Identifying Design Principles Maneesh Agrawala CS 448B: Visualization Spring 2016

Announcements

Final project

Design new visualization method (e.g. software)

- Pose problem, Implement creative solution
- Design studies/evaluations less common but also possible (talk to us)

Deliverables

- Implementation of solution
- **6**-8 page paper in format of conference paper submission
- Project progress presentations

Schedule

- Project proposal: 5/11
- Project progress presentation: 5/23 in class (3-4 min) slide presentation
- Final poster presentation: 6/3 12:15-3:15pm Location: TBD
- Final paper: 6/5 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

<section-header><section-header><section-header><text><text><list-item><list-item><list-item><list-item><list-item><list-item>

Approaches

Direct rule-based methods Constraint satisfaction Optimization

Dynamic space management [Bell 00] Manage free space on desktop to prevent window overlap

Dynamic space management [Bell 00]

Goal: Place new elements to avoid overlap

- Elements are axis-aligned rectangles
- Keep track of largest empty space rectangles

Pros and cons

Pros

- Designed to run extremely quickly
- Simple layout algorithms are easy to code

Cons

Complex layouts require large rule bases with lots of special cases

More complicated to maintain

Adaptive Grid~Based Document Layout Chuck Jacobs¹ Wilmot Li² evan schrier² David Bargeron¹ David Salesin^{1,3}

Pros and cons

Pros

- Often run fast (at least one-way constraints)
- Constraint solving systems are available online
- Can be easier to specify relative layout constraints than to code direct layout algorithm

Cons

- Easy to over-constrain the problem
- Constraint solving systems can only solve some types of layout problems
- Difficult to encode desired layout in terms of mathematical constraints

Layout as optimization

Scene description

- **Geometry:** polygons, bounding boxes, lines, points, etc.
- **Layout parameters:** position, orientation, scale, color, etc.

Large design space of possible layouts

To use optimization we will specify ...

- Initialize/Perturb functions: Form a layout
- **Penalty function:** Evaluate quality of layout
- ... and find layout that minimizes penalty

Optimization algorithms

There are lots of them:

line search, Newton's method, A*, tabu, gradient descent, conjugate gradient, linear programming, quadratic programming, simulated annealing, ...

Differences

- Speed
- Memory
- Properties of the solution
- Requirements

Simulated annealing

Penalty: Describes desirable/undesirable layout features

Pros and cons

Pros

Much more flexible than linear constraint solving systems

Cons

- Can be relatively slow to converge
- Need to set penalty function parameters (weights)
- Difficult to encode desired layout in terms of mathematical penalty functions

Design principles

Sometimes specified in design books

- Tufte, Few, photography manuals, cartography books ...
- Often specified at a high level
- Challenge is to transform principles into constraints or penalties

			Kolik Andre Stationen, Sie Different Kolik Andre Stationen, Sie Different Kolik K
0.400	0.000	x0.470	Windowski w State
0.575	0.150		Terrender Versionen 198 dat seine ander seine ander seine seine der seine sein
⊙ Gump_City	0.800	0.825 0.875	
			The second contract of the second contract oo the second contract oothere of the second con

Cartographer Eduard Imhof's labeling heurists transformed into penalty functions for an optimization based point labeling system [Edmondson 97]

Road Layout Constraints

Length

Ensure all roads visible Maintain ordering by length

Orientation Maintain original orientation

Topological errors Prevent false Prevent missing

Ensure separation

Overall route shape

Maintain endpoint direction Maintain endpoint distance $((L_{min} - I(r_i)) / L_{min})^2 * W_{small}$ $W_{shuffle}$

 $|\alpha_{curr}(r_i) - \alpha_{orig}(r_i)| * W_{orient}$

$$\begin{split} \min(\mathbf{d}_{\mathsf{origin}}\,,\,\mathbf{d}_{\mathsf{dest}})*\,\mathbf{W}_{\mathsf{false}} \\ & \mathsf{d}*\,\mathbf{W}_{\mathsf{missing}} \\ & \min(\mathbf{d}_{\mathsf{ext}}\,,\,\mathsf{E})*\,\mathbf{W}_{\mathsf{ext}} \end{split}$$

$$\begin{split} & |\alpha_{\text{curr}}(\textbf{v}) - \alpha_{\text{orig}}(\textbf{v})| * W_{\text{enddir}} \\ & |d_{\text{curr}}(\textbf{v}) - d_{\text{orig}}(\textbf{v})| * W_{\text{enddist}} \end{split}$$

Balancing the Constraints

Prioritize scores by importance

- 1. Prevent topological errors
- 2. Ensure all roads visible
- 3. Maintain original orientation
- 4. Maintain ordering by length
- 5. Maintain overall route shape

Priorities set based on usability tests

- Users given maps containing errors
- Rated which errors most confusing

System Performance					
7727 routes (sampled over 1 day at MapBlast!)					
Median distance	52.5 miles				
Median number turning points	13				
Median computation time	0.7 sec				
Short roads	5.4 %				
False intersections	0.3 %				
Missing intersections	0.2 %				
Label-label overlap	0.5 %				
Label-road overlap	11.7 %				

Previous Work

Planning

- Choose sequence of assembly operations
- Robotics / AI / Mechanical Engineering [Wolter 89], [de Mello 91], [Wilson 92], [Romney 95]

Presentation

- Visually convey assembly operations
- Visualization / Computer Graphics
 - [Seligmann 91], [Rist 94], [Butz 97], [Strothotte 98]

Jointly optimize plan and presentation

