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Readings

» Readings (for next lecture on adders)
— Chandrakasan Chapter 10.1-10.2.10
— Harris Taxonomy of adders (either paper on web or
WH 10.2 t0 10.2.2.9
* Overview:
— Finish up some timing issues from high-speed links
— Your project will be the design of a decision feedback
equalizer, but most of the hardware will be the same as a
normal FIR filter. So the lecture will start talking about FIR filter
design, and then will go into the added issues with building a
DFE. WARNING: | am not an expert in this area, so there
might be better ideas out there (and some bugs in these notes)

— The FIR notes are from Bora Nikolic at UCB.
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I/O Clocking Issues

* Remember the clocking issues:
— Long path constraint (setup time)
— Short path constraint (hold time)
— Need to worry about them for 1/O as well

e For I/O need to worry about a number of delays
— Clock skew between chips
— Data delay between chips
» Can be larger than a clock cycle (speed of light)
— Clock skew between external clock and internal clock
» This can be very large if not compensated
* ltis essentially the insertion delay of the clock tree
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System Clocking: Simple Synchronous Systems

CKy ]

» Long bit times compared to on chip delays:
— Rely on buffer delays to achieve adequate timing margin
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PLLs: Creating Zero Delay Buffers
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e On-chip clock might be a multiple of system clock:
— Synthesize on-chip clock frequency

* On-chip buffer delays do not match
— Cancel clock buffer delay
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Used to Argue About PLLs vs DLLs
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» Second/third order loop:
<o Stability is an issue
2 Frequency synthesis easy
< Ref. Clk jitter gets filtered
2 Phase error accumulates

2 Ref. Clk jitter propagates
< Phase error does not accumulate
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After Many Years of Research

And many papers and products
One can mess up either a DLL or PLL

— Each has it own strengths and weaknesses

If designed correctly, either will work well

— Jitter will be dominated by other sources

Many good designs have been published

— Itis now a building block that is often reused

— We all have our favorites, mine is the

And yes, people use ring oscillators

dual-loop design

— Still an open question about how much LC helps (in system)
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Clocking Structures

Synchronous:
Same frequency and phase
Conventional buses

Mesochronous

Same frequency, unknown phase
Fast memories

Internal system interfaces
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MAC/Packet interfaces

Plesiochronous:

Almost the same frequency
Mostly everything else today

@
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Source Synchronous Systems
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— Position on-chip sampling clock at the optimal point
i.e. maximize “timing” margin
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Serial Link Circuit
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— Recover incoming data fundamental frequency

— Position sampling clock at the “optimal” point
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Finite Impulse Response Filters

* |n DSP filters are done in the discrete time domain
— Instead of x(t), x,

 Filter is formed by convolution of input with filter h(t)
— Output at every point is the sum:

y[n]=agx[n]+axx[n —1] + a,x[n — 2] +... +ayX[n =N +1]

» This is generally called an FIR filter
— Finite impulse response filter (output depends only on input)

— IIR filters have output depend on prior output
* Infinite impulse response (like RC circuits)
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Transversal Filter

y[n]=agx[n]+axx[n —1] +a,x[n — 2] +...+ ayX[n =N +1]

x[n] x[n-1] x[n-2] x[n-N+1]

yln]

MAH EE371 Lecture 3 12




Critical Path

» Digital FIR

x{n] xn-1] Fyxn-2 e Xin-N+1]

yin]

T= Tmult + (N'l)Tadd
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One Point To Keep In Mind

* We are working with small signal values
— For binary (2 PAM) X isin{0,1}
— For 4PAM X isin{0,1,2,3}

* So multiplication is generally not an issue
— For 2 PAM it is trivial
— For 4 PAM one shift and add

* The problem is the adds
— While x is one or two bits, the “a” are larger
» Generally larger then input precision

 Since you need to add many of them up and have small
guantization errors.
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Pipelining

» Pipelining can be used to increase throughput
— True for digital and mixed signal inplementations

