Lecture 4

Adders

Computer Systems Laboratory
Stanford University
horowitz@stanford.edu

Copyright © 2006 Mark Horowitz
Some figures from High-Performance Microprocessor Design © IEEE
Overview

• Readings

• Today’s topics
 – Fast adders generally use a tree structure for parallelism
 – We will cover basic tree terminology and structures
 – Look at a few example adder architectures
 – Examples will spill into next lecture as well
Adders

• Task of an adder is conceptually simple
 – Subtractors also very simple: -B = \sim B + 1, so invert B and set C_0 = 1

• Per bit formulas
 – Sum_i = A_i \ XOR \ B_i \ XOR \ C_i
 – Cout_i = C_{i+1} = \text{majority}(A_i, B_i, C_i)

• Fundamental problem is calculating the carry to the n^{th} bit
 – All carry terms are dependent on all previous terms
 – So LSB input has a fanout of n
 • And an absolute minimum of \log_4 n \ FO4 delays without any logic
Single-Bit Adders

- Adders are chock-full of XORs, which make them interesting
 - One of the few circuits where pass-gate logic is attractive
 - A complicated differential passgate logic (DPL) block from the text

![circuit diagram]

Lousy way to draw a pair of inverters
Most fast adders “G”enerate, “P”ropagate, or “K”ill the carry
- Usually only G and P are used; K only appears in some carry chains

When does a bit Generate a carry out?
- \(G_i = A_i \text{ AND } B_i \)
- If \(G_i \) is true, then \(C_{out_i} = C_{i+1} \) is forced to be true

When does a bit Propagate a carry in to the carry out?
- \(P_i = A_i \text{ XOR } B_i \)
- If \(P_i \) is true, then \(C_{out_i} (=C_{i+1}) \) follows \(C_i \)
- Usually implemented as \(P_i = A_i \text{ OR } B_i \)
 - OR is cheaper/faster than an XOR
 - If you are doing logic, \(C_{out} \) is still equal to \(G_i + P_i C_i \)
 - Just beware that \(\text{Sum}_i \neq P_i \text{ XOR } C_i \)
Using G and P

• We can combine G_i and P_i into larger blocks
 – Call these “group generate” and “group propagate” terms

• When does a group Generate a carry out? (e.g., 4 bits)
 – $G_{3:0} = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$

• When does a group Propagate a carry in to the carry out?
 – $P_{3:0} = P_3P_2P_1P_0$

• We can also combine groups of groups
 – $G_{i:j} = G_{i:k} + P_{i:k}G_{k-1:j}$
 – $P_{i:j} = P_{i:k}P_{k-1:j}$
Linear Adders Using P,G

- Simple adders ripple the carry; faster ones bypass it
 - Better to try to work out the carry several bits at a time
- Best designs are around 11FO4 for 64b
 - Useful for small adders (16b) and moderate performance long adders
- Example of carry bypass from the text
Figure Is Not Quite Right

• How does the drawn critical path go down from the OR gate?!
 – Fix: The OR gate output is the true input to the next group

• Subtle point: Each block spits out a G term for the OR
 – Not simply a Cout\textsubscript{i} term
 – Avoids a nasty critical path (11\ldots1 + 00\ldots0 + C\textsubscript{in}; C\textsubscript{in} goes 1\rightarrow0)
Faster Carry Bypass (or Carry Skip) Adders

- We see the basic idea is to form multi-level carry chains
 - Break the bits into groups
 - Ripple the carry in each group, in parallel
 - Ripple the global carry across the groups

- How big should each group be? (\(N\) bits total, \(k\) bits per group)
 - If ripple time equals block skip time then delay \(= 2(N-1)+(N/k -2)\)

- Would groups of different sizes be faster? (yes)
 - Middle groups have longer to generate carry outs; should be larger
 - Early and late groups have ripples in critical path; should be shorter
 - Called “Variable Block Adders”
Carry Select Adders

- Why wait for the carry in? (If you can’t find parallelism, invent it!)
 - Calculate answers for a group assuming \(C_i = 1 \) AND \(C_i = 0 \)
 - Use two adders, and rely on the fact that transistors are cheap
 - Don’t do this on the full adder (too expensive), just the MSBs
Many Papers on These Adders

• But no one builds them anymore
 – Or rather, nobody publishes papers on them (or gets PhDs on them)

• These are all clever improvements on adders
 – That tend to optimize transistors along with performance
 – Or are best for narrow-width operands (n=64 is slow)

• But scaling is pushing these adders to the wayside
 – We have very wide-word machines (media applications)
 – We have more transistors than we know what to do with

• Question: As power density questions increase…
 – … will these “simpler” adders make a comeback?
Logarithmic, or Tree, Adders

• Fundamental problem: to know C_i, we need C_{i-1}
 – So delay is linear with n, and this dominates for wide adders ($n > 16$)
 – Can we lookahead across multiple levels to figure out carry? Yes.
 – Called “prefix computation” – turns delay into logarithmic with n

