Lecture 5

More Adders & Multipliers

Computer Systems Laboratory
Stanford University
horowitz@stanford.edu

Copyright © 2007 Mark Horowitz

M Horowitz EE 371 Lecture 5
Overview
* Readings (for next lecture on latches/flops)
— Stojanovic Comparison of Latches and Flops
Also Chapt 11 in Chandrakasan
— Harris Skew Tolerant Domino

(Won't discuss until later)

* Today'’s topics
— Ling Adders
— Multiplication
» Booth recoding
« CSA
* Tree combiners

M Horowitz EE 371 Lecture 5

Ling Adder

Huey Ling (IBM, 1981) reformulated Pg and Gg for speed

The problem: Want to minimize logic delays for a 64b add
— Start with radix-4 for only three levels of PG logic

— Generate Py, G, from inputs to save a stage
» Uh-oh: that's a pretty complicated gate

The normal equations for P,., and G;., are:
= Gg= G5+ Py(G, + Py(G, + P,Gy))
— P3o=P3P,PP

Left as an exercise to the reader ©
— Generating G, from A[3:0], B[3:0], C,, takes 15 terms, stack=5

M Horowitz EE 371 Lecture 5 3

+Ling And ECL Logic

» Ling exploited the then-prevalent design style of ECL
— Emitter-coupled logic — a very fast current steering bipolar style
— Ve =0V, Ve <-1.7V; here, inputs range from —0.9 to -1.7V
— CMOS equivalent is called SCL (source coupled logic)
» Gate operates with current steering

o
| %J
—+ %

r
28
[R

INPUTS Vo BIAS Source: Motorola MECL data sheet

M Horowitz EE 371 Lecture 5 4

+Benefits of ECL Logic

* ECL logic supports a “Wired-OR” configuration (or “Dot-OR")

— Two logic gates have outputs X and Y (el
—_——— Source: Gray and Meyer
— Short their outputs together “rs ’ ’

— If either output goes high .

Gate 2 To load
» The resultis pulled high — an OR function exuﬂ;);dvlv,ms-ﬂ“ "
X+ i

» ECL gives a way to OR together complex logic “for free”
— Ling used this to create moderately complex OR functions

* Is there an analogous circuit style in CMOS?
— Domino precharge/discharge logic
— Different pulldown stacks on the same node get “OR-ed”
— Not exactly the same but close...

M Horowitz EE 371 Lecture 5 5

Simplifying G4 and P4

+ Expand G4 term partially (but not all the way to A, B, C;,)
= Gy = G3 + Py*G, + Py*Py*Gy + Po™P,"P G,

» Key observations: if P=A+B, then Gg=1 implies Pg=1
- G4 @P3*Gz + P3*P,*Gy + P3*P,*P G,
— G4 =P*¥G; + G, + P,*G, + P,*P,*G,) = P;*H4
— Call this H4 a “pseudo-carry” term

* H4is easier to compute than G4 is
— Recall G4 takes 15 terms, stack of 5
H4=A,B,+A,B,+A,A B +B,A B +A,A A B +A,B,A B +B,A A B,+B,B,A B,
— H4 takes only 8 terms, fanin of 4
» A significant speed win

M Horowitz EE 371 Lecture 5 6

What Good Is H47?

* Rewrite: H4 = G; + G, + P,*G; + P,*P,*G,

e Can | make a tree structure with H terms?
— Good: my current group of four doesn’t use P, so why bother?
— Bad: the next group of four does need P;...

* So define a “pseudo-propagate” term 14
- lgo=P,P,P,P, Orl,,=PsP.P,P; and so on (what's P_,?)
— Ingeneral I; =P,

M Horowitz EE 371 Lecture 5

Using H and |

* They let us use the same tree structure as before (“off by one”)
— With Ps and Gs: G;; = G + PGy 4; and Py, =P, P,
— With Hs and Is: H;; = H, + I, Hp and 1 =Lyl gy

* Normally this type of optimization would not matter much
— Trick only works with P and G, and not Pg and Gg
— This means you get savings only at the first level of tree
— But adders are carefully optimized, and every bit helps

» Ultimately need to add the missing P back to generate Carry
— Put C,, into Ig, (in the open slot for P_,)
— When you generate C from H, |
» Ciny, = P; (Hi(* lip), not much slower than normal Carry
* In carry select adders, P; can be added to the local chains

M Horowitz EE 371 Lecture 5

Ling Adder Implementation

e Sam Naffziger (HP, 1996) presented a 64b adder
— 7 FO4 delay (< 1nS): pretty darn fast

— 0.5um CMOS

» This was a fairly optimized process (FO4 = 150pS at TTTT)

+ We'd usually expect 250pS at TTSS or 180pS at TTTT (360*L y4e)
— Fairly small as well

» 7000 transistors

e Yamm?

