
1

Identifying Design Principles

Maneesh Agrawala

CS 448B: Visualization
Spring 2016

Announcements

2

Final project
Design new visualization method (e.g. software)

■  Pose problem, Implement creative solution
■  Design studies/evaluations less common but also possible (talk to us)

Deliverables
■  Implementation of solution
■  6-8 page paper in format of conference paper submission
■  Project progress presentations

Schedule
■  Project proposal: 5/11
■  Project progress presentation: 5/23 in class (3-4 min) slide presentation
■  Final poster presentation: 6/3 12:15-3:15pm Location: TBD
■  Final paper: 6/5 11:59pm

Grading
■  Groups of up to 3 people, graded individually
■  Clearly report responsibilities of each member

Last Time: Spatial Layout

3

Problem
Input: Set of graphic elements (scene description)
Goal: Select visual attributes for elements

■  Position
■  Orientation
■  Size
■  Color
■  …

Approaches
Direct rule-based methods
Constraint satisfaction
Optimization

4

Direct Rule-Based Methods

Rule-based timeline labeling

■  Alternate above/below line
■  Center labels with respect to point on line

10 labels

5

Dynamic space management [Bell 00]

Manage free space on desktop to prevent window overlap

Dynamic space management [Bell 00]

Goal: Place new elements to avoid overlap
■  Elements are axis-aligned rectangles
■  Keep track of largest empty space rectangles

6

Dynamic space management [Bell 00]

Goal: Place new elements to avoid overlap
■  Elements are axis-aligned rectangles
■  Keep track of largest empty space rectangles

Pros and cons
Pros

■  Designed to run extremely quickly
■  Simple layout algorithms are easy to code

Cons
■  Complex layouts require large rule bases with

lots of special cases

7

Linear Constraint
Satisfaction

Network of layout constraints

[from Lok and Feiner 01]

Constraints

Network Two possible layouts

8

Constraints as linear equations

Local propagation
■  Set any variable
■  Update other variables to maintain constraints

One-way
■  Each constraint has 1 output variable
■  Update output when any input changes

Multi-way
■  Each constraint can be written so that any variable is output
■  More complicated to maintain

One-way constraints

One-way constraints form a directed acyclic graph (DAG). Given the
value for any variable we propagate it’s value locally through the graph
updating the other variable.

9

Page layout example [Weitzman and Wittenburg 94]

Adaptive document layout [Jacobs 03]

Users authors templates which use one-way constraints to adapt to
changes in page size

10

ADL template authoring [Jacobs 03]

11

Pros and cons
Pros

■  Often run fast (at least one-way constraints)
■  Constraint solving systems are available online
■  Can be easier to specify relative layout

constraints than to code direct layout algorithm

Cons
■  Easy to over-constrain the problem
■  Constraint solving systems can only solve

some types of layout problems
■  Difficult to encode desired layout in terms of

mathematical constraints

Optimization

12

Demo

Layout as optimization
Scene description

■  Geometry: polygons, bounding boxes, lines, points, etc.

■  Layout parameters: position, orientation, scale, color, etc.

Large design space of possible layouts

To use optimization we will specify …
■  Initialize/Perturb functions: Form a layout
■  Penalty function: Evaluate quality of layout

■  .. and find layout that minimizes penalty

13

Optimization algorithms
There are lots of them:

 line search, Newton’s method, A*, tabu, gradient
descent, conjugate gradient, linear programming,
quadratic programming, simulated annealing, …

Differences

■  Speed
■  Memory
■  Properties of the solution
■  Requirements

Simulated annealing
currL ß Initialize()
while(! termination condition)
 newL ß Perturb(currL)
 currE ß Penalty(currL)
 newE ß Penalty(newL)
 if((newE < currE) or
 (rand[0,1) < e-ΔE/T))
 then currL ß newL
 Decrease(T)

Perturb: Efficiently cover layout design space
Penalty: Describes desirable/undesirable layout features

Form initial layout

Perturb to form new layout

Evaluate quality of layouts

Always accept lower penalty
Small probability of accepting

higher penalty

14

Scene description
Geometry
■  Pie slices
 anchors for labels

■  Labels
 bounding boxes

■  Position (x, y)
■  Leader line
■  Word wrap
■  Color
■  Alignment
■  Orientation
■  Scale

