Multidimensional Visualization

Maneesh Agrawala

CS 448B: Visualization
Spring 2016

Data Quality \& Usability Hurdles

Missing Data
Erroneous Values
Type Conversion
Entity Resolution
Data Integration
no measurements, redacted, ...? misspelling, outliers, ...? e.g., zip code to lat-Ion diff. values for the same thing? effort/errors when combining data

LESSON: Anticipate problems with your data. Many research problems around these issues!

Will Burtin, 1951

Lessons

Exploratory Process
 1 Construct graphics to address questions
 2 Inspect "answer" and assess new questions
 3 Repeat!
 Transform the data appropriately (e.g., invert, log)
 "Show data variation, not design variation"

Common Statistical Methods

Question	Data Type	Parametric N	Non-Parametric
Do data distributions have different "centers"? (aka "location" tests)	$\begin{aligned} & 2 \text { uni. dists } \\ & >2 \text { uni. dists } \\ & >2 \text { multi. dists } \end{aligned}$	t-Test ANOVA MANOVA	Mann-Whitney U Kruskal-Wallis Median Test
Are observed counts significantly different?	Counts in categories		χ^{2} (chi-squared)
Are two vars related?	2 variables	Pearson coeff. F	Rank correl.
Do 1 (or more) variables predict another?	Continuous Binary	Linear regression Logistic regression	

Choropleth maps of cancer deaths in Texas.
One plot shows a real data sets. The others are simulated under the null hypothesis of spatial independence.

Can you spot the real data? If so, you have some evidence of spatial dependence in the data.

Distance vs. angle for 3 point shots by the LA Lakers.

One plot is the real data. The others are generated according to a null hypothesis of quadratic relationship.

Assignment 2: Exploratory Data Analysis

Use Tableau to formulate \& answer questions
First steps

- Step 1: Pick a domain
- Step 2: Pose questions
- Step 3: Find data
- Iterate

Create visualizations

- Interact with data
- Question will evolve
- Tableau

Make wiki notebook

- Keep record of all steps you took to answer the questions

Due before class on Apr 18, 2016

Multidimensional Visualization

Visual Encoding Variables

Position
Length
Area
Volume
Value
Texture
Color
Orientation
Shape
~8 dimensions?

Example: Coffee Sales

Sales figures for a fictional coffee chain:

Sales
Profit
Marketing
Product Type
Market

Q-Ratio
Q-Ratio
Q-Ratio
N \{Coffee, Espresso, Herbal Tea, Tea\}
N \{Central, East, South, West\}

Trellis Plots

A trellis plot subdivides space to enable comparison across multiple plots
Typically nominal or ordinal variables are used as dimensions for subdivision

Separation: Small Multiples

[Figure 2.11, p. 38, MacEachren 95]

Scatterplot Matrix (SPLOM)

Scatter plots enabling pair-wise comparison of each data dimension

Small Multiples friom wills 95]

Linking Assists to Positions

Dimensional Projection

http://www.ggobi.orgl

Principal Component Analysis

1. Mean-center the data
2. Find \perp basis vectors
that maximize the data variance
3. Plot the data using the top vectors

Chernoff Faces (1973)

Insight: We have evolved a sophisticated ability to interpret facial expression

Idea: Map data variables to facial features

Question: Do we process facial features in an uncorrelated way? (i.e., are they separable?)

This is just one example of nD "glyphs"

Visualizing Multiple Dimensions

Strategies
Avoid "over-encoding"
Use space and small multiples intelligently
Reduce the problem space
Use interaction to generate relevant views
There is rarely a single visualization that answers all questions. Instead, the ability to generate appropriate visualizations quickly is key

Parallel Coordinates

Parallel Coordinates [Inselberg]

The Multidimensional Detective

The Dataset:
Production data for 473 batches of a VLSI chip
16 process parameters:
X1: The yield: \% of produced chips that are useful
X2: \quad The quality of the produced chips (speed)
X3 ... X12: 10 types of defects (zero defects shown at top)
X13 ... X16: 4 physical parameters

The Objective:
Raise the yield (X1) and maintain high quality (X2)

Parallel Coordinates

Figure 1: The full dataset consisting of 473 batches

Inselberg's Principles

1. Do not let the picture scare you
2. Understand your objectives

Use them to obtain visual cues
3. Carefully scrutinize the picture
4. Test your assumptions, especially the "I am really sure of's"
5. You can't be unlucky all the time!

Each line represents a tuple (e.g., VLSI batch) Filtered below for high values of X1 and X2

Figure 2: The batches high in Yield, $X 1$, and Quality, $X 2$.

Look for batches with nearly zero defects (9/10) Most of these have low yields \rightarrow defects OK.