* In the homework you'll get to implement part of this adder
— In Verilog, not spice
— We'll give you skeleton Verilog and ask you to fill in the rest
— Some errors in his slides (we’ll detail them in the homework)

M Horowitz EE 371 Lecture 5 9

Aside — Domino Gate Factoring

» Domino gates have two stages
— 2nd stage does not need to be an inverter

* Can build a 4 input AND gate by building two high stacks
— And then using a pMOS NOR gate to combine

14

AL 81 A3 T B3 l
HH,.I l_eBB FI2°_' |.‘.Bz

1 Notation is different
* Source: Naffziger, ISSCC '96

M Horowitz EE 371 Lecture 5 10

Ling vs. CLA

60 T
55 ~
50 ~
45 —R2 Ling}/v

240 | —R2CLA

535 i {—R4Ling

,jCj 30 - / — R4 CLA

25 A

20 - ¥

15 A

10

6 7 8 9 10 11
Delay [FO4]

Source: Zlatanovici, ESSCIRC '03, and Bora Nikolic

M Horowitz EE 371 Lecture 5 11

Multiplication, Grade-School Level

* Product = Multiplicand * Multiplier
— Multiplicand scaled by each digit in the multiplier-> partial products
— These partial products are shifted and added up

* Base-10 example: 119 * 182
— Partial products are: 119*2 = 238, 119*8 = 952; and 119*1 = 119
— Shift them and add them up
..238 (2 * 119)
.952. (8 * 119)
119.. (@ * 119
21658

» This is perhaps easier to read in binary...

M Horowitz EE 371 Lecture 5 12

Multiplication, Grad-School Level

» Same basic idea, only now all digits are 0 or 1
— But still have multiplicand, multiplier, and partial products
— Ex:119=01110111; 182 =10110110

....... 10110110

...... 10110110 .
..... 10110110 . .
.000000O00O
10110110
101210110
10121012120
00000000
010101001001 1010 = 21658,

* Hm. Is there an easier notation for this operation?

M Horowitz EE 371 Lecture 5 13

Dot Notation

* Rows of dots are partial products, either a “1” or a “0”
— Number of dots corresponds roughly to total hardware needed
— Height of dot structure corresponds roughly to total latency

XXXXEX,
0660
¢ oo
e
.::

@ @ @ @ O O
oo o

.
. -.....-....-.........--
.
.
.
ole-0- 00 000

* Result of multiplying two n-bit numbers is a 2n-bit number
— Integer operations keep the LSB n bits
— Floating point operations keep the MSB n bits (toss out precision)

M Horowitz EE 371 Lecture 5 14

Simplest Multiplier

» A very simple multiplier iterates over n cycles
— Smallest area (fewest dots), longest latency (maximum dot height)

: i iMultiplicand

Multiplier :
1443 i (shift right each cycle);

Generate PPs |
(AND gates)

‘ [N N J
A A y
Adder
Register
(shift right each cycle)
M Horowitz EE 371 Lecture 5 15

Remove Unnecessary Partial Products

» Speed up the operation by avoiding adding partial products = 0
— Unless multiplier = 111..1, there are always some 0 partial products
— Just shift if multiplier bit is 0; don’t bother adding the 0
— In our example, from 8 to 6 partial products

* We can do better: consider a multiplier of 01111111
— Requires seven partial products if we ignore the 0
— Rewrite this as 10000000 — 00000001
— Now | only need two partial products, although one is negative!