Layout parameters

15

16

17

■  Position (x, y)
■  Leader line
■  Word wrap
■  Color
■  Alignment
■ Orientation
■  Scale

2D x 50 labels à
 100D space

Many dimensions à large space

Penalties
Overlap & Distance
■  Label – anchor slice
■  Label – other slices
■  Label – label

Leader lines
■  Length
■  Intersections

Word Wrap

Annealing
minimizes sum of
all penalties

18

Overlap: Label – Anchor Slice

Avoid partial overlap: No penalty if fully inside /outside

Overlap: Label – Anchor Slice

Penalize partial overlap by overlap amount

19

Distance: Label – Anchor Slice

Ensure label near center of edge of anchor slice

Distance: Label – Anchor Slice

Minimize distance d

d

20

Penalties
Overlap & Distance
■  Label – anchor slice
■  Label – other slices
■  Label – label

Leader lines
■  Length
■  Intersections

Word Wrap

Annealing
minimizes sum of
all penalties

Demo

21

Pros and cons
Pros

■  Much more flexible than linear constraint
solving systems

Cons
■  Can be relatively slow to converge
■  Need to set penalty function parameters

(weights)
■  Difficult to encode desired layout in terms of

mathematical penalty functions

Design principles
Sometimes specified in design books

■  Tufte, Few, photography manuals, cartography books …
■  Often specified at a high level
■  Challenge is to transform principles into constraints or penalties

Cartographer Eduard Imhof’s labeling heurists transformed into penalty
functions for an optimization based point labeling system [Edmondson 97]

22

Identifying Design Principles

Good Design Improves Effectiveness

London Underground [Beck 33] Geographic version of map

23

Good Design Improves Effectiveness

London Underground [Beck 33] Geographic version of map

Design principle:
■  Straighten lines to emphasize sequence of stops

Technique used to emphasize/de-emphasize information

Approach
Identify design principles

■ Cognition and perception

Instantiate design principles

■ Principles become constraints that
guide an optimization process

Route maps

Assembly instructions

24

Route Maps

Visualizing Routes

25

A Better Visualization

Cognition of Route Maps
Essential information

■  Turning points
■  Route topology

Secondary context information

■  Local landmarks, cross streets, etc.
■  Overview area landmarks, global

shape

Exact geometry less important

■  Not apprehended accurately
■  Not drawn accurately

[Tversky 81] [Tufte 90] [Tversky 92]

[MacEachren 95] [Denis 97] [Tversky 99]

26

Design Principles

■  Exaggerate road length
■  Regularize turning angles
■  Simplify road shape

LineDrive

Hand-drawn route map LineDrive route map

27

Map Design via Optimization
Set of graphic elements

■ Roads, labels, cross-streets, …

Choose visual attributes
■ Position, orientation, size, …
■ Distortions increase flexibility

Develop constraints based on
design principles

Simulated annealing
■ Perturb: Form a layout
■ Score: Evaluate quality
■ Minimize score

Request for Directions

Shape Simplification

Road Layout

Label Layout

Context Layout

Decoration

LineDrive

Route Finding Service

Route Data

 Route Map

28

Road Layout

Before road layout After road layout

Choose road lengths and orientations

Choose road lengths and orientations

Road Layout

29

Road Layout Constraints
Length

Ensure all roads visible ((Lmin - l(ri))/ Lmin)2 * Wsmall

Maintain ordering by length Wshuffle

Orientation
Maintain original orientation |αcurr(ri) - αorig(ri)| * Worient

Topological errors
Prevent false min(dorigin , ddest) * Wfalse

Prevent missing d * Wmissing

Ensure separation min(dext , E) * Wext

Overall route shape
Maintain endpoint direction |αcurr(v) - αorig(v)| * Wenddir
Maintain endpoint distance |dcurr(v) – dorig(v)| * Wenddist

Prioritize scores by importance
1. Prevent topological errors
2. Ensure all roads visible
3. Maintain original orientation
4. Maintain ordering by length
5. Maintain overall route shape

Priorities set based on usability tests

■ Users given maps containing errors
■ Rated which errors most confusing

Balancing the Constraints

30

Find overlap-free position for each label

Label Layout

Place cross-streets and exit signs if possible

Context Layout

31

Bellevue to Seattle

Cross-Country Route

32

System Performance
7727 routes (sampled over 1 day at MapBlast!)

