0.92	1.00	1.00	1.00	0.00	1.00	0.97	0.99	1.00	. 39	orange 51.9\%
0.35	1.00	1.00	0.71	0.36	1.00	0.00	0.95	0.92	0.42	. 13	blue 15.7\%
0.99	0.84	1.00	0.93	1.00	0.97	0.95	0.00	0.98	0.85	. 16	pink 29.4\%
1.00	0.98	0.17	1.00	0.97	0.99	0.92	0.98	0.00	0.97	. 12	green 21.7%
0.89	0.99	1.00	0.32	0.95	1.00	0.42	0.85	0.97	0.00	. 30	purple 23.9\%
Excel-10							Average 0.87			. 27	

Mapping Data to Color Scale

Default rainbow maps

Avoid rainbow color maps!

1. People segment colors into classes
2. Hues are not naturally ordered
3. Different lightness emphasizes certain scalar values
4. Low luminance colors (blue) hide high frequencies

Phase Diagrams (hue scale)

Singularities occur where all colors meet

The optical singularities of bianisotropic crystals, by M. V. Berry

Phases of the Tides

Figure 1.9. Cotidal chart. Tide phases relative to Greenwich are plotted for all the world's oceans. Phase progresses from red to orange to yellow to green to blue to purple. The lines converge on anphidromic points, singularities on the earth' s surface where there is no defined tide. [Winfree, 1987 \#1195 , p. 17].

Classing quantitative data

Age-adjusted mortality rates for the United States

Quantitative color encoding

Sequential color scale

Constrain hue, vary luminance/saturation Map higher values to darker colors

Diverging color scale
Useful when data has a meaningful "midpoint"
Use neutral color (e.g., grey) for midpoint
Use saturated colors for endpoints
Limit number of steps in color to 3-9

Color Brewer

Sequential color scheme

Sequential color scheme

Design of sequential color scales

Hue-Lightness (Recommended)
Higher values mapped to darker colors
ColorBrewer schemes have 3-9 steps

Hue Transition

Two hues
Neighboring hues interpolate better Couple with change in lightness

Diverging color scheme

Diverging color scheme

Diverging color scheme

Hue Transition

Carefully handle midpoint
\square Critical class
Low, Average, High
'Average' should be gray
\square Critical breakpoint
Defining value e.g. 0
Positive \& negative should use different hues
Extremes saturated, middle desaturated

Hints for the colorist

Use only a few colors (~6 ideal)
Colors should be distinctive and named Strive for color harmony (natural colors?)
Use cultural conventions; appreciate symbolism
Beware of bad interactions (red/blue etc.)
Get it right in black and white
Respect the color blind