* Called “Booth encoding” (1951)
— Skip strings of 1's in the multiplier
— Encode as the difference of two numbers

M Horowitz EE 371 Lecture 5 16

Basic Booth Recoding

* Apply this to our example: 118 = 01110111
— Write 0111 as 1000 — 0001; this string shows up twice

- . e e .- 10110110
+....10110110. ..
-...10110112120. ...
+10110110.
010101001001 1010 = 21658,

— This is an improvement; six partial products to four

* Not always helpful; imagine input of 170 = 10101010
— Recoding into differences of two numbers doesn’t help at all
— No string of 1’s to exploit

* Problem: Variable #s of PPs are hard to support in hardware

M Horowitz EE 371 Lecture 5 17

Modified Booth Recoding

* Look at the multiplier three bits at a time
— Try to figure out if we’re starting, inside, or finishing a string of 1s
— Overlap the three bits to help us figure this out
— Really encoding just two bits at a time, but in context of three bits

e 16b multiplier always generates 9 partial products (PP0O-PP8)
— In general will create floor(0.5*(n+2)) partial products
— Pad the LSB with a 0, and the MSBs with enough Os

MSB 0000000000000 00 () |SB

il vl vl o
PP8_PP_17 Ppe_PP_}5 PPA— —JPPA__) PPO

PP3 PP1

M Horowitz EE 371 Lecture 5 18

Modified Booth Recoding Rules

» Get different PPs depending on the rules (here, M=multiplicand)
If we're starting a string of 1's, put a —M at string’s LSB

If we're ending a string of 1's, put a +M one left of string’s MSB

— If we're inside or outside a string, do nothing

— Isolated 1's are treated as is

Bitl Bit0 Prev Output Comment

0 0 0 0 Outside a string of 1”’s. Do nothing

0 0 1 +M Ended a string of 1°s. Put +M at MSB+1

0 1 0 +M Isolated 1; treat as is

0 1 1 +2M Ended a string of 1°’s. Put +M at MSB+1

1 0 0 -2M Starting a string of 1°s. Put -M at LSB

1 0 1 -M Start & end. Put +M at MSB+1 and -M at LSB
1 1 0 -M Starting a string of 1°s. Put -M at LSB

1 1 1 0 Inside a string of 1”’s. Do nothing

e This needs +M, —M, +2M, and —2M
— +/- 2M are easy: just take +/- M and shift it over a bit

M Horowitz EE 371 Lecture 5 19

Example of Modified Booth Recoding

* Recall our multiplier was 118 = 01110111
011101110

NN/

+2M +2M
— Same as before; modified Booth = original Booth for this case

» Writing it out this time
— Use two’s complement notation for the negative numbers

1111111010019‘16 M)

.1011011:0. .. (2w
11101001(3-‘10'.... (-M)
10110110 @

0101010010011010 = 21658,

M Horowitz EE 371 Lecture 5 20

Modified Booth Recoding Circuits

* A plain-vanilla CMOS implementation
— Booth decoder followed by 16 individual Booth muxes

Q111111 Sy e s s v

Msb

Multiplicand
A

Multiplier
Group

Msb

30 12 more o
1+ And/Or/Exclusive- 1 !
Or blocks

,\\1;\1 hd Lib
Partial Product S s
Source: Bewick, Stanford, 1994
M Horowitz EE 371 Lecture 5 21

Modified Booth Decoder in Domino

Clk “’,3 dl I,b "',3 C| Drives

long wire
OM_en M_en 2M_en and lots of
muxes
prev prev prev
Clk |g bit0 | Clk

why?

M Horowitz EE 371 Lecture 5 22

Modified Booth Mux in Domino

CH<-I:1t3 ci

R0 JFAD R

—|§7

D PP_b

LE

M Horowitz EE 371 Lecture 5 23

Can We Extend This Paradigm?

* Look at multiplier four bits at a time and hunt for strings of 1's
— Recode three bits at a time, but using context of four bits

Bit2 Bitl BitO Prev Output Comment

0 0 0 0 0 Outside a string of 1°s. Do nothing

0 0 0 1 +M Ended a string of 1’s. Put +M at MSB+1

0 0 1 0 +M Isolated 1; treat as is

0 0 1 1 +2M Ended a string of 1”’s. Put +M at MSB+1

0 1 0 0 +2M Isolated 1; like above but shifted

0 1 0 1 +3M Isolated 1 plus an ending to string of 1°s
0 1 1 0 +3M Start&end: +M at MSB+1 and -M at LSB

0 1 1 1 +4M Ended a string of 1’s. Put +M at MSB+1

1 0 0 0 -4M Starting a string of 1°’s. Put -M at LSB

1 0 0 1 -3M End&start: +M at MSB+1 and —M at LSB

1 0 1 0 -3M Isolated 1 plus a start to a string of 1°s
1 0 1 1 -2M End&start: +M at MSB+1 and —M at LSB

1 1 0 0 -2M Starting a string of 1°s. Put -M at LSB

1 1 0 1 -M End&start: +M at MSB+1 and -M at LSB

1 1 1 0 -M Starting a string of 1°’s. Put -M at LSB

1 1 1 1 0 Inside a string of 1”’s. Do nothing

M Horowitz EE 371 Lecture 5 24

Booth-3 Recoding

» Good part of this scheme: fewer partial products; faster

MSB 0000000000000 00 () |SB

H_I H_I
—— pPps \——J PP2 \——J PPO

PP5 PP3 PP1

» Bad part of this scheme: Need to generate +/- 3M
— Can take an additional add!
— This is why Booth-3 is typically not used in designs

— Higher-order Booth recoding gets worse
» Booth-4 requires +/-3M, +/-5M, and +/-7M. Yikes.