* Pipelining: Adding same number of delay elements

— In each forward cutset (in the data-flow graph)
» From the input to the output

» Cutset: set of edges that if removed, graph becomes disjoint
— Forward cutset: cutset from input to output over all edges

* Plus - Increases frequency
* Minus - Increases latency and register overhead (power, area)

MAH EE371 Lecture 3 15

Pipelining
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Pipeline registers
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Pipelined Direct FIR

» Critical path

x[n]
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Ripeline registers

T= Tmult + Tadd
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Multi-Operand Addition

 Adders form a tree

T=Tau+ (10g,N)T4q yin]
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Multi-Operand Addition

Using 3:2 or 4:2 compression
— This is the same as a multiplier tree (in two lectures)

x[n x[n-1 x[n-2 x[n-N+1
[1] 5 [n-1] 5 [n-2] 5 [ ]
a0 a1 a2 aN—1
\ 3:2 (or 4:2) compression tree /
y Y y[n] in carry-save form
+

yln]

Optional pipelining, 1-2 stages
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Transposing FIR

Transposition:

— Reversing the direction of all the edges
* In a signal-flow graph,

— Interchanging the input and output ports

— Functionality unchanged
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Transposed FIR

* Represent as a signal-flow graph

a, a, a,
5 5 yin]
Transposed FIR
x[n]
a, d, a,
X
n
b 1-@)-ID yIn]
—
T=Thut+ Tagg

» Critical path shortened
* Input loading increased
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Parallel FIR

» Feed-forward algorithms are easy to parallelize
* Processing element representation of a transversal filter

X[n] X[n-1] X[n-2]
y[n]
0~(a)——(3) (3
Processing element Transversal filter
Parallel FIR

» Two parallel paths
* Two cycles to complete operation
* Can be extended to more

x2n]  x(2n-1  x[2n-2] x[2n-3]

¥y

‘
™

—_———— —

Two parallel path FIR Processing element
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Table Lookup

If the input data is only one or two bits
— There are not that many input combinations

Rather than adding the numbers together
— Add them before hand, and just store the results in a SRAM
— Address of SRAM is just sequence of inputs to filter
* Xp Xna Xn2 Xz Xnog
— Values in memory
» 00000 0 00001 a4
» 00010 a3 00011 a3+a4

Replaces adds and multipliers by memory
— But it grows exponentially with number of bits needed
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Decision Feedback Equalization

The main problem with DFE

— You need the output of the FIR filter NOW
* Need it to generate the next bit

Latency in the FIR filter is a problem

MAH
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Practical Digital Equalizers

* Mita, ISSCC’96, two parallel paths
¢ 150Mb/s 0.7um BICMOS
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Practical Digital Equalizers

* Moloney, JSSC 7/98, 2 parallel paths, 3:2 Wallace
¢ 150Mb/s 0.7um BIiCMOS
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Practical Digital Equalizers

* Wong, Rudell, Uehara, Gray JSSC 3/95,
4 parallel paths

* 50Mb/s, 1.2um CMOS
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Practical Digital Equalizers

e Thon, ISSCC’95
» Transposed filter, 240Mb/s 0.8um 3.7V CMOS, 150mW
* Semi-static coefficients, Booth-encoded
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Practical Digital Equalizers

» Staszewski, JSSC 8/00
» 2 parallel transposed paths, Booth encoded data
* 550Mb/s 0.21pum CMOS, 36mW

u (k) 8

u (k)
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Practical Digital Equalizers

* Rylov, ISSCC’01
o 2.3Gb/s, 1.2W, 0.18um domino CMOS
» Distributed arithmetic
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Practical Digital Equalizers

Tierno, ISSCC’'02
1.3Gb/s, 450mW, 0.18um 2.1V domino CMOS

T g
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T1 DFE Design ISSCC 07

Uses Memory lookup
— Runs at 12Gs/s
— Binary

Check it out ...
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