• Notation is always an issue; everybody does it differently
 – Here, A_{ij} means the signal “A” for group the i^{th} to j^{th} position
 – $P = \text{propagate } (A+B)$
 – $G = \text{generate } (AB)$
 – $C = \text{CarryIn to this bit/Group position}$
Logic Stages For Logarithmic/Tree Adders

1. Compute single bit values
 \[0 \leq i < n \quad G_i = A_iB_i \quad P_i = A_i + B_i\]

2. Compute two-bit groups
 \[0 \leq i < (n/2) \quad G_{2i+1:2i} = G_{2i+1} + G_{2i}P_{2i+1} \quad P_{2i+1:2i} = P_{2i+1}P_{2i}\]

3. Compute four-bit groups
 \[0 \leq i < (n/4) \quad G_{4i+3:4i} = G_{4i+3:4i+2} + G_{4i+1:4i}P_{4i+3:4i+2} \quad P_{4i+3:4i} = P_{4i+3:4i+2}P_{4i+1:4i}\]

4. ...Go down tree for G&P, then go back up for Cin...

5. Compute four-bit carries
 \[0 \leq i < (n/8) \quad C_{8i+7:8i+4} = G_{8i+3:8i} + C_{8i+7:8i}P_{8i+3:8i} \quad C_{8i+3:8i} = C_{8i+7:8i}\]

6. Compute two-bit carries
 \[0 \leq i < (n/4) \quad C_{4i+3:4i+2} = G_{4i+1:4i} + C_{4i+3:4i}P_{4i+1:4i} \quad C_{2i+1:2i} = C_{2i+3:2i}\]

7. Compute single-bit carries
 \[0 \leq i < (n/2) \quad C_{2i+1} = G_{2i} + C_{2i+1:2i}P_{2i} \quad C_{2i} = C_{2i+1:2i}\]
An Eight-bit Example

• “Lines and dots” notation shows the tree structure clearly

• Takes $\log_2 n$ time to get the final carry-out ($C_{out7} = G_{7:0}$)
• More common to line up the PG terms with their appropriate bits
Layout Of Our Example Tree Adder

• Logarithmic structures have somewhat ugly layout

• Worst wire length grows as n increases (n=64? 128?)
That Was Half The Algorithm…

1. Compute single bit values
 \[0 \leq i < n \quad G_i = A_i B_i \quad P_i = A_i + B_i \]
2. Compute two-bit groups
 \[0 \leq i < \frac{n}{2} \quad G_{2i+1:2i} = G_{2i+1} + G_{2i} P_{2i+1} \quad P_{2i+1:2i} = P_{2i+1} P_{2i} \]
3. Compute four-bit groups
 \[0 \leq i < \frac{n}{4} \quad G_{4i+3:4i} = G_{4i+3:4i+2} + G_{4i+1:4i} P_{4i+3:4i+2} \quad P_{4i+3:4i} = P_{4i+3:4i+2} P_{4i+1:4i} \]
4. …Go down tree for G&P, then go back up for Cin…
5. Compute four-bit carries
 \[0 \leq i < \frac{n}{8} \quad C_{8i+7:8i+4} = G_{8i+3:8i} + C_{8i+7:8i} P_{8i+3:8i} \quad C_{8i+3:8i} = C_{8i+7:8i} \]
6. Compute two-bit carries
 \[0 \leq i < \frac{n}{4} \quad C_{4i+3:4i+2} = G_{4i+1:4i} + C_{4i+3:4i} P_{4i+1:4i} \quad C_{2i+1:2i} = C_{2i+3:2i} \]
7. Compute single-bit carries
 \[0 \leq i < \frac{n}{2} \quad C_{2i+1} = G_{2i} + C_{2i+1:2i} P_{2i} \quad C_{2i} = C_{2i+1:2i} \]
An Eight-Bit Example, Finished

- A Brent-Kung adder (1982): what's the critical path?
A 16b Brent-Kung Adder

- Limit fanout to 2 (can collapse some nodes with higher FO)

Carry out for each bit position
Many Kinds of Tree Adders

• We can vary some basic parameters
 – Radix, tree depth, wiring density, and fanout

• Radix: how many bits are combined in each Pgroup, Gg term?
 – Radix is generally < 4 (why not more?); prior example was 2
 – Radix-n can just compute the Pg and Gg terms directly
 - Or it can compute the intermediate P# and G# terms as well
Building Multiple-Bit PG blocks

- Radix-4 Pg, Gg block that generates intermediate terms
 - Spits out “P_{3:0}” and “G_{3:0}” terminology
 - Also spits out P3, G3, P2, G2 and passes along P1, G1
 - Allows for quick computation of the various carries, once we know C_{in}
 - How do we build this block?
Building Multiple-Bit PG blocks, con’t