» Clever tricks to get around this use “partially redundant forms”
— Optional reading (Bewick) if you want to try this on your project

M Horowitz EE 371 Lecture 5

25

Negative Partial Products

* How do we deal with negative partial products?

* Consider a 16b multiplication using modified Booth recoding

¢e2

—
[J

Y]

—
[J

Y]

—
[J

Y]

-

M Horowitz EE 371 Lecture 5

26

Add Sign Bits

What if all the partial products were negative?
— Invert all the bits (blue circles), add 1, and sign-extend
— Notation: red circle = 1, green circle = 0
— Note that last partial product is never negative

IOOOOOOOOOOOOOOO.................

IOOOOOOOOOOOOO................. o

IOOOOOOOOOOO................. o

IOOOOOOOOO................. o
IOOOOOOO................. |J
IOOOOO................. |£
IOOO................. |J
§

IO.................

|oooooooooooooooo|lo

o eetaetiaetiiech

M Horowitz

EE 371 Lecture 5

27

Dealing With Sign Extensions

These red circles (all “1”s) are inconvenient

— They make our multiplier unsquare — or at least, un-parallelpiped

— Notation: red circle = 1, green circle = 0

What do the 1's add up to?

000000000000000
0000000000000
00000000000
000000000
0000000
00000
00O

000000000000000000

M Horowitz

EE 371 Lecture 5

28

Reduce

* The red triangle (of 1s) can be reduced to a simpler form
— Good thing, or else fanout would be huge
— Notation: red circle = 1, green circle =0

IOO.................

co2

IO.................. o

—
[]

IO.................. o

T

—
[]

IO.................. o
IO.................. o

|o.'3212121211112121|j'|3'3

T

—
[]

T

et

|oooooooooooooooo”o
00000000000000000000000000000000

M Horowitz EE 371 Lecture 5 29

Sign Extension Constants

* Let's examine these extra sign extension bits more closely
— S =sign bit = 1 if negative
— Because fonts don’t work well in Powerpoint, “C” = S_bar

11 CSS
10 1C
10 1C
10 ﬁ 1C
10 1C
10 1C
10 1C

» Expression on the right is exactly the same as the left for S=1
— And, it also works out for S=0 (all the terms drop out)

M Horowitz EE 371 Lecture 5 30

Allow Both Signs

* Thisis a fully general PP formation
— Again, S=1 means a negative number

ced

[Ssso000c00000000000

J S TTTTTTTIIIIE: |J

—
[J

Y]

—
[J

(oeesssereeressene|]
rd'JL

IS 00000000000000000

Y]

—
[J

Y]

-

M Horowitz EE 371 Lecture 5 31

Add Up Partial Products

* So we can speed up the generation of the partial products
— We still have to add them up, column by column

[Ssseoo00000000000000
dSec00000000000000 |J

ﬁ................ﬂ .

4?0..............1j s

r................d :

43...............
IS................. |J

* Our simple iterative multiplier is slow with this add
— Even if we optimize the number of partial products we generate
— Adding more adders doesn’t help; even fast adders are pretty slow

M Horowitz EE 371 Lecture 5 32

Carry-Save Adders

* For speed, delay carry propagation until later
— There is no need for carry propagation after each sum

» Carry-Save Adders represent the sum in a “redundant form”

— Sum =sum_1+sum_2

— Compute sum and carry, but don’t propagate the carry
— In other words, Sum = sum_without_carries + carries
— Need to do a final add with a carry propagate at the very end

X, Y, Zo % Y. Z, X Y, Z, X Y, Z

S

c, s, G S,

& P

CZ 52 C1 s1

X1 Yn.1 s 3'2 CSA
| n-bit CSA
v Fu e Source: Harris, Addison-Wesley, 2004
M Horowitz EE 371 Lecture 5 -

