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Readings

• Readings (for next lecture on adders)
– Chandrakasan Chapter 10.1-10.2.10
– Harris Taxonomy of adders (either paper on web or 

WH 10.2 to 10.2.2.9
• Overview:

– Finish up some timing issues from high-speed links
– Your project will be the design of a decision feedback 

equalizer, but most of the hardware will be the same as a 
normal FIR filter.  So the lecture will start talking about FIR filter 
design, and then will go into the added issues with building a 
DFE.  WARNING:  I am not an expert in this area, so there 
might be better ideas out there (and some bugs in these notes)

– The FIR notes are from Bora Nikolic at UCB.
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I/O Clocking Issues

• Remember the clocking issues:
– Long path constraint (setup time)
– Short path constraint (hold time)
– Need to worry about them for I/O as well

• For I/O need to worry about a number of delays
– Clock skew between chips
– Data delay between chips 

• Can be larger than a clock cycle (speed of light)
– Clock skew between external clock and internal clock

• This can be very large if not compensated
• It is essentially the insertion delay of the clock tree
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System Clocking: Simple Synchronous Systems

• Long bit times compared to on chip delays:
– Rely on buffer delays to achieve adequate timing margin
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PLLs: Creating Zero Delay Buffers

• On-chip clock might be a multiple of system clock:
– Synthesize on-chip clock frequency

• On-chip buffer delays do not match
– Cancel clock buffer delay
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Used to Argue About PLLs vs DLLs

• Second/third order loop:
Stability is an issue
Frequency synthesis easy
Ref. Clk jitter gets filtered
Phase error accumulates

• First order loop:
Stability guaranteed
Frequency synthesis problematic
Ref. Clk jitter propagates
Phase error does not accumulate
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After Many Years of Research

• And many papers and products

• One can mess up either a DLL or PLL

– Each has it own strengths and weaknesses

• If designed correctly, either will work well

– Jitter will be dominated by other sources

• Many good designs have been published

– It is now a building block that is often reused

– We all have our favorites, mine is the dual-loop design

• And yes, people use ring oscillators

– Still an open question about how much LC helps (in system)
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Clocking Structures

• Synchronous:
Same frequency and phase
• Conventional buses

• Mesochronous
Same frequency, unknown phase

• Fast memories
• Internal system interfaces
• MAC/Packet interfaces

• Plesiochronous:
Almost the same frequency

– Mostly everything else today
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Source Synchronous Systems

– Position on-chip sampling clock at the optimal point
i.e. maximize “timing” margin
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Serial Link Circuit

– Recover incoming data fundamental frequency

– Position sampling clock at the “optimal” point
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Finite Impulse Response Filters

• In DSP filters are done in the discrete time domain
– Instead of x(t), xn

• Filter is formed by convolution of input with filter h(t)
– Output at every point is the sum:

• This is generally called an FIR filter
– Finite impulse response filter (output depends only on input)
– IIR filters have output depend on prior output

• Infinite impulse response (like RC circuits)
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Transversal Filter
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Critical Path

• Digital FIR

T = Tmult + (N-1)Tadd
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One Point To Keep In Mind

• We are working with small signal values
– For binary (2 PAM) x  is in {0,1}
– For 4PAM x  is in {0,1,2,3}

• So multiplication is generally not an issue
– For 2 PAM it is trivial
– For 4 PAM one shift and add

• The problem is the adds
– While x is one or two bits, the “a” are larger

• Generally larger then input precision
• Since you need to add many of them up and have small 

quantization errors.  
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Pipelining

• Pipelining can be used to increase throughput
– True for digital and mixed signal inplementations

• Pipelining: Adding same number of delay elements
– In each forward cutset (in the data-flow graph) 

• From the input to the output
• Cutset: set of edges that if removed, graph becomes disjoint

– Forward cutset: cutset from input to output over all edges

• Plus - Increases frequency
• Minus - Increases latency and register overhead (power, area)
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Pipelining

• 3-tap FIR



EE371 Lecture 3MAH 17

Pipelined Direct FIR

• Critical path

T = Tmult + Tadd
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Multi-Operand Addition

• Adders form a tree

T = Tmult + (log2N)Tadd
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Multi-Operand Addition

• Using 3:2 or 4:2 compression
– This is the same as a multiplier tree (in two lectures)

• Optional pipelining, 1-2 stages



EE371 Lecture 3MAH 20

Transposing FIR

• Transposition: 
– Reversing the direction of all the edges

• In a signal-flow graph,
– Interchanging the input and output ports 
– Functionality unchanged 
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Transposed FIR

• Represent as a signal-flow graph
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Transposed FIR

• Critical path shortened
• Input loading increased

T = Tmult + Tadd
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Parallel FIR

• Feed-forward algorithms are easy to parallelize
• Processing element representation of a transversal filter
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Parallel FIR

• Two parallel paths
• Two cycles to complete operation
• Can be extended to more

Processing elementTwo parallel path FIR
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Table Lookup

• If the input data is only one or two bits
– There are not that many input combinations

• Rather than adding the numbers together
– Add them before hand, and just store the results in a SRAM
– Address of SRAM is just sequence of inputs to filter

• xn xn-1 xn-2 xn-3  xn-4

– Values in memory
• 00000 0 00001 a4
• 00010 a3 00011 a3+a4

• Replaces adds and multipliers by memory
– But it grows exponentially with number of bits needed
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Decision Feedback Equalization

• The main problem with DFE
– You need the output of the FIR filter NOW

• Need it to generate the next bit

• Latency in the FIR filter is a problem
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Practical Digital Equalizers

• Mita, ISSCC’96, two parallel paths
• 150Mb/s 0.7µm BiCMOS
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Practical Digital Equalizers

• Moloney, JSSC 7/98, 2 parallel paths, 3:2 Wallace
• 150Mb/s 0.7µm BiCMOS
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Practical Digital Equalizers

• Wong, Rudell, Uehara, Gray JSSC 3/95, 
4 parallel paths

• 50Mb/s, 1.2µm CMOS
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Practical Digital Equalizers

• Thon, ISSCC’95
• Transposed filter, 240Mb/s 0.8µm 3.7V CMOS, 150mW
• Semi-static coefficients, Booth-encoded
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Practical Digital Equalizers

• Staszewski, JSSC 8/00
• 2 parallel transposed paths, Booth encoded data
• 550Mb/s 0.21µm CMOS, 36mW
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Practical Digital Equalizers

• Rylov, ISSCC’01
• 2.3Gb/s, 1.2W, 0.18µm domino CMOS
• Distributed arithmetic
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Practical Digital Equalizers

• Tierno, ISSCC’02
• 1.3Gb/s, 450mW, 0.18µm 2.1V domino CMOS
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TI DFE Design ISSCC 07

• Uses Memory lookup
– Runs at 12Gs/s
– Binary

• Check it out …
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