- Can we use dynamic logic to build fast blocks?
 - A Manchester carry chain can “gather” the multiple-bit G terms

```
\[ \begin{array}{c}
  G_0 \\
  G_1 \\
  G_2 \\
  \vdots \\
  G_n \\
\end{array} \begin{array}{c}
  P_1 \downarrow \\
  P_2 \downarrow \\
  \vdots \\
  P_n \downarrow \\
\end{array} \begin{array}{c}
  G_0:0 \\
  G_1:0 \\
  \vdots \\
  G_n:0 \\
\end{array} \]
```

- For C, since we already have Pgs and Ggs we can do better

```
\[ \begin{array}{c}
  \text{Cin} \\
  P_0 \\
  G_0 \\
  P_1:0 \\
  G_1:0 \\
  \vdots \\
  P_n:0 \\
  G_n:0 \\
\end{array} \]
```
Dynamic Logic for 4-Bit PG Block

- Motorola design
32b Mixed-Radix Brent-Kung Adder

- Vary radices at different tree levels because n may not be $(\text{radix})^k$
32b Mixed-Radix, Redrawn As Folded Tree

- PG goes “down” and Carry goes back “up”
64b Radix-4 Brent-Kung Adder

• Takes longer to draw in Powerpoint than it does to design!
Radix 4 PG and Carry Trees

(Argh! Why do people put the LSB on the left side?)
Tree Depth, Wiring Density, and Fanout

- Previous slides have all examined changing the adder radix

- We can also change the tree depth, wire density, and/or fanout
 - These usually get changed together; one affects the others
 - Density: How many wires criss-cross the tree?
 - Depth: How many stages of logic?
 - Fanout: How far is the reach of each stage?

- Reduce depth by chopping trees
 - Many adders use carry select at the final stage
 - Compute two results, and use a carry to select right result
 - Eliminate the carry tree altogether
 - Increasing wiring density or increasing fanout
• Eliminate the carry out tree by computing a group for each bit
 – Kogge-Stone architecture (1973)

• Lots of wires, but minimizes the number of logic levels
• We can use this for a quick swag at the minimum delay
Minimum 64b Adder Delay

• Make a few assumptions
 – Output load is equal to the load on each input
 – Use static gates; very aggressive domino logic may change results

• Simple approximation
 – Need to compute \(\text{Sum}_i = A_i \text{ XOR } B_i \text{ XOR } C_i \)
 – \(C_{\text{in}} \) (LSB) must fanout to all bits for a fanout of 64
 – Extra logic in chain raises effective fanout to about 128 → 3.5 FO4

• More complicated approximation
 – At each stage, \(P \) drives 3 gates, \(G \) drives 2; effective fanout \(\frac{1}{4} 3.5 \)
 – Total fanout = 1.5 (first NAND/NOR) * 3.5^6 * 1-ish (final mux)
 – 5.7 FO4, not really accounting for parasitic delay correctly
Higher Radix Still Possible

• Radix-4 Kogge-Stone tree
 – Trades off two layers of logic for lots and lots of wires

• Not a good idea in CMOS – it tends to increase stage efforts >> 4
 – Not bad, though, for domino – much lower logical effort
Reduce Depth With Fanout

• Can also reduce tree depth by increasing the stage fanouts
 – Sklansky (1960) called this a “divide-and-conquer” tree
 – Fanouts increase the further from the start you go
A Taxonomy

• Following Harris’s 2003 paper
 – Assume 16b radix-2 adder families for this discussion
 – We can modify tree’s depth, fanout, and wiring density

• What we’ve seen already
 – Brent-Kung: 7 logic levels, fanout of 2, one wiring track enough
 – Kogge-Stone: 4 logic levels, fanout of 2, eight wiring tracks
 – Sklansky: 4 logic levels, fanout of up to 9, one wiring track enough

• Formalism: Use a triplet (l,f,t) to represent the adders
 – Logic levels = \log_2 N + 1
 – Fanout = 2^{f+1}
 – Wiring tracks = 2^t
 – Brent-Kung: (3,0,0)
 – Kogge-Stone: (0,0,3)
 – Sklansky: (0,3,0)
Points on a plane?

- All major adder architectures fall onto the same plane
 - Defined by $l+f+t = \log_2 N - 1$

- Using this, we may expect a Han-Carlson adder to…
 - Trade off logic layers for some increased wiring
Han-Carlson Adder (1987)

- Think of this as a sparse Kogge-Stone
 - Called a sparse tree with sparseness of 2
Adder Tradeoffs

![Graph showing tradeoffs between energy and delay for different adder types, including Domino Sklansky Ling 2-bit Sum select, Static CMOS Sklansky, and Dual Rail Sklansky Ling. The graph plots energy in fJ on a logarithmic scale against delay in 100ps, with a note indicating Cout = 100fF.]
Other Sparse Trees

Fig. 2. Critical sparse carry-merge tree

Mathew, VLSI'02