Using CSAs In Multipliers

* Consider a 16-deep partial-product array
— For example, a 30b multiplier using modified Booth recoding
 Ignoring sign extensions in this dot diagram
— Worst column is the center one; need to add 16 terms

* Add the columns up using 3-2 CSAs; avoid carry propagation

M Horowitz

EE 371 Lecture 5 34

Using CSAs In Multipliers

e Group terms into a line of 3-2 CSAs
— Sums stay in this column; carryouts go into left column (red)
— Right column is giving me its carryouts (blue)

._
@ s
o clmm
o— clmm
® CHEm
® cmm
® cEm s
® I s
® cham
._
o— ..
o— °
._
._
._
._
M Horowitz EE 371 Lecture 5 35
More About CSAs

* CSAs are small and fast
— In Domino logic, a CSA is about 1.5 FO4
— Very simple (just a full adder)
— No carry ripple needed

» At each stage, redundant sum takes two inputs
— Next partial product takes the third input

* One problem, of course, is at the very end
— You need to sum up the redundant form
 Shift the carry word over to a higher weight first
— This takes a fast adder, but only one such adder

M Horowitz EE 371 Lecture 5

36

Block Diagram of This Array

» This sample adder has 16 partial products :Booth Mux0 |

— Therefore 13 CSAs, all in the critical path
— First CSA takes 3 partial products \ oot w1 |
\ Booth Mux2 /
!

» Very regular datapath, fairly short wires

CSA #0

A

* Long latency due to extended critical path e “"“53 /

— What if we move away from linear path? CSA #1
— What about logarithmic structures?

\ Bpoth| Mux15/
Y

CSA #14

M Horowitz EE 371 Lecture 5 37

Using CSAs In Multipliers

* Group terms into a tree of 3-2 CSAs (a “Wallace Tree,” 1964)
— Much shorter latency chain

-
o s
:: =Bl g—..—

s
o cHm B s
o c-mm dm - s
o il B s—
o s s c—m
o clmm C—I\
o—
o s
o Hiawliam 2
..: gf / g_. Iongwi.r.es,yuck
@ /

M Horowitz EE 371 Lecture 5 38

Problem With 3-2 Wallace Trees

» This seems good; critical path drops from 13 CSAs to 6

» But layout of this is messy
— lrregular
— Long wires that span multiple rows
— 3-2 structures do not lend themselves nicely to trees

* Would much prefer to have a binary element for trees

M Horowitz EE 371 Lecture 5 39

4-2 Compressors

* Create a new element from two back-to-back 3-2 CSAs
— Call this a 4-2 compressor: it “compresses” 4 inputs into 2 outputs

Cout
a a
Car
b Y _ b
c c Carry
Sum
d d Sum
(a) Source: Harris, Addison-Wesley, 2004
Cin

— “Wait,” you say. “This is really a 5-3 compressor.”
— Yes, that's right. But 5-3 doesn’t sound remotely binary tree-like

* This element allows for much more regular layout and wiring

M Horowitz EE 371 Lecture 5 40

Using 4-2 Compressors In Multipliers

* Go back to the 16bit column example
— In-between Cin and Cout terms (that make it 5-3) are not shown

(@17

—ill Ix‘—

e

(@1

L

(@X%)

(@1

—ill Ix‘—

of——
I—

frrTrTRO2220 0000

M Horowitz EE 371 Lecture 5 41

Do 4-2 Compressors Fix Everything?

» 4-2 Compressors allow a regular layout (better than 3-2CSAs)
— But still not as nice as the (slow) linear arrays
— Still long wires, lots of routing tracks, lots of cross-overs

* Turn the picture sideways: bitslice

R =L LR

» Suppose this is our 30b multiplier w/ modified Booth recoding
— What is the datapath height at each level?

C 57
27l | asb Bl =n| 610 (BH[sm] [4sp D [370]

M Horowitz EE 371 Lecture 5 42

Other Array Structures

* Some alternate methods of creating multiplier arrays
— Even/odd arrays (Hennessy)

— Array of arrays (Dhanesha)
» Covers two partial arrays and four partial arrays

* | encourage you to look at these array structures
— Perhaps you want to use them for your project
— Trade off regularity and shortness of wires for latency

* Note that the readings are usually for floating point multipliers
— Double-precision, so 53-bit mantissa
— Booth encoding gives you 27 PPs, each 54b long (to support 2M)
— With sign extension, you actually get 57b in first PP, 56b in rest

M Horowitz EE 371 Lecture 5

43