Notice that X6 behaves differently.
Allow 2 defects, including $X 6 \rightarrow$ best batches

Figure 1: The full dataset consisting of 473 batches

Radar Plot / Star Graph

"Parallel" dimensions in polar coordinate space Best if same units apply to each axis

Tableau / Polaris

Tableau

Research at Stanford: "Polaris" by Stolte, Tang \& Hanrahan.

Tableau

Tableau demo

The dataset:

- Federal Elections Commission Receipts
- Every Congressional Candidate from 1996 to 2002
- 4 Election Cycles
- 9216 Candidacies

Data Set Schema

- Year (Qi)
- Candidate Code (N)
- Candidate Name (N)
- Incumbent / Challenger / Open-Seat (N)
- Party Code (N) [1=Dem,2=Rep,3=Other]
- Party Name (N)
- Total Receipts (Qr)
- State (N)
- District (N)
- This is a subset of the larger data set available from the FEC, but should be sufficient for the demo

Hypotheses?

What might we learn from this data?

Hypotheses?

What might we learn from this data?

- Has spending increased over time?
$\square \quad$ Do democrats or republicans spend more money?
- Candidates from which state spend the most money?

Tableau Demo

Polaris/Tableau Approach

Insight: simultaneously specify both database queries and visualization

Choose data, then visualization, not vice versa
Use smart defaults for visual encodings

Recently: automate visualization design (ShowMe - Like APT)

Specifying Table Configurations

Operands are names of database fields
Each operand interpreted as a set \{...\}
Data is either Ordinal or Quantitative
Three operators:
concatenation (+)
cross product (x)
nest (/)

Table Algebra: Operands

Ordinal fields: interpret domain as a set that partitions table into rows and columns

$$
\text { Quarter = \{(Qtr1),(Qtr2),(Qtr3),(Qtr4)\} } \rightarrow
$$

Qtr1	Qtr2	Qtr3	Qtr4
95892	101760	105282	98225

Quantitative fields: treat domain as single element set and encode spatially as axes

$$
\text { Profit }=\{(\text { Profit[-410,650] })\} \rightarrow
$$

Concatenation (+) Operator

Ordered union of set interpretations

```
Quarter + Product Type
= {(Qtr1),(Qtr2),(Qtr3),(Qtr4)} + {(Coffee), (Espresso)}
= {(Qtr1),(Qtr2),(Qtr3),(Qtr4),(Coffee),(Espresso)}
```

Qtr1	Qtr2	Qtr3	Qtr4	Coffee	Espresso
48	59	57	53	151	21

Profit + Sales $=\{($ Profit[-310,620]),(Sales[0,1000]) $\}$

Cross (x) Operator

Cross-product of set interpretations
Quarter x Product Type
= \{(Qtr1,Coffee), (Qtr1, Tea), (Qtr2, Coffee), (Qtr2, Tea), (Qtr3, Coffee), (Qtr3, Tea), (Qtr4, Coffee), (Qtr4,Tea)\}

Qtr1		Qtr2		Qtr3			Qtr4	
Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	
131	19	160	20	178	12	134	33	

Product Type x Profit =

Nest (I) Operator

Cross-product filtered by existing records
Quarter x Month
creates twelve entries for each quarter. i.e., (Qtr1, December)

Quarter / Month
creates three entries per quarter based on tuples in database (not semantics)

Polaris/Tableau Table Algebra

The operators (+, x, /) and operands (O, Q) provide
an algebra for tabular visualization.
Algebraic statements are then mapped to:
Visualizations - trellis plot partitions, visual encodings Queries - selection, projection, group-by aggregation

In Tableau, users make statements via drag-and-drop Note that this specifies operands NOT operators! Operators are inferred by data type (O, Q)

Ordinal - Ordinal

State	Product Type			
	Coffee	Espresso	Herbal Tea	Tea
Colorado	-	-	-	-
Connecticut	\bullet	-	-	-
Florida	-	-	-	-
Illinois	-		-	-
lowa	-	-	-	
Louisiana	-	-	-	
Massachusetts	-	-	-	-
Missouri	-	-	\bullet	-
Nevada	-	-	-	
New Hampshire	\bullet	-	-	-
New Mexico	\bullet	\bullet	-	
New York	\bigcirc	\bigcirc	-	-
Ohio	-	-	-	-
Oklahoma	-	-	-	
Oregon	\bullet	\bigcirc	-	-
Texas	-	-	-	
Utah	\bullet	-	-	-
Washington	-	-	-	-
Wisconsin	-	\bullet	-	-

Quantitative - Quantitative

Ordinal - Quantitative

Summary

Visualizing Multiple Dimensions

\square Start by visualizing individual dimensions
\square Avoid "over-encoding"

- Use space and small multiples intelligently

■ Use interaction to generate relevant views
There is rarely a single visualization that answers all questions. Instead, the ability to generate appropriate visualizations quickly is key

