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Readings

e Readings (for next lecture on adders)
— Chandrakasan Chapter 10.1-10.2.10

— Harris Taxonomy of adders (either paper on web or
WH 10.2 t0 10.2.2.9

« Overview:
— Finish up some timing issues from high-speed links

— Your project will be the design of a decision feedback
equalizer, but most of the hardware will be the same as a
normal FIR filter. So the lecture will start talking about FIR filter
design, and then will go into the added issues with building a
DFE. WARNING: | am not an expert in this area, so there
might be better ideas out there (and some bugs in these notes)

— The FIR notes are from Bora Nikolic at UCB.
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/O Clocking Issues

« Remember the clocking issues:
— Long path constraint (setup time)
— Short path constraint (hold time)
— Need to worry about them for I/O as well

* For I/O need to worry about a number of delays
— Clock skew between chips
— Data delay between chips
» Can be larger than a clock cycle (speed of light)

— Clock skew between external clock and internal clock
* This can be very large if not compensated
 |tis essentially the insertion delay of the clock tree
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System Clocking: Simple Synchronous Systems
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e Long bit times compared to on chip delays:
— Rely on buffer delays to achieve adequate timing margin
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PLLs: Creating Zero Delay Buffers
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e On-chip clock might be a multiple of system clock:
— Synthesize on-chip clock frequency

« On-chip buffer delays do not match
— Cancel clock buffer delay

]
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Used to Argue About PLLs vs DLLs
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Filter
e Second/third order loop:
< Stability is an issue

< Frequency synthesis easy

S Ref. Clk jitter gets filtered = Ref. Clk jitter propagates
< Phase error does not accumulate

<& Phase error accumulates
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After Many Years of Research

 And many papers and products
« One can mess up either a DLL or PLL

— Each has it own strengths and weaknesses
 |If designed correctly, either will work well

— Jitter will be dominated by other sources
 Many good designs have been published

— It is now a building block that is often reused

— We all have our favorites, mine is the dual-loop design

* And yes, people use ring oscillators
— Still an open question about how much LC helps (in system)
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Clocking Structures

Synchronous:

Same frequency and phase L )

« Conventional buses T ) N
3

Mesochronous

Same frequency, unknown phase | _[>_+) Y

e Fast memories A

 Internal system interfaces T T,

« MAC/Packet interfaces tt @FO

Plesiochronous: - H>a }

Almost the same frequency '

— Mostly everything else today @Fl Fz@
F.=F,
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Source Synchronous Systems
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— Position on-chip sampling clock at the optimal point
l.e. maximize “timing” margin
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Serial Link Circuit
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— Recover incoming data fundamental frequency

— Position sampling clock at the “optimal” point
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Finite Impulse Response Filters

e |n DSP filters are done in the discrete time domain
— Instead of x(t), X,

» Filter is formed by convolution of input with filter h(t)
— Output at every point is the sum:

y[n]: an[n]+ ayX[n - +a,x[n-2]+...+ayX[n—N +1]
« This is generally called an FIR filter

— Finite impulse response filter (output depends only on input)

— |IR filters have output depend on prior output
* Infinite Iimpulse response (like RC circuits)
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Transversal Filter

y[n]z aox[n]+a1x[n -l +a,x[n-2]+...+ayX[n —N +1]
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Critical Path

. Digital FIR

T = Tmult T (N'l)Tadd



MAH

One Point To Keep In Mind

We are working with small signal values
— For binary (2 PAM) X i1sin {0,1}
— For 4PAM x 1sin {0,1,2,3}

So multiplication is generally not an issue
— For 2 PAM it is trivial
— For 4 PAM one shift and add

The problem is the adds

— While x is one or two bits, the “a” are larger
» Generally larger then input precision

* Since you need to add many of them up and have small
guantization errors.
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Pipelining

e Pipelining can be used to increase throughput
— True for digital and mixed signal inplementations

* Pipelining: Adding same number of delay elements

— In each forward cutset (in the data-flow graph)
* From the input to the output

« Cutset: set of edges that if removed, graph becomes disjoint
— Forward cutset: cutset from input to output over all edges

* Plus - Increases frequency
 Minus - Increases latency and register overhead (power, area)
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Pipelining

« 3-tap FIR

Pipeline reqgisters
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Pipelined Direct FIR

Critical path

x[n]

ipeline registers

T=Thut Tagg
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Multi-Operand Addition

« Adders form a tree

T= Tmult T (logzN)Tadd y[n]

MAH EE371 Lecture 3

18



Multi-Operand Addition

e Using 3:2 or 4:2 compression
— This is the same as a multiplier tree (in two lectures)

x[n] x[n-1] =y x[n-2] X[n-N+1]

yln]

Optional pipelining, 1-2 stages
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Transposing FIR

Transposition:
— Reversing the direction of all the edges
* In a signal-flow graph,
— Interchanging the input and output ports
— Functionality unchanged
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Transposed FIR

e Represent as a signal-flow graph

x[n] D y[n] D D

D
a:T a:T a;T ﬁ> a, a, a,
o O A yln] I X[n]
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Transposed FIR

T=Thut Tagg

Critical path shortened
Input loading increased
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Parallel FIR

« Feed-forward algorithms are easy to parallelize
* Processing element representation of a transversal filter

X[n] X[n-1] X[n-2]

0-@—@—@

Processing element Transversal filter
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Parallel FIR

Two parallel paths
Two cycles to complete operation
Can be extended to more

X2n]  x2n-11  x[2n-2]  x|2n-3]

]
I
I
I
I
I

y_

Two parallel path FIR Processing element
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Table Lookup

If the input data is only one or two bits
— There are not that many input combinations

Rather than adding the numbers together
— Add them before hand, and just store the results in a SRAM
— Address of SRAM is just sequence of inputs to filter
* Xh Xn1 Xn2%n3 Xns
— Values in memory

e 00000 0 00001 ad
e 00010 a3 00011 a3+a4d

Replaces adds and multipliers by memory
— But it grows exponentially with number of bits needed
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Decision Feedback Equalization

The main problem with DFE
— You need the output of the FIR filter NOW
* Need it to generate the next bit

Latency in the FIR filter is a problem
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Practical Digital Equalizers

Even Clock l
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Practical Digital Equalizers

Moloney, JSSC 7/98, 2 parallel paths, 3:2 Wallace
150Mb/s 0.7um BICMOS
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Practical Digital Equalizers

 Wong, Rudell, Uehara, Gray JSSC 3/95,
4 parallel paths

« 50Mb/s, 1.2um CMOS
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Practical Digital Equalizers

e Thon, ISSCC’'95

* Transposed filter, 240Mb/s 0.8um 3.7V CMOS, 150mW
 Semi-static coefficients, Booth-encoded

* in out
Latches/Broadcast Buffer W
5
D j= Z
h2 hl ho )
g
0s D D D ™ >

MAH EE371 Lecture 3 30



Practical Digital Equalizers

o Staszewski, JSSC 8/00
« 2 parallel transposed paths, Booth encoded data
 550Mb/s 0.21um CMOS, 36mW
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Practical Digital Equalizers

Rylov, ISSCC’01
2.3Gb/s, 1.2W, 0.18um domino CMOS
Distributed arithmetic
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Tierno, ISSCC’02
1.3Gb/s, 450mW, 0.18um 2.1V domino CMOS

Practical Digital Equalizers
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TI DFE Design ISSCC 07

Uses Memory lookup
— Runs at 12Gs/s
— Binary

Check it out ...
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