■ Median distance 52.5 miles
■ Median number turning points 13
■ Median computation time 0.7 sec

■ Short roads 5.4 %
■ False intersections 0.3 %
■ Missing intersections 0.2 %

■ Label-label overlap 0.5 %
■ Label-road overlap 11.7 %

Results
Beta version 6 months

■  150,000 maps served

2242 responses
■ Replace standard 55.6 %
■ Use with standard 43.5 %
■ Prefer standard 0.9 %

At peak
■ Deployed at: mappoint.com
■ Served 750,000 maps/day
■ Taken offline in fall 2011

33

Original Design
Layout

■  Map and text close together
■  Overview and destination maps for

more content

Limited Resolution PDA

34

Next Steps: Wedding Maps

Hand-designed Wedding Map www.WeddingMaps.CC

1st Ave. and 19th Ave. NW, Seattle WA

Input map drawn to scale Our result

http://www.bing.com/maps/explore/#/c7pvw1whdkp6ggvw (Requires Windows, IE, Silverlight)

35

1st Ave. and 19th Ave. NW, Seattle WA

Roads selected from input Our result

http://www.bing.com/maps/explore/#/c7pvw1whdkp6ggvw (Requires Windows, IE, Silverlight)

Evergreen Ave., Boston MA

Input map drawn to scale Our result

http://www.bing.com/maps/explore/#/c7pvw1whdkp6ggvw (Requires Windows, IE, Silverlight)

36

635 Soda Hall, Berkeley CA

635 Soda Hall, Berkeley CA

37

Assembly Instructions

1 2 3

4 5 6

38

Previous Work

Jointly optimize plan and presentation

Planning
■ Choose sequence of assembly operations
■ Robotics / AI / Mechanical Engineering

[Wolter 89], [de Mello 91], [Wilson 92], [Romney 95]

Presentation
■ Visually convey assembly operations
■ Visualization / Computer Graphics

 [Seligmann 91], [Rist 94], [Butz 97], [Strothotte 98]

39

Geometric Analysis [Romney 95]

A

B A blocked by B

B blocked by A

both parts free to move

A B

B A

C A

B

A C

B

A C

B A C

B

Input Parts Blocking Graph

Geometric Assembly Planning

Valid Valid Invalid

40

Valid Valid Valid Valid Valid

How do we choose the best sequence?

Many Geometrically Valid Sequences

Identifying Design Principles

Stage 1: Production
Stage 2: Preference
Stage 3: Comprehension

41

Spatial Ability Tests

Separate high and low spatial ability

Mental Rotation [Vandenburg 78] Navigation [Money 78]

Stage 1: Production

■  43 Participants
■  Assemble TV Stand without instructions
■  Write instructions for novice assembler

42

 0

2

4

6

8

10

12

14

16

low spatial high spatial

Time to
assemble

(min)

 Low spatial High spatial

Stage 1: Mean completion time

12.76

7.29

Stage 1: Instructions produced

■  Almost all contained diagrams 98%
■  Text redundant with diagrams 62%

43

Stage 1: Errors in instructions

■  Errors in low spatial instructions 86%
■  Errors in high spatial instructions 12%

Stage 1: Errors in instructions

sides

support board

■  Errors in low spatial instructions 86%
■  Errors in high spatial instructions 12%

44

Stage 1: Classes of Diagrams

Structural diagrams

Action diagrams

■  Parts menu to differentiate parts
■  Structural diagrams depict completed step
■  Action diagrams show assembly action/operation

Parts menu

Stage 1: Action diagrams

Mean
number
per set

 Low spatial High spatial

0

0.5

1

1.5

2

2.5

3

3.5

low spatial high spatial

■  High spatial
■ More action diagrams
■ More 3D diagrams
■  Less text

0.64

2.67

